文档库 最新最全的文档下载
当前位置:文档库 › 二项式定理

二项式定理

二项式定理
二项式定理

二项式定理:

一、框架

二项式定理是高中数学中与排列组合、多项式的概念性质联系比较紧密的内容,高考在这一部分命题主要以选择、填空题的形式考查二项展开式的项、系数及其相关问题。复习时先要正确的理解二项式定理、二项展开式的项、系数等概念和性质,牢牢掌握二项展开式的通项公式是解答有关问题的关键,同时注意把握二项式与定积分及其它知识的联系。其中非标准二项式定理求解特殊项的问题,是难点问题。 1.二项式定理:

公式(a +b )n =C 0n a n +C 1n a n -

1b +…+C k n a n -

k b k +…+C n n b n (n ∈N *

)叫做二项式定理.

2.通项:

T k +1=C k n a

n -

k b k

为展开式的第k +1项. 提醒: (1)T k +1表示的是第k +1项,而非第k 项.

(2)要正确区分二项展开式中的“项”、“项的系数”、“项的二项式系数”等概念的异同. 3. 求二项展开式中的项的方法:

求二项展开式的特定项问题,实质是考查通项T k +1=C k n a

n -

k b k

的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(k =0,1,2,…,n ). (1)第m 项:此时k +1=m ,直接代入通项;

(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程; (3)有理项:令通项中“变元”的幂指数为整数建立方程;

特定项的系数问题及相关参数值的求解等都可依据上述方法求解. 4.二项式系数与项的系数

(1)二项式系数:二项展开式中各项的系数C k

n (k ∈{0,1,…,n })叫做二项式系数.

(2)项的系数:项的系数是该项中非字母因数部分,包括符号等,与二项式系数是两个不同的概念. 5.二项式系数的性质

(1)对称性:在二项展开式中与首末两端“等距离”的两个二项式系数相等,即C m

n =C n -m

n . (2)增减性与最大值:二项式系数C k

n ,当k <

n +1

2

时,二项式系数逐渐增大;当k >

n +1

2

时,二项式系数逐渐

减小.当n 是偶数时,中间一项的二项式系数最大;当n 是奇数时,中间两项的二项式系数最大. (3)各二项式系数的和:(a +b )n 的展开式的各个二项式系数的和等于 2n ,即C 0n +C 1n +…+C n n =2n

. (4)奇数项的二项式系数之和等于偶数项的二项式系数之和,即C 0

n +C 2

n +…=C 1

n +C 3

n +…=2

n -1

.

6.在高考中,常常涉及一些多项式二项式问题,主要考查学生的化归能力.归纳起来常见的命题角度有: (1)几个多项式和的展开式中的特定项(系数)问题; (2)几个多项式积的展开式中的特定项(系数)问题; (3)三项展开式中的特定项(系数)问题.

7.赋值法研究二项式的系数和问题:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n

、(ax 2

+bx +c )m

(a ,b ∈R)的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R)的式子求其展开式各项系数之和,只需令x =y =1即可.

二、方法诠释

第一方面:二项式的项、二项式的项的系数、二项式的系数 例1:在????x -2

x 6的二项展开式中常数项是( ) A .-120 B .-60 C .120

D .60

解:选D 二项展开式的通项公式为T r +1=C r 6(x )6-r ·????-2x r =C r 6(-2)r

x 3-32r ,令3-32

r =0,得r =2,所以常数项为C 26(-2)2

=60.

第二方面:对称性、增减性、最值与二项式系数

例2:已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则n =________. 解:容易得到n =10.

第三方面:几个多项式和的展开式中的特定项(系数)问题 例3:????x 3-2x 4+????x +1

x 8的展开式中的常数项为( ) A .32 B .34 C .36

D .38

解:选D ????x 3-2x 4的展开式的通项为T m +1=C m 4(x 3)4-m ·???

?-2x m =C m 4(-2)m x 12-4m

,令12-4m =0,解得m =3,????x +1x 8的展开式的通项为T n +1=C n 8

x 8-n ???

?1x n =C n 8x 8-2n ,令8-2n =0,解得n =4,所以所求常数项为C 34

(-2)3+C 48=38.

问题四:几个多项式积的展开式中的特定项(系数)问题 例4: ???

?

2x +x (1-x )4的展开式中x 的系数是________. 解:(1-x )4展开式的通项公式T r +1=C r 4(-x )r =(-1)r C r 4x r 2,?

???2x +x (1-x )4的展开式中含x 的项为 2x ·(-1)4C 44x 2

+x ·(-1)0C 04x 02=2x ·x 2+x ·1=3x ,故系数是3. 答案:3 问题五:三项展开式中特定项(系数)问题

例5:(x 2-4x +4)5的展开式中x 的系数是________.

