文档库 最新最全的文档下载
当前位置:文档库 › 塔机塔式起重机的构造主要结构

塔机塔式起重机的构造主要结构

塔机塔式起重机的构造主要结构
塔机塔式起重机的构造主要结构

塔式起重机的构造(主要机构)

一、主要机构

1、基础承台

基础承台

塔机承台一般存有三种形式

⑴、板式和十字形基础:

A、它们主要要进行基础地基承载力验算:

B、地基稳定性验算(基础边离基坑边>2.0m;基础底离基坑底≮1.0m;f ak≥

130KN/m2

C、地基变形计算(基础附近有堆载、地基持力层下有软土层)

D、和基础配筋计算。

⑵、桩基承台式混凝土管桩、灌注桩基础:它们主要要进行桩端承载力验算、

桩身承载力验算、桩抗拔力验算和基础承台抗弯、抗剪、抗冲切计算及配

筋计算。

⑶、组合式格构钢柱基础:除上述桩基础验算外还要进行单根钢柱(按轴心受

压构件)和整体格构钢柱(按压弯构件)验算

塔式起重机的基础应按照其安装使用说明书所规定的要求进行设计和施工。施工(总承包)单位应根据地质勘察报告确认施工现场的地基承载能力。

当施工现场无法满足塔式起重机安装使用说明书对基础的要求时,可自行设计基础,常用的基础型式包括:

⑴、板式和十字形基础;

⑵、桩基承台式(混凝土管桩、灌注桩)混凝土基础;

⑶、组合式基础。

㈠、板式基础设计计算应符合下列规定:

⑴、应进行抗倾覆稳定性和地基承载力验算(图1):

图1 塔机承载力图

⑵、整体抗倾覆稳定性应按下式计算:

1、矩形基础地基承载力计算应符合下列公式要求:

1)、当轴心荷载作用时

2)、当偏心荷载作用时,除符合上式要求外,还应符合下式要求:

2、矩形基础底面的压力可按下列公式计算:

1)、当轴心荷载作用时

2)、当偏心荷载作用时应符合下式要求

3)、当偏心矩时

3、偏心矩应按下式计算,并符合要求

[pB] —地面许用压应力,由实地勘探和基础处理情况确定,一般取[pB]=2×105~3×105Pa

⑷、基础底板的配筋,应按抗弯计算确定;计算公式与配筋构造参见现行国家标准《混凝土结构设计规范》GB50010的相关规定。

㈡、桩基承台式混凝土基础的设计计算应符合下列规定:

⑴、应对桩基单桩竖向抗压和抗拔承载力、桩身混凝土强度,承台的抗弯、抗剪、抗冲切按现行国家标准《建筑桩基技术规范》JGJ94的规定进行验算(图3.2.4):

图3 塔式起重机方形承台桩基础

1——桩基础; 2——桩基承台; 3——塔式起重机塔身桩基单桩竖向承载力计算应符合下式:

式中:Qk——荷载效应标准组合下,基桩的平均竖向力;

Qkmax——荷载效应标准组合下,桩顶最大竖向力;

Ra——单桩竖向承载力特征值;

⑵、桩基单桩的抗拔极限承载力与桩身混凝土强度应按现行行业标准《建筑桩基技术规范》JGJ94的相关规定进行计算。

⑶、承台的抗弯、抗剪、抗冲切计算应按现行行业标准《建筑桩基技术规范》JGJ94的相关规定进行。

⑷、当桩端持力层下有软弱下卧层时,还应对下卧层地基强度进行验算。

⑸、桩中心距不宜小于桩身直径的3倍。

图4塔式起重机组合式基础的钢格构柱示意图

1——小格构柱; 2——大格构柱

㈢、组合式基础的设计计算应符合下列规定:

1 其承台与桩基设计计算应按本规程第③、④条的规定。

2 大格构柱、小格构柱(图4)及单肢与缀件均应按现行国家标准《钢结构设计规范》GB50017的规定进行强度与稳定性验算。

3 大格构柱应按压弯构件、小格构柱应按轴心受压构件进行计算。

条文说明:在上述计算公式中,在计算地基承载力时采用的是荷载标准组合;而在板式基础设计与桩基承台的抗弯、抗剪、抗冲切计算时,采用的是荷载基本组合。荷载组合系数取值按现行国家标准《建筑结构荷载规范》GB50009的相关规定。

具体计算可以参考《混凝土基础工程技术规程》 JGJ/T187-2009

2、过渡节和底座

⑴、过渡节是由主弦杆、水平腹杆、斜腹杆等组焊而成的空间桁架结构

⑵、底座一般有:大底架式、小底架式、十字底架式、预埋底架式和预埋支腿式

它作为塔机标准节以上机构与混凝土承台连接的中间构件。是承受塔机垂直载荷和倾覆力矩的最大值点。

十字底架座、过渡节及基础

3、塔身(标准节)

塔身由若干个标准节组成,根据施工建筑物的高度确定塔机的安装高度,然后再确定标准节的数量,来组成塔机总成。

标准节

标准节一般有整体桁架式和片拼装式两种,

根据新国标GB/T5031-2008中第条中规定:“爬升装置防脱功能”塔机的标准节撘步增加了防脱装置。

根据新国标GB/T5031-2008中第8.4条中规定:“塔机的标准节,臂架、拉杆、塔顶等主要构件应设有可追溯制造日期的永久标志”。但08年以前生产的塔机可以不要求。

4、爬升架

爬升架主要由套架、平台及液压顶升装置组成。

套架为整体式,套装在塔身的外部,上端用销轴与下支座相连

在顶升油缸的作用下,爬升架内侧有16个滚轮,支于塔身主弦杆外侧,起导向支承作用,并可作上下运动,套架中部的水平横梁中间焊有销轴铰座,与油缸体上的单耳铰接,承受油缸的顶升载荷,套架中部有两个套架制动块,在油缸收回活塞杆时,由套架制动块传递顶升载荷,为了便于顶升安装的安全需要,在爬升架的上部,中间位置设有可折卸的工作平台,周围有护栏。

(爬升架)

5、回转塔身及塔顶

回转塔身的主体是由无缝钢管、槽钢及钢板组焊而成的长方形空间桁架,其底部用螺栓连接上支座,顶部与塔顶用销轴连接,回转塔身内部设有爬梯,供安装及检修时使用。塔顶为三角形空间桁架结构,前后弦杆为无缝钢管,腹杆为无缝钢管。底部与回转塔身用φ60销轴连接,顶部的前方与后方均装有拉板,分别与起重臂拉杆、平衡臂拉杆铰接,塔顶的上部有一平台,安装人员可利用该平台进行塔机的装卸和穿绕起升钢丝绳。

塔顶

6、上下支座、齿圈和回转塔身组成回转机构

上下支座是由钢板拼焊的箱体结构,上部用高强度的螺栓与回转支承的外齿圈连接,下部连接标准节和爬升架的过渡性质的金属结构,与标准节连接采用销轴连接,另侧安装一个多功能限位器,与爬升架采也用的销轴连接。

7、司机室

司机室为钣金结构,设置在回转塔身的右前方侧。司机室内宽敞、明亮、视野开阔,前窗可以开启,门是后开门,便于通风,室内有活动座椅,座椅两侧为操纵台,配有顶灯,还设有各种电源插座,可供夜间检修,接工作灯电源或供司机室内降温取暖时使用。

(司机室)

8、平衡臂

平衡臂是由槽钢与工字钢组成的平面桁架,起升机构装在臂的后部,臂的尾部放置配重块,上面设有护栏及行走平台,在起升机构安装处,设有检修吊杆,便于安装与维修。臂的根部用两根销轴与回转塔身连接,另一端通过两根拉杆和塔顶相接。