解:由(x 2-4x +4)5=(x -2)10,得二项展开式的通项为T r +1=C r 10x

10-

r (-2)r ,所以x 的系数为(-2)9C 910=-5 120. 答案:-5 120 问题六:赋值法

例6.1:若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为( )

A .1或-3

B .-1或3

C .1

D .-3

解:选A 令x =0,得a 0+a 1+a 2+…+a 9=(2+m )9,令x =-2,得a 0-a 1+a 2-…-a 9=m 9,又(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,即(a 0+a 1+a 2+…+a 9)·(a 0-a 1+a 2-…-a 9)=39,即(2+m )9·m 9=39,所以(2+m )m =3,解得m =1或-3.

例6.2:化简:121393n n

n n n C C C +++

+= .

解:

小结:二项式定理是一个恒等式,使用时有两种思路:一是利用恒等定理(两个多项式恒等,则对应项系数分别相等);二是赋值.二项式定理结合“恒等”与“赋值”两条思路可以使很多求二项展开式的系数的问题迎刃而解.赋值法是处理组合数问题、系数问题的最有效的经典方法,一般对任意A x ∈,某式子恒成立,则对A 中的特殊值,该式子一定成立,特a 殊值x 如何选取视具体情况决定,灵活性较强,一般取1,1,0-=x 居多.若2012()...,n n n ax b a a x a x a x +=++++则设()()=+n f x ax b .有: ①0(0);a f = ②012...(1);n a a a a f ++++= ③0123...(1)(1);n n a a a a a f -+-++-=- ④0246(1)(1)

...;2

f f a a a a +-++++=

⑤1357(1)(1)

(2)

f f a a a a --++++=

7.二项式与定积分的综合:

在考查二项式定理时常常会把定积分和二项式结合在一起,把定积分作为二项式的一项、二项式的值或二项式的指数是常考模式,注意定积分的概念和计算是关键. 例7:设20

(sin 12cos )2x a x dx π

=-+?

,则621

()(2)a x x x

-?+的展开式中常数项是 .

解:

三、巩固训练

1. ????1

2x -2y 5的展开式中x 2y 3的系数是( ) A .-20 B .-5 C .5 D .20 2.(x +a )10的展开式中,x 7的系数为15,则a =________.(用数字填写答案) 3.若????x +2

x 2n 展开式中只有第6项的二项式系数最大,则展开式的常数项是( ) A .360 B .180 C .90

D .45

4.若????x 2-1

x n 的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n 的值为________.

5.设n 为正整数,????x -1x x 2n

展开式中存在常数项,则n 的一个可能取值为( )

A .16

B .10

C .4

D .2

6.若二项式?

????x +23x n

的展开式中的常数项是80,则该展开式中的二项式系数之和等于________.

7. ?

??

?ax +

366的展开式的第二项的系数为-3,则∫a -2x 2

d x 的值为( ) A .3 B.73 C .3或7

3

D .3或-10

3

8.?

????2x +13

x n

的展开式中各项系数之和为729,则该展开式中x 2

项的系数为________.

9.二项式(2x -3y )9的展开式中,求:

(1)二项式系数之和;(2)各项系数之和;(3)所有奇数项系数之和;(4)各项系数绝对值之和.

10.已知在? ??

???3x -123x n 的展开式中,第6项为常数项. (1)求n ;

(2)求含x 2的项的系数; (3)求展开式中所有的有理项.

二项式定理:

1、解析:选A 由二项展开式的通项可得,第四项T 4=C 35???

?12x 2

(-2y )3=-20x 2y 3,故x 2y 3的系数为-20,选A.

2、解析:二项展开式的通项公式为T r +1=C r 10x 10-

r a r ,当10-r =7时,r =3,T 4=C 310a 3x 7,则C 310a 3=15,

故a =12. 答案:12

3、解析:选B 展开式中只有第6项的二项式系数最大,则展开式总共11项,所以n =10,通项公式为T r +1=C r 10(x )10-r ·????2x 2r =C r 102r

x 5-52

r ,所以r =2时,常数项为180. 4、解析:展开式????x 2-1x n 的通项为T r +1=C r n (x 2)n -r ·????-1x r =C r n (-1)r x 2n -3r ,因为含x 的项为第6项,所以r =5,2n -3r =1,解得n =8,令x =1,得a 0+a 1+…+a 8=(1-3)8=28,又a 0=1,所以a 1+…+a 8=28-1=255. 答案:255

5、解析:选B ????x -1x x 2n 展开式的通项公式为T k +1=C k 2n x 2n -k ????-1x x k =C k 2n (-1)k x 4n -5k 2,令4n -5k 2=0,得k =4n

5,∴n 可取10.

6、解析:对于

T r +1=C r n (

x )n -r

? ??

??23x r =C r n 2r x n -r 2-r 3,当r =3

5n 时展开式为常数项,因此n 为5的倍数,不

妨设n =5m ,则有r =3m ,则23m C 3m 5m =8m C 3m 5m =80,因此m =1,则该展开式中的二项式系数之和等于2n

25=32.答案:32

7、解析:选B 该二项展开式的第二项的系数为C 1636a 5,由C 1636

a 5=-3,解得a =-1,因此∫a -2x 2d x =∫-1

-2

x 2

d x =x 33|-1-2=-13+83=73

.

8、解析:依题意得3n

=729,n =6,二项式? ????2x +13x 6的展开式的通项是T r +1=C r 6·

(2x )6-r

·? ??

??13x r =C r 6·26-r

·x 6-4r 3.令6-4r 3=2,得r =3.因此,在该二项式的展开式中x 2项的系数是C 36·26-

3=160.答案:160 9、解:设(2x -3y )9=a 0x 9+a 1x 8y +a 2x 7y 2+…+a 9y 9.

(1)二项式系数之和为C 09+C 19+C 29+…+C 99=29.

(2)各项系数之和为a 0+a 1+a 2+…+a 9,令x =1,y =1,得a 0+a 1+a 2+…+a 9=(2-3)9=-1. (3)由(2)知a 0+a 1+a 2+…+a 9=-1 ①,令x =1,y =-1,得a 0-a 1+a 2-…-a 9=59 ②, ①+②2得a 0+a 2+a 4+a 6+a 8=59-1

2

,此即为所有奇数项系数之和. (4)|a 0|+|a 1|+|a 2|+…+|a 9|=a 0-a 1+a 2-…-a 9,令x =1,y =-1,得|a 0|+|a 1|+|a 2|+…+|a 9|=a 0-a 1+a 2-…-a 9=59,此即为各项系数绝对值之和. 10、解:(1)通项公式为T k +1=C k n x

n -k 3????-12k x -k 3=C k n

????-12k x n -2k 3

.

因为第6项为常数项,所以k =5时,n -2×5

3=0,即n =10.

(2)令

10-2k 3

=2,得k =2,故含x 2的项的系数是C 210

????-122=454. (3)根据通项公式,由题意?????

10-2k

3∈Z ,

0≤k ≤10,

k ∈N ,

10-2k 3=r (r ∈Z),则10-2k =3r ,k =5-3

2

r , ∵k ∈N ,∴r 应为偶数,∴r 可取2,0,-2,即k 可取2,5,8,∴第3项,第6项与第9项为有理项, 它们分别为C 210????-122x 2,C 510????-125,C 810

????-128x -2.

二项式定理(通项公式)

六、二项式定理 一、指数函数运算 知识点:1.整数指数幂的概念 *)(N n a a a a a a n n ∈??= 个 )0(10≠=a a ,0(1 N n a a a n n ∈≠=- 2.运算性质: ),(Z n m a a a n m n m ∈=?+ ,),()(Z n m a a mn n m ∈=,)()(Z n b a ab n n n ∈?= 3.注意 ① n m a a ÷可看作n m a a -? ∴n m a a ÷=n m a a -?=m a -② n b a )(可看作n n b a -? ∴n b a )(=n n b a -?n n b 4、n m n m a a = (a >0,m ,n ∈N *,且n >1) 例题: 例1求值:43 32 13 2)81 16(,)41(,100,8---. 例2用分数指数幂的形式表示下列各式: 1) a a a a a a ,,32 32?? (式中a >0) 2)43a a ? 3)a a a 例3计算下列各式(式中字母都是正数));3()6)(2)(1(656131212132b a b a b a -÷- .))(2(88 341n m 例4计算下列各式: );0() 1(3 2 2>a a a a 435)12525)(2(÷- 例5化简:)()(4 14 12 12 1y x y x -÷- 例6 已知x+x -1 =3,求下列各式的值:.)2(,)1(2 32 32 12 1- - ++x x x x 二、二项式知识回顾 1. 二项式定理 0111()n n n k n k k n n n n n n a b C a C a b C a b C b --+=+++++ , 以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k k k n T C a b -+=叫做二项展开式的通项. (请同学完成下列二项展开式) 0111()(1)(1)n n n k k n k k n n n n n n n a b C a C a b C a b C b ---=-++-++- ,1(1)k k n k k k n T C a b -+=- 01(1)n k k n n n n n n x C C x C x C x +=+++++ ① 0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++ 1110n n n k n n n k a x a x a x a x a ----=+++++ ②