平衡臂

9、起重臂

起重臂为变截面等腰三角形结构、斜腹杆、水平腹杆均为无缝钢管,上弦杆

为圆钢,两根下弦杆是两根角钢拼焊成的方形管,下弦杆的表面及外侧边均保证水平及垂直,以兼作牵引小车的运行轨道。

起重臂共为n节(一般根据塔机型号不同可分解为9~10节),一般在第2、6节臂上各设有一个拉杆吊点孔,各节必须严格按顺序排列,各节之间均采用高强度销轴连接,装卸运输方便。起重臂长度的变化,由不同臂节组合而成,可根据表中所列节数确定。

(起重臂)

10、载重小车

载重小车是带动吊钩与起吊物沿起重臂作轴线往复运动的钢结构件,具有八只行走轮,每边四只,行走轮的运行轨道是起重臂的下弦杆,在小车的一侧,设有检修吊栏,可将检修人员安全地送到起重臂的检修处,进行检修和安装。载重小车上设有钢丝绳调节轮,可用于

张紧变幅钢丝绳。前后还设有钢丝绳断绳保护装置。

载重小车

11、吊钩

吊钩

12、液压站和液压缸

液压站和液压缸

二、工作机构:

起重机的机械传动部分可分为:起升机构,回转机构,小车牵引机构和液压顶升机构等,现分别简述如下。

1、起升机构

起升机构根椐塔机使用时吊物重量的不同而设有不同速度,以充分满足施工要求。它由电动机、联轴器、制动器、减速器、卷筒及多功能限位器组成。

塔式起重机采用了变频调速电机(或JRZ绕线转子调速电机),通过减速器驱动卷筒,使卷筒获得不同的速度,从而使起重机获得轻载高速、重载低速的性能。在卷筒轴末端装有一个多功能限位器DXZ-4/7(1∶274),当重物达到最高位置或最低位置时,起升机构能自动停车,允许向相反方向运行。

起升机构1

起升机构2

2、回转机构

-6型电机,经回转机构安装在上支座的二侧,有两种结构形式:一种由YZR132M

21

YOX-250A液力偶力器、XX4-80A.195C行星齿轮减速机带动回转小齿轮,其转速为电阻调速;另一种由YLEW112M-6-75N.m型带冷却风机的涡流+变频调速力矩电机,XX4-80A.195C 行星齿轮减速机带动回转小齿轮;从而带动置于塔机上部的塔身、起重臂、平衡臂等作左右回转,回转速度为0.6r/min,使塔机在起动和制动过程中都平稳无冲击,回转制动器为常闭形式,在不工作时,当风速大于6级以上,回转部分应能随风转动(须调整好制动器磨擦片的间隙)。。

(力矩电机的特点是具有软的机械特性,可以堵转.当负载转矩增大时能自动降低转速,同时加大输出转矩.当负载转矩为一定值时改变电机端电压便可调速.但转速的调整率不好!因而在电机轴上加一测速装置,配上控制器.利用测速装置输出的电压和控制器给定的电压相比,来自动调节电机的端电压.使电机稳定! 具有低转速、大扭矩、过载能力强、响应快、特性线性度好、力矩波动小等特点,可直接驱动负载省去减速传动齿轮,从而提高了系统的运行精度。)

(YZR电机回转)(力矩电机回转)

3、小车牵引机构

小车牵引机构是装在起重臂第一节内的,载重小车变幅的动力装置是YLEW112M-6-95N.m型带冷却风机的涡流调速力矩电机,通过行星减速器带动卷筒,使载重小车以56、28、6m/min的速度在臂架轨道上作来回变幅运动。

(牵引机构传动系统)

4、液压顶升机构

4.1、组成:液压顶升机构包括:液压油缸、油泵、电机、阀及油箱等组成。

液压泵站

塔吊结构模型的设计与制作

塔吊结构模型的设计与制作 摘要:本文中的塔吊结构模型是浙江大学第九届大学生结构设计竞赛的参赛作品。文中详尽地论述了该塔吊结构模型的设计制作要求,实际的设计和制作的全过程。最后,文中还以一些合理的假设为前提,根据相关理论知识估计了模型的承载能力。本文对于一些其他的结构模型设计制作过程也有一定的参考价值。关键字:塔吊模型;设计;制作;支撑柱;横梁;杆件;牛皮纸;载荷 1.背景 塔吊在现代的社会生产中有着广泛的应用,它实现了笨重货物较大的水平和垂直位移,而且可重复性强,效率高,对社会经济的发展起到了很好的促进作用。塔吊其实在现实生活中随处可见,尤其在建筑施工基地和大型的装载、卸载基地,它可谓是必备的工业设备,是基地整个物料调运的核心装置。所以一个塔吊的结构的承载能力、安全性以及运动的灵敏性就显得非常重要。 本文所阐述的塔吊结构模型是以“浙江大学第九届大学生结构设计竞赛”这一赛事为依托,由本人协同刘晓杰、汪荣荣两位同学,共同设计并制作完成的。 2.模型设计制作要求 此模型的设计制作要求即为“浙江大学第九届大学生结构设计竞赛”提交的参赛作品的一些要求,现整理归纳成如下几点: 1、模型制作材料为牛皮纸、卡发丝线、白胶,固定模型的底板为木工板。材料统一由组委会提供和购买,不得使用非组委会提供的其它任何材料。 2、模型结构形式和总高度不限,模型的主要受力构件应合理布置,整体结构应体现“新颖、轻巧、美观、实用”的原则。 3、模型悬臂上分别设置3个作用点A、B、C,其中配重作用点A距模型底板中心线xx 轴水平距离为250±5 mm,距模型底板上表面高度为1000±5 mm,并要求设置竖向力的拉线环1个;加载作用点B、C分别距模型底板中心线xx轴水平距离为600±5 mm、900±5 mm,距模型底板上表面高度为1000±5 mm,要求在B、C点设置可以施加竖向力的拉线环各1个,并过C点垂直于BC连线上设置可以施加前后水平力的拉线环各1个,详见图1。 4、在B点一侧的模型固定边界以外、BC连线以下必须保持净空,详见图1。 5、固定模型的底板尺寸为400 mm×400 mm。模型制作材料固定在底板的范围不得超出250 mm×250 mm,详见图2。 6、模型作用点的拉线环须满足承载要求,拉线环受力拉直后离作用点的距离为50 mm。

塔式起重机基础知识汇总(整理版)