二项式定理11种题型解题技巧

二项式定理知识点及11种答题技巧 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

二项式定理各种题型解题技巧

二项式定理 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是0 1 2 ,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和: ⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n n C 取得最大值。 如果二项式的幂指数n 是奇数时,则中间两项的二项式系数1 2n n C -,12n n C +同时

高中数学完整讲义——二项式定理6.二项式定理的应用3近似计算或估计

高中数学讲义 1 思维的发掘 能力的飞跃 1.二项式定理 ⑴二项式定理 () ()011222...n n n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N 这个公式表示的定理叫做二项式定理. ⑵二项式系数、二项式的通项 011222...n n n n n n n n n C a C a b C a b C b --++++叫做()n a b +的二项展开式,其中的系数()0,1,2,...,r n C r n =叫 做二项式系数,式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r r r n T C a b -+=. ⑶二项式展开式的各项幂指数 二项式()n a b +的展开式项数为1n +项,各项的幂指数状况是 ①各项的次数都等于二项式的幂指数n . ②字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . ⑷几点注意 ①通项1r n r r r n T C a b -+=是()n a b +的展开式的第1r +项,这里0,1,2,...,r n =. ②二项式()n a b +的1r +项和()n b a +的展开式的第1r +项r n r r n C b a -是有区别的,应用二项式定理时, 其中的a 和b 是不能随便交换的. ③注意二项式系数(r n C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系 数有时可为负. ④通项公式是()n a b +这个标准形式下而言的,如()n a b -的二项展开式的通项公式是 ()11r r n r r r n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r r r n T C a b -+=是不同的,在这里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1r r n C -,一个是r n C ,可看出,二项式系数与项的系 知识内容 近似计算或者估计

高中数学2二项式定理(带答案)

二项式定理 一.二项式定理 1.右边的多项式叫做()n a b +的二项展开式 2.各项的系数r n C 叫做二项式系数 3.式中的r n r r n C a b -叫做二项展开式的通项,它是二项展开式的第1r +项,即 1(0,1,2,,).r n r r r n T C a b r n -+==L 4.二项展开式特点:共1r +项;按字母a 的降幂排列,次数从n 到0递减;二项式系数r n C 中r 从0到 n 递增,与b 的次数相同;每项的次数都是.n 二.二项式系数的性质 性质1 ()n a b +的二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即m n m n n C C -= 性质2 二项式系数表中,除两端以外其余位置的数都等于它肩上两个数之和,即11m m m n n n C C C -++= 性质3 ()n a b +的二项展开式中,所有二项式系数的和等于2n ,即012.n n n n n C C C +++=L (令1a b ==即得,或用集合的子集个数的两种计算方法结果相等来解释) 性质4 ()n a b +的二项展开式中,奇数项的二项式系数的和等于偶数项 的二项式系数的和,即 02213211 2.r r n n n n n n n C C C C C C +-++++=++++=L L L L (令1,1a b ==-即得) 性质5 ()n a b +的二项展开式中,当n 为偶数时,中间一项的二项式系数2n n C 取得最大值;当n 为奇数时,中间两项的二项式系数1 2,n n C -1 2n n C +相等,且同时取得最大值.(即中间项的二项式系数最大)

(完整版)排列组合二项式定理新课

20.1.1 排列的概念 【教学目标】 1.了解排列、排列数的定义;掌握排列数公式及推导方法; 2. 能用“树形图”写出一个排列问题的所有的排列,并能运用排列数公式进行计算。 3.通过实例分析过程体验数学知识的形成和发展,总结数学规律,培养学习兴趣。 【教学重难点】 教学重点:排列的定义、排列数公式及其应用 教学难点:排列数公式的推导 【教学课时】 二课时 【教学过程】 合作探究一:排列的定义 我们看下面的问题 (1)从红球、黄球、白球三个小球中任取两个,分别放入甲、乙盒子里 (2)从10名学生中选2名学生做正副班长; (3)从10名学生中选2名学生干部; 上述问题中哪个是排列问题?为什么? 概念形成 1、元素:我们把问题中被取的对象叫做元素 2、排列:从n个不同元素中,任取m(m n ≤)个元素(这里的被取元素各不相同) 按照一定的顺序 .....排成一列,叫做从n个不同元素中取出m个元素的一个排列 ....。 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关)(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 合作探究二排列数的定义及公式 3、排列数:从n个不同元素中,任取m(m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m元素的排列数,用符号m n A表示 议一议:“排列”和“排列数”有什么区别和联系? 4、排列数公式推导