塔式起重机基础知识汇总 塔式起重机的技术性能是用各种参数表示的,其主要参数包括幅度、起重量、起重力矩、自由高度、最大高度等;其一般参数包括:各种速度、结构重量、尺寸、尾部尺寸及轨距轴距等,下面分别简述: 一、幅度: 幅度是从塔式起重机回转中心线至吊钩中心线的水平距离,通常称为回转半径式工作半径。 二、起重量 起重量是吊钩能吊起的重量,其中包括吊索、吊具及容器的重量,起重量因幅度的改变而改变,因此每台起重机都有自己本身的起重量与起重幅度的对应表,俗称工作曲线表。 起重量包括两个参数:即最大起重量及最大幅度起重量。 最大起重量由起重机的设计结构确定,主要包括其钢丝绳、吊钩、臂架、起重机构等。其吊点必须在幅度较小的位置。 最大幅度起重量除了与起重机设计结构有关,还与其倾翻力矩有关,是一个很重要的参数。 塔式起重机的起重量是随吊钩的滑轮组数不同而不同。一般两绳是单绳起重量的一倍,四绳是两绳起重量的一倍等等。可根据需要而进行变换。 为了防止塔式起重机起重超过其最大起重量,所有塔式起重机都安装有重量限制器,有的称测力环,重量限制器内装存有多个限制开关,除了限位塔机最大额定重量外,在高速起吊和中速起吊时,也可进行重量限制,高速时吊重最轻,中速时吊重中等,低速时吊重最重。. 三、起重力矩 起重量与相应幅度的乘积为起重力矩,过去的计量单位为TM,现行的计量单位为KNM,1TM等于10KNM。 额定起重力矩量是塔式起重机工作能力的最重要参数,它是防止塔机工作时重心偏移,而发生倾翻的关键参数。由于不同的幅度的起重力矩不均衡,幅度渐大,力矩渐小,因此常以各点幅度的平均力矩作为塔机的额定力矩。 塔式起重机的起重量随着幅度的增加而相应递减,因此,在各种幅度时都有额定的起重量,不同的幅度和相应的起重量连接起来,就绘制成起重机的性能曲线图,使操作人员一看明了不同幅度下的额定起重量,防止超载。 一般塔式起重机可以安装几种不同的臂长,每一种臂长的起重臂都有其特定的起重曲线,不过差别不大。 为了防止塔机工作时超力矩而发生安全事故,所有塔机都安装了力矩限位器,其工作原理是当力矩增大时,塔尖的主肢结构会发生弹性形变而触发限位开关动作,力矩

建筑塔式起重机事故分析及其预防示范文本

建筑塔式起重机事故分析及其预防示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

建筑塔式起重机事故分析及其预防示范 文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 近年来,随着城市建设的快速发展和高层建筑物的增 加,塔式起重机(以下简称塔机)的使用越来越普遍,重大伤 害事故的发生率也在不断提高。因此,针对起重机械使用 安全状况包括建筑工程建设工地使用的起重机械安全状 况,各有关单位联合对在用的塔机进行了全面的检验检 查,对存在的问题、隐患和已发生的事故进行全面的总结 和分析,提出相应的补救或预防措施,以供参考。 1 塔式起重机事故或隐患的分类及预防 1.1制造质量的问题 (1)结构的材质质量和焊接质量问题结构件的质量问题 包括构件的材料质量与焊接质量。

①起重机材料质量问题包括材质的正确选用及材料质量保证(材质宏观质量和化学成份微观质量),特别是起重机金属结构的关键件用材,比如:平衡臂架、起重臂架、塔身标准件、拉杆、转台、小车架和底架等。20xx年某台QqZ25型塔式起重机在其塔身主弦杆断裂处取样检验的材料质量分析中,其角钢的厚度测量有多处未达到材料厚度标准的规定,且金相检验表明,其材料存在大量硅酸盐、氧化物夹杂。当这些缺陷遇热影响区、高应变速率及高应力集中等特定因素时,这些因素对内在缺陷的扩展直至材料破坏起到了重要的作用。20xx年某台塔机,从塔身标准件主肢角钢折断的断口分析中,发现角钢的材质存在严重问题:所用材质冶金质量太差,夹杂物多、杂质元素过多、存在夹层和明显的纵向裂纹。由于多次刷涂油漆,安装人员和检验人员在安装、检验的宏观目测过程中很难发现缺陷。

建筑力学-塔吊分析

建筑力学作业 平面一般力系实际工程的应用——塔吊分析 1.塔吊介绍 塔吊,即塔式起重机。机身 很高,像塔,有长臂,轨道上 有小车,可在轨道上移动,工 作面很大,主要用于建筑工地 等处。塔吊一般用于建筑施工、 货物搬运、部分事故现场处理 等场合,主要作为材料、货物 等的高空运输或质量较大物体 的运送的工具。 塔吊一般由外套架、回转轴承、塔冒、平衡臂、平衡臂拉杆、起重臂(吊臂)、起重臂拉杆、电源、支架、变幅小车,起重吊钩、驾驶室等几部分组成。 塔吊一般用于建筑施工、货物搬运、部分事故现场处理等场合,主要作为材料、货物等的高空运输或质量较大物体的运送的工具。

如下图,塔吊可简化为所示主体结构模型 塔吊主体结构模型 塔吊结构图 根据塔吊的组成、用处及发展历程,我们可以对塔吊的结构有一个更加深入的了解。如下图1-2塔吊的主体结构模型图所示,塔吊的各个部分均已经标出在图上。

2.塔吊静力学分析 对塔吊整体为研究对象. 要保证机身满载是平衡而不向右倾倒,则必须 ∑M B=0, W2(a+b)-F A b-W1-W max l max=0; 限制条件F A≥0. 再考虑空载时的情形,这时W=0. 要保证机身空载时平衡而不向左倾倒,则必须满足平衡方程: ∑M A=0, W2 a+F B b-W1(b+e)=0; 限制条件F B≥0.

1)对塔吊的平衡臂,由平衡条件得: ∑F x =0, F 1cos θ=F x ; ∑F y =0, F 1sin θ+F y =W 2+m 1g ; ∑M=0, (F 1sin θ-W 2)l 1=m 1gl 2; 2)如左图塔吊吊臂,由平衡条件得 ∑Fx=0, F x =F 2cos α+F 3cos β; ∑F y =0, F 2sin α+F 2sin β+F `y =m 2g+W ; ∑M=0, F 2sin αl 3+F 3sin βl 4=m 2gl 5+Wl . 3)如右图塔吊吊帽与拉杆的受力情况,则由共点力的平衡条件可得平衡方程如下: ∑Fx=0, F 1cos α= F 2cos β+ F 3cos γ ∑F y =0, F 1sin α+F 2sin β+ F 3sin γ=F L 1

建筑工程塔吊安装全套资料表格

建筑起重机械质量安全检测申请表

申请报告 山东大汉建设机械有限公司: 我单位承建的永煤集团总医院病房楼工程,需安装一台QTZ50型塔式起重机,地址位于永城市开源路与百花路交叉口东侧。 河南国龙矿业建设有限公司 2018-12-23

塔式起重机安装拆卸协议书 年月日 河南国龙矿业建设有限公司

塔式起重机安装拆卸协议书 塔机使用单位:河南国龙矿业建设有限公司(以下简称甲方) 塔机安装单位:山东大汉建设机械有限公司(以下简称乙方) 我工程项目部永煤集团总医院病房楼工地现有QTZ50型号塔机1 台,因工程施工需要,现申请山东大汉建设机械有限公司在2018年12月25 日安装(拆卸)完毕,特签订此协议明确双方义务与责任。甲方责任: 1.在塔机安装前3 天甲方应向乙方提供塔机基础地质报告,(如无专项地质报告可提供该项建筑工程地质报告)。 2.甲方应按乙方提供的塔机基础要求完成塔机基础的土方工程与混凝土工程,并留砼试块。 3.在塔机安装过程中甲方应为乙方安排必要的普工6 名。 4.塔机安装前甲方应为安装做好临时供电工作。 5.负责向专业检查部门报检。 6.在塔机安装前应向乙方提供塔机安装的现场施工条件要求。 乙方责任: 1.乙方在塔机安装前应编制塔机安装、拆卸施工方案并报本单位技术负责人审批。 2.服从施工现场的安全管理及安全制度,负责安装现场的安全

生产管理,对于安装现场设置警戒线。 3.负责组织安装拆卸施工人员并将名单报工程承包单位和监理单位。 4.塔机安装拆卸应按甲方约定工期完成,如遇恶劣天气工作顺延。 5.负责编制塔机装卸事故应急救援预案。 6.严格按照建筑起重机械安装拆卸工程专项施工方案及安全操作规程,组织装卸作业。 7.塔机安装完毕后进行自检,白检合格后交付甲方。 8.塔机安装后,应向用户做塔机使用技术交底。 9.本单位技术负责人每一个月对己安装塔机进行一次巡检。 此协议一式二份甲乙双方各一份 甲方负责人:乙方负责人: 2018年12 月23日

7030塔吊机基础方案

目录 1 编制依据 (3) 2 工程概况及基础设计 (3) 2.1 工程概况 (3) 2.2 基础设计 (3) 3 施工准备 (4) 3.1 技术准备 (4) 3.2 施工人员、材料、机具准备 (4) 3.3 现场准备 (5) 4.施工工艺流程及主要工序施工方法 (5) 4.1 施工工艺流程: (5) 4.2 主要工序施工方法 (5) 4.2.1 施工前测量放线 (5) 4.2.2 基础钢筋绑扎 (5) 4.2.3塔机固定支脚安装 (6) 4.2.4 模板支设 (6) 4.2.5 混凝土施工 (6) 5 质量、安全、文明措施 (7) 5.1 质量措施: (7) 5.2 安全施工措施 (7) 5.3 文明施工措施 (8) 6 附图 .............................................. 错误!未定义书签。

附图1:661、662塔机平面布置图 (10) 附图2:663、664塔机平面布置图 (11) 附图3:塔机钢筋混凝土基础图 (9) 附图4 塔机固定支脚安装地位施工示意图 (13) 附图5:塔机钢筋混凝土基础模板支设图 (11) 附件6:C7030塔吊基础说明书 (15)

1 编制依据 1.1 C7030塔机使用说明书 1.2 GB50007-2002 《建筑地基基础设计规范》 1.3 GB50204-2002 《混凝土结构工程施工质量验收规范》 1.4 GB50202-2002 《建筑地基基础工程施工质量验收规范》 1.5 《建筑施工手册》(第四版,缩印本) 2 工程概况及基础设计 2.1 工程概况 塔机基础为固定式钢筋混凝土基础,基础坐落在岩石地基之上,地基岩石为中风化岩石。 2.2 基础设计 现场塔吊的吊钩高度为24.7米,基岩的承载力为2.8Mpa,根据厂家提供的C7030塔机使用说明书,基础长宽均为6.45米,厚度为1.7米,基础下层配筋为双向B25@116mm 钢筋网片,上层配筋为双向B20@116mm钢筋网片,上下层钢筋之间的拉筋为双向B20@540mm ,混凝土强度等级为C30。详见附图3《塔机钢筋混凝土基础详图》。 2.3防雷接地 用4根2.5米长的接地棒埋于塔吊基础四角的旁边,用—40×4镀锌扁铁将四根接地棒焊接成一体,并在两个斜对角用—40×4镀锌扁铁将其与塔机基础节进行焊接。接地电阻不能大于4欧姆。

浅析塔式起重机钢结构损坏原因及维修

浅析塔式起重机钢结构损坏原因及维修 [摘要]塔式起重机的现场安全生产管理极其重要,施工过程中发生钢结构损坏应及时修复,平时必须做好塔式起重机钢结构的维护保养工作,发现钢结构受损,必须排除事故隐患,确保安全生产顺利进行。 [关键词]塔式起重机;钢结构;损坏原因;维修 塔式起重机在建筑施工中已成为必不可少的施工机械设备,塔机在建筑施工中的现场安全生产管理工作中极其重要。长期以来,人们在维护塔机时只重视对传动及电气设备的养护,而忽视了对钢结构的检查及修复,给施工带来各种事故隐患。在此我们结合多年来的实际经验,谈谈塔机的钢结构在施工使用中的损坏原因及维修。 1 钢结构的损坏形式及原因 1.1表面锈蚀

塔机的工作环境比较恶劣,经常在含酸碱等腐蚀性气体灰尘下作业,加上运行过程中的碰撞及防锈油漆的自然老化、脱落,使表面失去保护,加上维护保养工作不及时,造成局部腐蚀氧化,不同程度地出现表面锈蚀现象,降低钢结构强度,久而久之使塔机的钢结构变形。 1.2裂纹 实践证明,虽然裂纹不一定导致断裂,发现裂纹不及时修复,塔机长期带患工作,往往是断裂的初期阶段,尤其是过渡性及危险性裂纹,具有进一步扩展的危险,及时发现并处理是很重要的。一般裂纹主要产生在焊接部位及应力集中的地方,如塔身下部、下支座、回转塔身、塔顶联接耳板等,通常在复合受力最大处。 如果机构启动和制动过猛、越级换速、反车作紧急制动,使塔机钢结构增大冲击力,过大的惯性可导致塔机钢结构的焊缝开裂,处理不及时,会引发较大的危险事故。在浙江某工地的qtz31.5塔机,由于司机操作不当,起升机构启动过猛,并且超载工作,使塔

机前后摆动很大,使塔机上支座内的筋板全部开裂,幸亏发现得早,及时处理,未发生重大事故。 1.3变形 包括局部弯曲变形和扭曲、偏心。根据金属结构检验要求,杆 件沿全长纵向轴线的直线度公差为1/750;使用中主弦杆变形量应 不大于3‰~5‰;腹杆变形量不大于2~4mm;杆件连接螺栓孔距误差不超过装配间隙的1/2;且螺孔的圆度误差不超过装配间隙的l /2;当超过上述范围即视为变形。变形原因有:①由于碰撞、敲打 等原因,造成钢结构局部弯曲变形;②由于连接螺栓松动,使得螺 孔磨损成椭圆,造成各节臂、杆件之间偏心产生附加弯曲力矩;③ 误动作造成钢结构意外碰撞变形.如操作机构失灵使吊臂失控后仰,与塔身相撞会引起严重变形;④长期超载使用,使钢结构产生屈服 变形(永久变形)。 如顶升时不注意调整上部结构的平衡,没有将顶起部份的重心 落在顶升油缸上,使顶部结构失去平衡乃至重心偏移较大,爬升架 的导轮对标准节主弦杆的压力太大,使塔身主弦杆发生弯曲变形, 塔机钢结构产生失稳而造成事故。

塔式起重机的静力学分析

塔式起重机结构的静力学分析 摘要:强度和振动特性是设计塔式起重机的金属结构的重要指标。文章从有限元的基础理论出发,利用ANSYS软件,对塔式起重机进行静力学分析,获得了其应力应变结果,比较了三种典型的工况,指出了极限吊重情况下静态极限强度的位置,并分析了塔式起重机的振动频率和振型,为研究塔式起重机的其他动力响应提供了依据。