探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?m A n 呢? )1()2)(1(+-?--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个 因数是1n m -+,共有m 个因数; (2),,m n N m n * ∈≤ 即学即练: 1.计算 (1)4 10A ;(2)25A ;(3)3355A A ÷ 2.已知101095m A =???L ,那么m = 3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----L 用排列数符号表示为( ) A .5079k k A --B .2979k A -C .3079k A -D .3050k A - 答案:1、5040、20、20;2、6;3、C 典型例题 例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。 解析:(1)利用好树状图,确保不重不漏;(2)注意最后列举。 解:略 点评:在写出所要求的排列时,可采用树状图或框图一一列出,一定保证不重不漏。 变式训练:由数字1,2,3,4可以组成多少个没有重复数字的三位数?并写出所有的 排列。 5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。 此时在排列数公式中,m =n 全排列数:(1)(2)21!n n A n n n n =--?=L (叫做n 的阶乘). 即学即练:口答(用阶乘表示):(1)334A (2)4 4A (3))!1(-?n n 想一想:由前面联系中( 2 ) ( 3 )的结果我们看到,25A 和3 355A A ÷有怎样的关系? 那么,这个结果有没有一般性呢? 排列数公式的另一种形式:

二项式定理专题复习教学内容

二项式定理知识点、题型与方法归纳 一.知识梳理 1.二项式定理:)()(*110N n b C b a C b a C a C b a n n n r r n r n n n n n n ∈+++++=+--ΛΛ.其中) ,,2,1,0(n r C r n Λ=叫二项式系数.式中的r r n r n b a C -叫二项展开式的通项,用1+r T 表示,即通项r r n r n r b a C T -+=1. 2.二项展开式形式上的特点: (1)项数为n +1; (2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n . (3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . (4)二项式的系数从C 0n ,C 1 n ,一直到C n - 1n ,C n n . 3.二项式系数的性质: (1)对称性:与首末两端“等距离”的两个二项式系数相等.即r n r n n C C -= (2)增减性与最大值:二项式系数C k n ,当k <n +1 2时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项1122n n n n C C -+=取得最大值. (3)各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C n n =2n ; C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5 n +…=2 n - 1. 一个防范 运用二项式定理一定要牢记通项T r +1=C r n a n -r b r ,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负. 两种应用 (1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等. (2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等. 三条性质 (1)对称性;(2)增减性;(3)各项二项式系数的和; 二.题型示例 【题型一】求()n x y +展开特定项 例1:(1+3x )n (其中n ∈N *且n ≥6)的展开式中x 5与x 6的系数相等,则n =( ) B A.6 B.7 C.8 D.9

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素

高中数学19种答题方法及6种解题思想

高中数学19种答题方法及6种解题思想一.十九种数学解题方法 1.函数 函数题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。 2.方程或不等式 如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法; 3.初等函数 面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……; 4.选择与填空中的不等式 选择与填空中出现不等式的题目,优选特殊值法; 5.参数的取值范围 求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法; 6.恒成立问题 恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏; 7.圆锥曲线问题 圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式; 8.曲线方程 求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点); 9.离心率 求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可; 10.三角函数 三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围; 11.数列问题 数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想; 12.立体几何问题 立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题; 13.导数 导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

(完整版)二项式定理学生讲义

二项式定理 【2013年高考会这样考】 1.二项式定理是高考重点考查内容之一.分值一般为5~9分.考查比较稳定,试题难度起伏不大;题目一般为选择、填空题. 2.高考主要考查二项展开式和通项的应用,具体会涉及到求特定的项或系数,以及二项式系数等问题,是高考的必考点之一。 【复习指导】 二项式定理的核心是其展开式的通项公式,复习时要熟练掌握这个公式,注意二项式定理在解决有关组合数问题中的应用. 基础梳理 1.二项式定理 (a +b )n =C 0 n a n +C 1 n a n -1 b +…+C r n a n -r b r +…+C n n b n (n ∈N * )这个公式所表示的定理叫二项式定理,右边的多项式叫(a +b )n 的 .其中的系数C r n (r =0,1,…,n )叫 系数. 式中的C r n a n -r b r 叫二项展开式的 ,用T r +1表示,即通项T r +1=C r n a n -r b r . 2.二项展开式形式上的特点 (1)项数为 . (2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为 _______ (3)字母a 按 排列,从第一项开始,次数由n 逐项减1直到零;字母b 按 排列,从第一项起,次数由零逐项增1直到n . (4)二项式的系数从C 0 n ,C 1 n ,一直到C n -1n ,C n n . 3.二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数 .即C r n =C n -r n . (2)增减性与最大值:二项式系数C k n ,当k < n +1 2 时,二项式系数逐渐 .由对称性知它的后 半部分是逐渐减小的;当n 是偶数时,中间一项T 12 +n 二项式系数取得最大值;当n 是奇数时, 中间两项1 2 1 2 1n ,+++n T T 的二项式系数相等且最大。 (3)各二项式系数和:C 0 n +C 1 n +C 2 n +…+C r n +…+C n n =_____; C 0 n +C 2 n +C 4 n +…=C 1 n +C 3 n +C 5 n +…=________.