关键词:塔式起重机静力学分析有限元 ANSYS 引言:塔式起重机(tower crane)简称塔机,亦称塔吊,起源于西欧。动臂装在高耸塔身上部的旋转起重机。作业空间大,主要用于房屋建筑施工中物料的垂直和水平输送及建筑构件的安装。由金属结构、工作机构和电气系统三部分组成。当起重臂架绕塔式起重机的回转部分作360°回转、吊重载荷沿起重臂架运行并升降时以及由于驱动控制系统电机抖动等原因,都会使塔式起重机引起振动。在此情况下,吊重荷载等动荷载对塔式起重机结构所引起的内力和变形,要比同样大小的静荷载所引起的大,有时甚至大得多。由于塔式起重机结构及构件承受的动荷载一般都很大,而且加载次数较为频繁,更容易产生疲劳破坏。作为大型设备,塔机的工作特点是根据建筑需要将物品在很大空间内升降和搬运,属于危 险作业。目前,在建筑施工中,由塔机引起的人员伤亡和设备事故屡禁不止,重大事故发生率居高不下。 塔机的强度和振动频率是影响塔机寿命和稳定性的重要因素,因此对塔式起重机进行静力学和振动的研究是十分要必要的。本文利用有限元分析软件ANSYS对塔式起重机QTZ630进行建模,分析了三种加载在塔式起重机上的 典型的工况,得出了塔式起重机在三种工况下的静力学应力和应变云图,找出塔式起重机各个工况下的危险位置,为其塔机的改进提供参考。提取出塔机的前5阶振动模态,为其他动力学响应提供研究依据。 1.塔式起重机的结构及性能参数 1.1塔式起重机的结构 塔式起重机主要由机械部分、金属结构和电气三大部分组成。 机械部分主要是指起升机构、运行机构、变幅机构、回转机构、行走机构、架设机构等等,这些机构根据工作需要或有或无,但起升机构是必不可少的。 金属结构是构成起重机械的躯体,是安装各机构和支托它们全部重量的主体部分。金属结构主要由门架、塔身、其中避、塔顶与塔顶撑架、平衡臂、转台等组成,其中门架是起重机的基础,所有物机和压重均装于其上。门架由两个侧架和一个长方形平台组成。塔身结构也成为塔架,是塔式起重机结构的主题,主要指自底架以上的垂直塔桅部分,它支撑着塔式起重机上部结构的全部重量,并将其转至底架和台车,进而分布给轨道基础。 电气是起重机械动作的能源,各机构都是单独驱动的。 在结构的力学分析中,主要分析塔身、塔臂和塔顶的杆件受力。 1.2性能参数 起重能力:Rmax =50 m ,Q =1.2 t R=2~15.44 m ,Q=5 t 起升速度: 100/80/50/40/5 m/min 回转速度: 0.6/0.4 r/min 变幅速度: 45/16 m/min 2.创建塔式起重机的有限元模型 塔机的金属结构主要包括塔顶、起重臂架、平衡臂、变幅小车、吊钩以及上下转台等组成.根据塔机设计规范的规定,建立塔机结构几何模型过程中,忽略结构阻尼,不考虑非线性关系和过渡圆角.为了有限元建模更加合理,应考虑:模型能全面准确地反映塔机结构特点;模型受力应与塔机在工作时外载荷作用

塔吊所需资料(技术部)

楼塔吊安装,劳务需给项目部提供以下资料: 1、所安装塔吊的备案证书 2、塔吊安装公司资质证书、营业执照、安全生产许可证、安 装单位管理人员证件(项目经理、安全管理、安全员等)及安装操作人员证件 3、塔吊安装公司提供的塔吊安装施工组织技术指导文件、塔 式起重机安装过程事故应急预案和救援预案。(份并加盖红色公章) 4、安全生产管理制度、特种机械设备安装人员岗位职责(份 并加盖红色公章)。 5、塔式起重机安装合同(租赁公司与安装公司的合同原件一 份、复印件三份都必须加盖各方红色公章)。 6、塔式起重机租赁合同(劳务公司与机械租赁公司的合同原 件一份、复印件三份都必须加盖各方红色公章)。 7、起重设备安装使用安全协议(原件一份、复印件三份都必 须加盖各方红色公章)。 8、起重机械安装改造重大维修监督检验报告(特种设备质量 安全监督站) 9、安装单位单位安装塔式起重机安装安全和技术交底书(原 件四份并加盖红色公章) 10、所安装的塔吊前一次的拆卸告知书、塔式起重机维保记 录、起重机械安装改造重大维修监督检验报告、塔式起重

机月检记录(一式四份) 11、塔吊安装完毕后需提供起重机械施工自行检验报告。 12、塔吊租赁公司资质证书、营业执照、安全生产许可证、(复 印件份并加盖红色公章) 对塔吊应建立技术档案,其技术档案应包括下列内容: 1、购销合同,制造许可证、产品合格证、制造监督检验证明、使用说明书、备案证明等原始材料 2、定期检验报告、定期自行检查记录、定期维护保养记录、维修和技术改造记录、运行故障和生产安全记录、累计运转记录等运行材料 3、历次安装验收资料 4、塔吊使用前应对司机、起重信号工、司索工进行安全技术交底

塔式起重机抗倾覆计算及基础设计

塔式起重机抗倾覆计算 及基础设计 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

塔式起重机抗倾覆计算及基础设计 一、基础的设置:根据塔式起重机说明书基础设置要求的技术参数及对地基的要求 选用基础设计图,基础尺寸采用××,基础砼标号为C35(7天和28天期龄各一组), 要有砼检测报告,基础表面砼平整度要求≤1/1000,塔式起重机预埋螺栓材料选用40Cr 钢,承重板高出基础砼面5~8㎜左右,要有排水设施。 二、塔式起重机抗倾覆计算 ①、塔式起重机的地基为天然地基,必须稳妥可靠,在表面上平整夯实,夯实后的 基础的承压能力不小于200kPa,基础的总重量不得小于80T,砼标号不得小于 C35,砼的捣 制应密实,塔式起重机采用预埋螺栓固定式。 ②、参数信息:塔吊型号:QTZ5510,塔吊起升高度H:,塔身宽度B:,自重F K :453kN,基础承台厚度h:,最大起重荷载Q:60kN,基础承台宽度b:,混凝土强度等级:C35。 ③、塔式起重机在安装附着前,处于非工作状况时为最不利工况,按此工况进行设计计算。塔式起重机受力分析图如下: 根据《塔式起重机说明书》,作用在塔吊底座荷载标准值为:M K =1654kn·m, F K = 530KN,Fv K =,砼基础重量G K = 835KN ④、塔式起重机抗倾覆稳定性验算: 为防止塔机倾覆需满足下列条件: 式中e----- 偏心距,即地基反力的合力至基础中心的距离; M K ------ 相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的力矩值; Fv K ------相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的水平荷载; F K -------塔机作用于基础顶面的竖向荷载标准值; h ---------基础的高度(h=); G K ----------基础自重; b---------矩形基础底面的短边长度。(b= 将上述塔式起重机各项数值M K 、Fv K 、F K 、h、G K 、b代入式①得: e =< b/3= 偏心距满足要求,抗倾覆满足要求。 三、塔式起重机地基承载力验算:根据岩土工程详细勘察报告资料,1#塔吊基础底板处承载力特征值为372Kpa。取塔式起重机基础底土层的承载力标准值为372Kpa,根据《TCT5613塔式起重机使用说明书》,采用塔式起重机基础:长×

塔式起重机基础知识

塔式起重机基础知识 ?(二)主要用途?主要用于起升高度大,作业半径大的工业、民用建筑施工,以及电站、水利、港口、造船等施工作业。?(三)分类?1.按回转支承位置分?上回转塔机 ?下回转塔机?2.按变幅方式分主要有?(1)小车变幅式 ?(2)动臂变幅式 ?3.按安装方式分?(1)快速安装式(下回转式) ?(2)非快速安装式(上回转式)?4.按底架固定情况分?(1)固定式 ?(2)轨行式?5.升高方式分?(1)自升式 ?(2)固定高度 ?自升式 ? (1)附着式(2)内爬式 四)塔机参数基本参数及定义塔机参数包括基本参数及主参数。基本参数共11项,其名称及定义示于表1. 表1 塔机基本参数及定义(据GB5031-1994) 1.幅度塔机空载时,塔机回转中心线至吊钩中心垂线的水平距离 2.起升高度空载时,对轨道式塔机,是吊钩内最低点到轨顶面的距离;对其他型式起重机,则为吊钩内最低点到支承面的距离。 3.额定起升载荷在规定幅度时的最大起升载荷,包括物品、取物装置(吊梁、抓斗、起重电磁铁等)的重量 4.轴距同一侧行走轮的轴心线或一组行走轮中心线之间的距离 5.轮距同一轴心线左右两个行走