二项式定理2

1.3.1 二项式定理(第一课时) 教学设计 一、教学内容解析 “二项式定理”是人教A版《普通高中课程标准试验教科书数学(选修2-3)》第一章第三节知识内容,它是初中多项式乘法的继续和高中计数原理的应用,同时也是高中学习数学期望等内容的基础,因此二项式定理起着承上启下的作用。另外,二项式系数是一些特殊的组合数,利用二项式定理又可以进一步加深对组合数的认识。总之,二项式定理是综合性比较强的,具有联系不同知识内容的作用。 教学重点:利用计数原理分析二项展开式,归纳得到二项式定理。 本节课为概念教学课,可以使学生探究问题的过程中体验从特殊到一般、类比归纳、化归与转化等数学思想方法,也自然关注了学生数学抽象、逻辑推理等数学核心素养。 二、教学目标设置 1,学生在情境问题的解决过程中和情境问题下的一系列思考问题和追问问题的探究中体会到学习二项式定理的必要性和合理性。 2,学生经历了二项式定理的观察、分析、归纳、类比、猜想及证明的全部探究过程,提升了数学抽象、逻辑推理和数学建模等数学核心素养,并且学生在二项式定理的发现、推导过程中,掌握了二项式定理及其推导方法。 三、学情分析 学生初中学习过多项式乘法法则,并且刚刚学习了计数原理和排列组合知识,对本节课分析n ( 展开式结构以及利用计数原理分析项的系数提供了帮助,同时授课学生为高二学生,有着a) b 一定的归纳推理能力,分析转化问题的能力。 但是,本节课思维含量比较大,对思维的严谨性和逻辑推导能力以及分类讨论,归纳推理能力等有着很高的要求,需要学生利用多项式乘法法则归纳乘积项的结构,并能利用计数原理分析项的系数,学生学习起来有一定难度。而且学生在学数学过程中,往往只习惯于重视定理、公式的结论,而不重视推导过程,这都为本节课的教学带来了难度。 根据以上学情,制定如下教学难点: 教学难点:如何让学生想到利用计数原理去分析二项展开过程;如何发现二项式展开成单项式之和时各项系数的规律。 四、数学情境与学习问题的设置 根据本节课内容特征及学生特点,设计中强调创设出不仅能紧扣教学目标,又能靠近学生的最近发展区,同时又具有较丰富的数学信息的数学情境,以便于在此情境中提出数学问题和解决数学问题,使学生在获取数学知识的同时体验数学知识的形成过程。这样才能更有利于解决本节课数学

二项式定理典型例题

1. 在二项式n x x ??? ? ? +4 21的展开式中, 前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公 式解决. 解:二项式的展开式的通项公式为: 4 324 121C 21)(C r n r r n r r n r n r x x x T --+=?? ? ??= 前三项的.2,1,0=r 得系数为:)1(8 141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1 12312-+=+=n n n t t t , ∴8=n 通项公式为 14 3168 1,82,1,02 1 C +-+==r r r r r T r x T 为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为22 888944 8 541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有系数和为n 3. 2.(1)求10 3 )1()1(x x +-展开式中5x 的系数;(2)求6)21 (++ x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)103)1()1(x x +-展开式中的5 x 可以看成下列几种方式得到,然后合并同类项: 用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5 x 项,可以得到5 510C x ;用3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;

【数学】19种答题方法+6种解题思想

高中数学19种答题方法+6种解题思想一.十九种数学解题方法 1.函数 函数题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。 2.方程或不等式 如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法; 3.初等函数 面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……; 4.选择与填空中的不等式 选择与填空中出现不等式的题目,优选特殊值法; 5.参数的取值范围 求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法; 6.恒成立问题 恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏; 7.圆锥曲线问题 圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式; 8.曲线方程 求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点); 9.离心率 求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可; 10.三角函数 三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围; 11.数列问题 数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想; 12.立体几何问题 立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题; 13.导数 导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

高中数学二项式定理全章复习

第十一讲 二项式定理 课程类型:□复习 □预习 □习题 针对学员基础:□基础 □中等 □优秀 1.二项式定理的定义; 2.二项式定理的通项公式; 3.二项式定理的应用. 1.能用计数原理证明二项式定理(重点); 2.能记住二项式定理和二项展开式的通项公式(重点); 3.能解决与二项式定理有关的简单问题(重点、难点). 【知识与方法】 一.二项式定理的定义 在44443 444421个 n n b a b a b a b a )())(()(+???++=+中,每个括号都能拿出a 或b ,所以每个括号有2种选择,n 个括号 就是n 2种情况.22-n b a 这一项,表达的意思是_________________________;所以,22-n b a 共有________个.

(a +b )n 的二项展开式本来共有_______项,合并之后共有_______项,其中各项的系数______________叫做二项式系数. 二.二项展开式的通项 (a +b )n 的二项展开式的通项公式为__________.. 注意:1.r n r C T 与1+的关系,例如第5项,应该是4n C ; 2.二项式的展开式是按照前项降幂排列,例如10)1(+x 与10)1(x +中的第4项是不同的; 3.a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等 于n ; 4.注意正确区分二项式系数与项的系数. 三.二项式系数的基本性质 四.展开式的二项式系数和 1.(a +b )n 展开式的各二项式系数和:C 0n +C 1n +C 2n +…+C n n =_______. 2.偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 0 n +C 2 n +C 4 n +…=C 1 n +C 3 n +C 5 n +…=_______. 五.展开式的系数和 若f (x )=a 0+a 1x +a 2x 2 +…+a n x n ,则 f (x )展开式中各项系数之和为_______,奇数项系数之和为a 0+ a 2+a 4+…= 2 ) 1()1(-+f f ,偶数项系数之和为a 1+a 3+a 5+…=________________. 【例题与变式】 题型一 通项公式及其应用 类型一 二项式定理的原理应用 【例1】(2015·全国卷Ⅰ)(x 2 +x +y )5 的展开式中,x 5y 2 的系数为( ) A .10 B .20 C .30 D .60 【例2】(2018?滨州二模)52)32(--x x 的展开式中,x 的系数为________. 【变式1】(2018?濮阳一模)82017 )11(++ x x 的展开式中,x 3 的系数为________. 【变式2】(2018?龙岩模拟)已知二项式4)21 1(x x -+ ,则展开式的常数项为( ) A .-1 B .1 C .-47 D .49 类型二 单括号型 【例4】(2018?内江三模)4)2 (x x -展开式中的常数项为( )

二项式定理教案(绝对经典)

第3讲二项式定理 基础梳理 1.二项式定理 (a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N*)这个公式所表示的定理叫二项式定理,右边的多项式叫(a+b)n的二项展开式. 其中的C r n(r=0,1,…,n)叫二项式系数.数) (注意区别于该项的系 式中的C r n a n-r b r叫二项展开式的通项,用T r+1表示,即通项T r+1=C r n a n-r b r. 2.二项展开式形式上的特点 (1)项数为n+1. (2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n. (3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n. (4)二项式的系数从C0n,C1n,一直到C n-1 n ,C n n. 3.二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数相等.即C r n=C n-r n . (2)增减性与最大值: 二项式系数C k n,当k<n+1 2时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的; 当n是偶数时,中间一项C n 2n取得最大值; 当n是奇数时,中间两项C n-1 2n,C n+1 2n取得最大值. (3)各二项式系数和:C0n+C1n+C2n+…+C r n+…+C n n=2n; C0n+C2n+C4n+…=C1n+C3n+C5n+…=2n-1. 双基自测 1.(1+2x)5的展开式中,x2的系数等于(). A.80 B.40 C.20 D.10 2.若(1+2)5=a+b2(a,b为有理数),则a+b=().A.45 B.55 C.70 D.80 3.若(x-1)4=a0+a1x+a2x2+a3x3+a4x4,则a0+a2+a4的值为().