轮或左右两侧行走轮组、轮胎或轮胎组中心径向平面间的距离 6.起重机重量包括平衡重、压重和整机重7.尾部回转半径回转中心线至平衡重或平衡臂端部最大距离8.额定起升速度在额定起升载荷时,对于一定的卷筒卷绕外层钢丝绳中心直径、变速挡位、滑轮组倍率和电动机额定工况所能达到的最大稳定起升速度。如不指明钢丝绳在卷筒上的卷绕层数,既按最外层钢丝绳中心计算和测量9.额定回转速度带着额定起升载荷回转时的最大稳定转速10.最低稳定 速度为了起升载荷安装就位的需要,起重机起升机构所具备的最小速度11.工作级别分为A1~A6所谓公称起重力矩是指起重臂为基本臂长时最大幅度与相应额定起重量重力的乘积。?按作用和工作性质区分,塔式起重机一般由下列部分组成:?1.结构?由底架、塔身、回转支座、塔顶、平衡臂、吊臂、司机室、梯子与平台、顶升套架和横梁部分组成。?2.机构?由起升机构、回转机构、变幅机构、运行机构、架设机构、液压机构等部分组成。?3.电气?由电源、电线与电缆、控制与保护、电动机等部分组成。?4.安全装置?由超载限制器、行程限位器、安全止挡和缓冲器、应急装置、非工作状态安全装置、环境危害预防装置等部分组成。 5.附属装置?由配重与压重、基础与轨道、拖运装置、附着框架及连杆、内爬框架、排绳与拖绳装置、电缆卷筒、检修装置等部分组成。?这些组成部分中,1、2、3、4中的大部分是任何类型的塔式起重机都必须具备的5的部分,则因塔式起重机的类型和用途不同而配置。而且其中的有些部分应由用户自行准备,如配重、压重、轨道、基础、

塔机结构培训教材

第一章 概述 第一节 我国塔机制造业当前生产状况及世界塔机技术的发展趋势我国塔式起重机制造业起步较晚,当前国内生产塔式起重机的厂家中,稍有规模的有几百家,小、中型塔机居多,技术水平大多处于中、低档次。制造水平、产品性能处于中低档的居多,小批量、品种单一的制造企业居多,系列化产品、精良制造技术年销量达三位数的企业不多。但中联重科等一批企业和科研院所致力于高水平塔机的科研和生产,一些技术性能接近或达到世界先进水平的塔机也陆续投放市场。 国内外塔式起重机发展的趋势是: 一、 高性能:1、大高度以适应城市超高层建筑需求。 2、大覆盖面。臂架要长,覆盖面才能大。 3、大吨位。 4、高速度。现代建筑施工周期短,工作量大,加之高度高、幅度大所以运 行速度要快。 5、高可靠性。快节奏的施工,要求故障率低。 6、快速架设。 二、 高安全性。高空运行机具,安全尤为重要。必须配备多项安全保护装置、数显报警 系统。 三、 智能化的电控系统、符合人体工程学的操纵系统、配有空调的操作空间使操作手更 舒适,安全作业更有保证。 四、 标准化、模块化设计降低制造成本。 五、 优质元、器件国际化采购加上精良的制作使性价比不断提高。 第二节 目前塔式起重机主要国家和行业标准 塔机设计、制造、使用时遵循的国家及行业主要标准有: GB/T5144-94 塔式起重机安全规程 GB/T9462-1999 塔式起重机技术条件 GB/T13752-92 塔式起重机设计规范 GB/T5031-94 塔式起重机性能实验

GB/T17806-1999 塔式起重机可靠性实验方法 GB/T17807-1999 塔式起重机结构实验方法 GB/T5112-1999 塔式起重机钢结构制造与检验 JG/T100-1999 塔式起重机操作使用规程 JG/T5037-93 塔式起重机分类 用户、售后服务人员着重学习贯彻JG/T100-1999《塔式起重机操作使用规程》,认真执行产品使用说明书。 第三节 塔式起重机基本类型、基本参数 塔式起重机按幅度变化形式分为:动臂式、水平臂式。 中联的第一台动臂塔机:TCR6055

塔式起重机发展现状及前景

塔式起重机发展现状及前景 大为缩小,并成为生产和使用的大国,但在总体结构、性能、质量等方面与国外比还存在一定问题。如产品结构不合理我国至今累计生产了近十万台塔式起重机,但是型号还达不到40种,绝大部分型号大同小异,原因之一是技术法规限制了产品的开发。产品技术性能含金量不高塔式起重机是建筑机械唯一可移动垂直运输工具,其技术性能高低不仅关乎工程进度,各关系着安全生产。 目前,我国塔机性能基本处于八、九十年代机械化水平,与现代智能化、数字化控制技术还有很大差距,跟不上市场的需要。代表当代塔机技术性能的全无级调速,PLC控制在发达国家中以十分普遍而我国目前充其量在2%;发达国家已批量生产,运行状态实现了全参数监控与故障诊断的智能型塔机,而我国刚刚启动,可以说还是空白,诸如在实验手段上,多数企业不具备对原材料的预处理和配套件的进厂检验能力;在配套件生产上,企业多,品种重复,生产质量差。特别是液压件、电器件等不过关,直接影响到主机的质量和可靠性等。国外塔式起重机现在的发展方向和特点: 1.国外塔机品种型号更新快 当今国外塔机生产企业非常关注国际塔机市场动态,不断总结经验,改进产品设计及时推出适销对路的新产品。如法国Potain公司推出的matic MD系列和MR系列。德国Liebheer公司推出的EC-H系列和HC-L系列。 2.重视发展下回转自行架设、整体施运的塔机 20世纪末,在许多国际建筑机械博览会上参展的塔机约60%属于此类塔机,在国外建筑工地上,也常见到此类塔机,该类塔机技术在国外已不断创新,不断提高。例如法国Potain公司的GTMR系列,德国Liebheer公司的20ES塔机。3.发展城市型塔机,不忽略上回转动臂式自升式塔机 所谓城市型塔机,就是一种上回转快装塔机因其起重量大,自重较轻适于狭窄场地施工的起重机。 4.大量采用新技术 国外塔机,除上述在性能参数及结构功能等方面不断创新、不断提高外,其他方面也大量采用新技术,淘汰老产品。如法国Potain公司,在不少塔机产品上已采用了调亚无级调速和调频无级调速等调速方案。丹麦Croll公司,采用可

建筑塔式起重机的故障分析和结构改进方法

建筑塔式起重机的故障分析和结构改进方法 摘要:经济的不断发展,加速了城市化的进程,建筑工程的需求量也逐年攀升。高层建筑日益增多,塔式起重机由于可以显著提高工程质量、缩短工期,已成为 建筑活动过程中不可缺少的重要物质条件。近年来,由于塔式起重机租赁市场发 展迅速,出现了以租赁代替维修、维修与保养,忽视了服务质量;使用方管理制 度不健全,维修与保养不及时、不到位,也是引发事故的主要原因;同时,塔式 起重机自身体积大、重量大、技术要求高、危险性大,从业人员业务素质偏低, 从而导致了不少机毁人亡重大安全事故的发生,严重威胁了人民生命安全,给国 家财产造成了重大损失。本文就建筑塔式起重机的故障分析和结构改进方法展开 探讨。 关键词:塔式起重机;故障诊断;改进方法 引言 起重机电气故障不但会延误工期,影响整个工程的生产效率,甚至会危及工 作人员的人身安全。因此,了解常见的起重机电气故障原因,掌握一些解决起重 机电气故障的方法就显得非常有必要。 1桥式起重机电气故障分析 1.1起重机电气故障的分析 (1)转子电阻被破坏。转子电阻是起重机中的重要部分,一旦被烧坏,那么就会使得转子回路之间的断性开路闭合运行,引发严重的后果。一般情况下,电 阻运行的温度过高,也会造成电阻烧坏。在起重机运行的过程中,必须不停的打 开电气设备,又关闭电气设备,每次打开和关闭都会造成温度升高,同时使得转 子的回路发生问题,转子电阻被烧坏。(2)凸轮控制器出现问题。需要注意的是,在起重机运行的过程当中,两台电动机不能在同一时间运行,因为两台电动 机都是由同一台凸轮控制器来进行控制的,控制器通过两个触点可以使电机开始 运转,但是却会出现凸轮触点被烧坏的情况,一旦被烧坏,档位就会出现不准确 的现象。两个触点没有在同一个时间段内闭合,也就不能在进行正常的调整。在 这样的情况下,凸轮控制器会不断的磨损,甚至会烧坏电机。(3)转子线的搭 配错误。工作人员在操作的过程当中,时常将转子线的顺序搭错,一旦顺序错误,那么在起重机运行的时候,电动机的转子中的电流就会发生变化,这样就降低了 电机的使用寿命。因此,不能将转子线的顺序搞错。 1.2非电气故障分析 非电气故障引起电机烧坏的原因主要有操作不当和机械磨损。操作人员不按 规定,长时间使起重机处于工作状态,电动机超负载运行时间过长,使得电动机 被烧坏;另外由于起重机本身的机械磨损也可能使电机超负载运转,进而烧坏电机。 2塔式起重机故障诊断的方法 从出现诊断塔式起重机的故障开始到现在约有40年的历史了,这期间产生了不少的理论,但总的来说,主要的诊断方法一共有三类:(1)通过解析模型的 故障诊断法。这类方法又包含了状态估计法、等价空间法和参数估计法。这类诊 断方法的关键之处就是建立从征兆域至故障域映射的精确数学模型,但塔式起重 机由于结构复杂,并不十分适用于此类故障诊断方法。(2)通过识别模式的故 障诊断法。不同的故障类型具有不同的故障特征,也具有不同的故障状态和故障 特征样本,通过匹配就能够识别出正确的故障类型。通过识别模式判断故障类型

谈谈塔式起重机的主要构造及功能

谈谈塔式起重机的主要构造及功能 塔式起重机的品种、型号、规格很多,但从回转支承的方式上区分,可分为上回转塔机和下回转塔机。这两类塔机的整机功能、适用范围和受力性能差别很大,尤其是金属结构的受力性能差别很大,因此要重点分别介绍。至于几大工作机构基本相同,则放在后面分节介绍。 第一节上回转塔式起重机的构造及特点 上回转塔式起重机是回转支承在塔身顶部的起重机,尽管设计型号有各种各样,但其基本构造大体相同。整台的上回转塔机主要由金属结构、工作机构、液压顶升系统、电气控制系统及安全保护装置等五大部分组成。每一部分又多个部件。在这里我们不打算去介绍各种型号塔机的具体构造,只抓住其基本组成及部件的作用和特点作典型介绍。 塔机的金属结构是整台塔机的支撑架,其设计制作的好坏,直接关系到整台塔机的使用性能和使用寿命,也关系到建筑工地生命财产的安全,因而金属结构是塔机的关键组成部分。金属结构的设计计算是一个很复杂的过程,它涉及到负载计算和承载能力分析,不是简单介绍一些公式所能凑效的。本书是介绍塔机应用技术,故不过多解释计算方法。 上回转塔机的金属结构主要包括:底架、塔身、回转下支座、回转上支座、工作平台、回转塔身、起重臂、平衡臂、塔顶、驾驶室、变幅小车等部件。但自升式塔机还要加爬升套架、内爬式塔机还要加爬升装置,行走式塔机要增加行走台车,附着式塔机要加附着架。这些增加的装置大多也以金属结构为主。图2-1为一台既有顶升、又有行走台车的上回转塔机,可以作为典型的构造示意图。

1.底架

2、塔身

3、回转塔架系统

4、起重臂

6、顶升套架

塔吊全套资料

14-2-4 塔式起重机 14-2-4-1 塔式起重机的类型 塔式起重机按有无行走机构可分为固定式和移动式两种。前者固定在地面上或建筑物上,后者按其行走装置又可分为履带式、汽车式、轮胎式和轨道式四种;按其回转形式可分为上回转和下回转两种;按其变幅方式可分为水平臂架小车变幅和动臂变幅两种;按其安装形式可分为自升式、整体快速拆装和拼装式三种。目前,应用最广的是下回转、快速拆装、轨道式塔式起重机和能够一机四用(轨道式、固定式、附着式和内爬式)的自升塔式起重机。拼装式塔式起重机因拆装工作量大将逐渐淘汰。 塔式起重机型号分类及表示方法见表14-63。 塔式起重机型号分类及表示方法(ZBJ 04008-88)表14-63 14-2-4-2 下回转快速拆装塔式起重机 下回转快速拆装塔式起重机都是600kN·m以下的中小型塔机。其特点是结构简单,重心低,运转灵活,伸缩塔身可自行架设,速度快,效率高,采用整体拖运,转移方便。适用于砖混砌块结构和大板建筑的工业厂房、民用住宅的垂直运输作业。 1.主要技术性能 下回转快速拆装塔式起重机的主要技术性能见表14-64。

下回转快速拆装塔式起重机主要技术性能表14-64 2.外形结构及起重特性 几种常用的下回转快速拆装塔式起重机的外形结构及起重特性见图14-25~图14-28。

①-起重量与幅度关系曲线;②-起升高度与幅度关系曲线 图14-26 QT25型塔式起重机外形结构及起重特性 标准状态-幅度13m,吊钩高度15m,臂根铰点高度14.1m;状态I-幅度16m,吊钩高度 19.7m,臂根铰点高度17.5m;状态II-幅度20m,吊钩高度23m,臂根铰点高度21m

塔吊天然基础计算

天然基础计算 一、参数信息 塔吊型号:QTZ40,塔吊起升高度H=100.00m, 塔吊倾覆力矩M=400.00kN.m,混凝土强度等级:C40, 塔身宽度B=1.60m,基础以上土的厚度D:=2.50m, 自重F1=342.00kN,基础承台厚度h=1.50m, 最大起重荷载F2=40.00kN,基础承台宽度Bc=6.00m, 钢筋级别:II级钢。 二、基础最小尺寸计算(内容固定不变) 1.最小厚度计算 依据《混凝土结构设计规范》(GB50010-2002)第7.7条受冲切承载力计算。 根据塔吊基础对基础的最大压力和最大拔力,按照下式进行抗冲切计算: (7.7.1-2) 其中: F──塔吊基础对基脚的最大压力和最大拔力;其它参数参照规范。 η──应按下列两个公式计算,并取其中较小值,取0.00; (7.7.1-2) (7.7.1-3) η1--局部荷载或集中反力作用面积形状的影响系数; η2--临界截面周长与板截面有效高度之比的影响系数; βh--截面高度影响系数:当h≤800mm时,取βh=1.0;当h≥2000mm时,取βh=0.9,其间按线性内插法取用; ft--混凝土轴心抗拉强度设计值,取16.70MPa; σpc,m--临界截面周长上两个方向混凝土有效预压应力按长度的加权平均值,其值宜控制在1.0-3.5N/mm2范围内,取2500.00; u m--临界截面的周长:距离局部荷载或集中反力作用面积周边h o/2处板垂直截面的最不利周长;这里取(塔身宽度+h o)×4=9.60m; h o--截面有效高度,取两个配筋方向的截面有效高度的平均值; βs--局部荷载或集中反力作用面积为矩形时的长边与短边尺寸的比值,βs不宜大于4;当βs<2时,取βs=2;当面积为圆形时,取βs=2;这里取βs=2; αs--板柱结构中柱类型的影响系数:对中性,取αs=40;对边柱,取αs=30;对角柱,取αs=20. 塔吊计算都按照中性柱取值,取αs=40 。 计算方案:当F取塔吊基础对基脚的最大压力,将h o1从0.8m开始,每增加0.01m,至到满足上式,解出一个h o1;当F取塔吊基础对基脚的最大拔力时,同理,解出一个h o2,最后h o1与h o2相加,得到最小厚度h c。经过计算得到: 塔吊基础对基脚的最大压力F=200.00kN时,得h o1=0.80m;