二项式定理教学设计(何磊)

课题:§1.3.1二项式定理(人教A版高中课标教材数学选修2-3) 教学设计 河北正定中学何磊

《二项式定理》教学设计 一、教学内容解析 《二项式定理》是人教A 版选修2-3第一章第三节的知识内容,它是初中学习的多项式乘法的继续.在计数原理之后学习二项式定理,一方面是因为它的证明要用到计数原理,可以把它作为计数原理的一个应用,另一方面也是解决整除、近似计算、不等式证明的有力工具,同时也是后面的数学期望等内容的基础知识,二项式定理起着承上启下的作用.另外,由于二项式系数是一些特殊的组合数,利用二项式定理可进一步深化对组合数的认识.总之,二项式定理是综合性较强的、具有联系不同内容作用的知识. 二、教学目标设置 新课标指出教学目标应体现学生学会知识与技能的过程也同时成为学生学会学习,形成正确价值观的过程.新课标要求:用计数原理分析2()a b +,3()+a b ,4()+a b 的展开式,归纳类比得到二项式定理,并能用计数原理证明.掌握二项展开式的通项公式,解决简单问题;学会讨论二项式系数性质的方法.根据新课标的理念及本节课的教学要求,制定了如下教学目标: 1.学生在二项式定理的发现推导过程中,掌握二项式定理及推导方法、二项展开式、通项公式的 特点,并能运用二项式定理计算或证明一些简单的问题. 2.学生经历二项式定理的探究过程,体验“从特殊到一般发现规律,从一般到特殊指导实践”的思想方法,获得观察、归纳、类比、猜想及证明的理性思维探究能力. 3.通过二项展开式的探究,培养学生积极主动、勇于探索、不断创新的精神,感受合作探究的乐趣,感受数学内在的和谐、对称美及数学符号应用的简洁美.结合数学史,激发学生爱国热情和民族自豪感. 三、学情分析 1.有利因素 授课对象是高二的学生,具有一般的归纳推理能力,思维较活跃,初步具备了用联系的观点分析问题的能力.学生刚刚学习了计数原理和排列组合的知识,对本节()+n a b 展开式中各项系数的研究会有很大帮助. 2.不利因素 本节内容思维量较大,对思维的严谨性和分类讨论、归纳推理等能力有较高要求,学生学习起来有一定难度.在数学学习过程中,大部分学生习惯于重视定理、公式的结论,而不重视其形成过程. 四、教法策略分析 遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的现代教育原则,采用“启发式教学法”,学生主要采用“探究式学习法”, 并利用多媒体辅助教学. 本课以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,完成二项式定理的探究,让学习过程成为学生心灵愉悦的主动认知过程. 五、教学过程

高考数学答题策略与答题技巧

高考数学答题策略与答题技巧 一、历年高考数学试卷的启发 1.试卷上有参考公式,80%是有用的,它 为你的解题指引了方向; 2.解答题的各小问之间有一种阶梯关系, 通常后面的问要使用前问的结论。如果 前问是证明,即使不会证明结论,该结论 在后问中也可以使用。当然,我们也要考虑结论的独立性; 3.注意题目中的小括号括起来的部分,那往往是解题的关键; 二、答题策略选择 1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再 回头解答; 2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。切记不要“小题大做”。注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。多写不会扣分,写了就可能得分。 三、答题思想方法 1.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。 2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法; 3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性 质。如所过的定点,二次函数的对称轴或是……; 4.选择与填空中出现不等式的题目,优选特殊值法; 5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

高中数学排列组合及二项式定理知识点

高中数学之排列组合二项式定理 一、分类计数原理和分步计数原理: 分类计数原理:如果完成某事有几种不同的方法,这些方法间是彼此独立的,任选其中一种 方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。 分步计数原理:如果完成某事,必须分成几个步骤,每个步骤都有不同的方法,而—个步骤 中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各 步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。 区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类 与类之间是相互独立的,即“分类完成”;如果只有当n 个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。 二、排列与组合: (1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n 个元素的问题; 区别:前者有顺序,后者无顺序。 (2)排列数、组合数: 排列数的公式:)()! (!)1()2)(1(n m m n n m n n n n A m n ≤-= +---= 注意:①全排列:!n A n n =; ②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720; 排列数的性质: ①11--=m n m n nA A (将从n 个不同的元素中取出)(n m m ≤个元素,分两步完成: 第一步从n 个元素中选出1个排在指定的一个位置上; 第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置 上) ②m n m n m n A mA A 111---+=(将从n 个不同的元素中取出)(n m m ≤个元素,分两类完成: 第一类:m 个元素中含有a ,分两步完成: 第一步将a 排在某一位置上,有m 不同的方法。 第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置 上) 即有11--m n mA 种不同的方法。 第二类:m 个元素中不含有a ,从1-n 个元素中取出m 个元素排在m 个 位置上,有m n A 1-种方法。 组合数的公式:)()!(!!!)1()2)(1(n m m n m n m m n n n n A A C m m n m n ≤-=+---== 组合数的性质: ①m n n m n C C -=(从n 个不同的元素中取出m 个元素后,剩下m n -个元素,也就是说,

相关文档