塔式起重机动态结构分析和研究

塔式起重机动态结构分析和研究 发表时间:2018-03-23T11:31:21.503Z 来源:《基层建设》2017年第34期作者:朱政委谭静 [导读] 摘要:塔式起重机作为一种间歇式工作机械,研究其动态特性方法,可以更好的对其进行动态设计,提高塔机的耐用程度,改善其工作性能。 中国建筑第七工程局有限公司 450004 摘要:塔式起重机作为一种间歇式工作机械,研究其动态特性方法,可以更好的对其进行动态设计,提高塔机的耐用程度,改善其工作性能。文章阐述了动载系数法、有限元法、模态分析法、动态子结构的模态综合法、建立少自由度模型法和子空间迭代法6种塔机动态特性分析的主要方法,概述了其国内外应用研究进展,分析了各种研究方法的优势及存在的问题,展望了塔式起重机动态特性的研究方向。 关键词:动态特性;模态分析法;动态子结构的模态分析法;有限元法;动载系数法 塔式起重机(以下简称塔机)是一种经常启动、制动和具有复杂的耦合运动的机械。在启动、制动和进行耦合运动时,机构和结构将承受强烈的冲击振动。准确描述和精确计算塔机结构体系在外激励下的动态过程,从而为塔机的设计、生产提供理论上和实践上的指导,对于塔机的经济性和安全性都具有非常重要的意义。然而,长期以来,在塔机设计中,一般仅用动载系数来考虑这种动态效应。实践证明,应用动载系数虽然简单,但在某些较复杂的情况下,用它计算的构件应力与实际应力相差较大。为了精确计算塔式起重机的动载荷,近年来很多研究人员在这方面做了许多工作,本文在总结这些研究成果的同时,指出存在的问题与不足,并探讨进一步的研究方向。 1.塔机动态特性的研究方法 1.1动载系数法 在塔机结构设计时常采用动载荷系数法来计算塔机结构在工作时所受到的动载荷,即用动载荷系数与静载荷的乘积作为等效动载荷。可见动载系数法是建立在静力计算的基础上研究动载荷的方法,因而其实质上仍是静态设计方法。 1.2有限元法 有限单元方法是在变分原理的基础上发展起来的一种数值近似解法,也是借助计算机技术迅速发展起来的求解大型结构的有效方法。其研究思想是将研究对象原本连续的求解区域离散为一组数量有限且按一定方式相互联结在一起的单元。由于单元能按照不同的联结方式组合,且单元本身又有不同形状,因而可以模拟成不同几何形状的求解小区域;然后借助于力的平衡条件,通过比较简单的数学函数来呈现单元两端节点与单元位移参数之间的关系,解出函数便可得到各个单元及节点的位移及应力,同时也可以对单元的弹性和惯性等进行分析,进而逼近整体的求解问题。这种先化整为零,进而集零为整的过程就是有限单元法的基本思路。 1.3动态子结构的模态分析法 动态子结构法是按工程观点或结构的几何轮廓,并遵循某些原则要求,把完整结构人为地划分为若干部件。在此基础上先对自由度少得多的个别子结构进行动态特性分析,后经由各种方案(如固定界面法),将从这些子结构中得到的重要模态信息(主要是低阶的模态信息)保存下来,以综合成里兹基,最后求出完整结构的主要模态特性。动态子结构的模态分析法通过计算小尺寸特征值问题来替代直接解大型特征值问题,并能保证完整系统主要模态的精度。 2.塔机动态特性研究现状 (1)从研究对象来讲,对动臂变幅塔机研究较多,而对小车变幅塔机研究较少。动臂变幅塔机与小车变幅塔机两者的结构型式不同,操作规程不同,计算工况不同,动载荷表现自然也不同,不能用动臂变幅塔机的研究结果来描述小车变幅塔机的动载特点;(2)从研究方法来讲,有三方面不足:第一,在建立模型、确定计算工况和施加激振载荷方面,多简化在二维平面进行,没有按实际情况建立三维计算模型,没有考虑变幅和回转动载荷的影响;第二,多应用单一方法进行动态分析,正如前面所分析的,每种方法都存在一定的缺陷,若多种方法结合使用,则能相互弥补不足,提高计算的可靠性;第三,多应用传统方法进行分析,柔性多体系统动力学等前沿学科应用较少;(3)从研究过程来讲,多为单向研究,缺少从认识到实践的反复过程。某些研究虽取材于工程实际,但没有返回去为工程实际服务,失去了研究的真正价值。 3.起升工况的动态响应分析 利用ALGOR软件对塔机的起升工况进行动态响应分析。起升是塔式起重机主要工况之一,塔机正常起升工作状态包括上升启动,稳定上升,上升制动,下降启动,稳定下降和下降制动六个阶段。其中上升启、制动及下降启、制动为非稳定运动状态。由于塔机系统具有质量和弹性,因此在非稳定运动阶段,吊重会产生动载荷。这就使起重臂结构上的载荷成为变动载荷,在此动态载荷激励下,起重臂结构产生振动,结构中应力为交变动应力。在求得塔机系统的固有频率、固有振型后就可以用直接积分法中的Wilson-Q法求解,因为Wilson-Q法无条件稳定,具有二阶精度,在高阶模态具有可控的算法阻尼。当图1为吊重作加速离地上升运动时起重臂分别在x、y和z方向的位移响应,在每个图中给出了起重臂在0.15s~1.5s的时间范围内10个时刻的响应。其中图1c中所示的起重臂在垂直方向的位移,最大值达到了620mm;根据现场测试的记录,吊重作加速离地上升运动时的起重臂的最大位移量在600mm~700mm范围;计算值在测试值的范围之内,这说明所建立的模型是合理的,用有限元方法所计算出的结果是令人可信的。而且在各位移量中,z方向位移起主要作用,说明弯矩的影响是主要的,应重点考虑。x方向位移是由起重臂上各结构偏心产生的扭矩引起的,y方向位移是由塔身倾斜、z方向位移、起重臂轴向压力引起的,z方向位移是由起重臂上各结构产生的弯矩引起的,由图1可看到x方向位移在距起重臂根部22.3米、38.66米处,y方向位移在距起重臂根部18.9米处,z方向位移在距起重臂根部30.35米处,出现了正负值的变化,在计算及生产中应加以重视。 图1吊重作离地上升运动时起重臂的响应 4.塔机动态特性方法的改进和发展 有限元模型建立是应用有限元方法的关键步骤之一,模型建立的速度和准确性直接关系到有限元分析的效率和可靠性。模态力等利用有限单元法分别建立了完整的塔机杆系有限元模型和等效有限元模型,并通过两种模型对塔机的结构进行了动态特性分析,指出使用合理

相关文档
相关文档 最新文档