文档库 最新最全的文档下载
当前位置:文档库 › 岩层走向对层状岩体隧道稳定性影响分析

岩层走向对层状岩体隧道稳定性影响分析

岩层走向对层状岩体隧道稳定性影响分析
岩层走向对层状岩体隧道稳定性影响分析

考虑渗流的多层土盾构隧道开挖面稳定性分析

第31卷第5期 岩 土 力 学 V ol.31 No.5 2010年5月 Rock and Soil Mechanics May 2010 收稿日期:2008-10-29 基金项目:国家重点基础研究发展计划(973计划)(No. 2007CB714001)。 第一作者简介:乔金丽,女,1978年生,博士研究生,主要从事隧道,地下水渗流方面的工程分析与研究。E-mail: qiaojinli@https://www.wendangku.net/doc/9c15222667.html, 文章编号:1000-7598 (2010) 05-1497-06 考虑渗流的多层土盾构隧道开挖面稳定性分析 乔金丽,张义同,高 健 (天津大学 机械工程学院,天津 300072) 摘 要:将传统模式的均匀土层稳定性分析的楔形体模型扩展到渗流作用下多层土盾构隧道开挖面的稳定性分析中,楔形体是由梯形组成的,每一个梯形对应一层土层,利用太沙基有效松动土压力理论和上限定理,推导了渗流作用下盾构穿越多层土的隧道开挖面极限支护压力的计算公式。极限支护压力等于作用于开挖面有效支护压力和渗透力的总和,其中有效支护压力用极限平衡来计算,渗流力采用水头分布的数值方法计算获得的。计算结果发现,渗透力构成了总支护压力的主要部分,分析结果和工程实测数据是一致的。 关 键 词:开挖面稳定;渗流;极限支护压力;上限定理;多层土 中图分类号:U 451 文献标识码:A Stability analysis of shield tunnel face in multilayer soil with seepage QIAO Jin-li, ZHANG Yi-tong, GAO Jian (School of Mechanical Engineering, Tianjin University, Tianjin 300072, China) Abstract: The traditional model of wedge for stability analysis of tunnel face under homogenous soil is extended to encompass multilayer soil with seepage; the wedge consists of trapezoids and each trapezoid is related to a layer of soil; the Terzaghi’s theory and upper limit theorem are applied to derive the equation for limit support pressure. The limit support pressure is the sum of the effective support pressure and seepage force; the former is obtained from limit equilibrium analysis and the latter is evaluated by means of numerical analysis of head distribution. It is found that the seepage force is the main portion of the limit support pressure. The analytical results are consistent with measured data in engineering. Key words: excavation face stability; seepage; limit support pressure; upper theorem; multilayer soil 1 引 言 对土层变化较大的复杂地质,在渗流作用下盾构隧道开挖面的稳定性研究目前还很不成熟,是当前研究的重要课题。开挖面的稳定通过保持盾构刀盘支承的压力舱内泥土压力获得,从控制盾构机的推进速度和螺旋输送机的出土量,即可获得所需刀盘支承压力舱内的土压。土压的高低最终以盾构施工洞线上方的地面既不隆起,又不塌陷为宜,但控制地面既不隆起,又不塌陷几乎是不可能的。盾构穿越地层趋于复杂、开挖面面积迅速增大引起的压力控制不确定性因素增多,盾构对土体的扰动增大,又由于地下水的存在,使得开挖面上的变形复杂,更是对开挖面的稳定性提出了新的要求。地下水的作用,弱化了开挖面土体的力学性能,增加了地面 的沉降,使开挖面不稳定因素增大。 太沙基理论[1]认为,开挖以后的隧道,顶部的土体由于重力作用而向下移动,在隧洞两侧至地面出现两个剪切面。当上覆土体的厚度远大于隧道外径时,由于隧道开挖引起上方土体发生位移,土体颗粒的相互错动使得土体颗粒之间应力传递,导致隧道上方周围土体对下移的土体有一定阻碍作用,使其最小支护压力远小于土体原始应力,因此,隧道顶部土压力,采用太沙基松动土压力理论进行计算比较合理,而全覆土理论不适合埋深较大或土质较硬的情况,普氏土压力理论不适合埋深太浅或不能形成压力拱的松软土层[2]。宋玉香等[3]列举了最常见的竖向土压力荷载的计算方法,并进行了对比。在饱和土有效应力及维持开挖面稳定极限支护压力的研究中,Pierre Chambon and Jean-Francois Corte [4]

高速公路隧道施工方案及步骤

高速公路隧道施工方案及步骤 按新奥法组织施工,左右洞身分别从两头掘进,无轨运输施工。Ⅲ类围岩采用小导管注浆及超前锚杆加固围岩,开挖采用台阶法,人工配合台车钻眼;Ⅳ类围岩开挖采用全断面法,台车钻眼。洞身衬砌砼采用集中拌合,砼运输车运输,砼输送泵配合液压衬砌台车施工。 一、掘进施工方案: 为防止左右洞在同一断面同时开挖,对两隧道之间围岩产生较大的影响,采用右洞从进口 主攻、左洞从出口主攻的方法开挖。 开挖采用钻爆法施工,采用光面爆破技术开挖。进出口主要各配备1台凿岩台车钻眼,1台挖掘机配合1台侧卸式装载机装碴。6台15T自卸汽车出碴。 Ⅲ类围岩采用短台阶法,台阶长度10-15m;Ⅳ类围岩采用全断面法施工。 二、初期支护施工方案: 洞口Ⅲ类围岩(S2)采用超前小导管(注浆)及超前砂浆锚杆(S3)、钢筋网喷射砼、钢拱架支护,Ⅳ类围岩采用组合锚杆、喷射钢纤维砼支护。 支护施工顺序为:超前支护(超前小导管、超前砂浆锚杆)开挖初喷锚杆、钢筋网、钢拱架复喷至设计厚度。超前支护在开挖之前施工,初期支护紧跟开挖施工。 超前砂浆锚杆采用钻机钻孔,采用高压注浆泵注浆,喷射砼采用湿喷机按湿喷工艺施作。 施工中应认真落实超前地质预报和监控量测工作,确保隧道施工不出现坍塌事故。 三、隧道衬砌施工方案: 二次衬砌施作时间根据监控量测数据确定,Ⅲ类围岩地段隧道衬砌适当紧跟初期支护,仰拱和回填应在二次衬砌之前进行;Ⅳ类围岩二次衬砌可适当滞后,在初期支护基本稳定后施作。 衬砌前按设计要求施工防水层和塑料盲管。防水层和塑料盲管采用自制作业台车施工,防 水层采用无钉铺设工艺,用热焊焊接固定。 洞内衬砌采用穿行式液压衬砌台车全断面施工,隧道进、出口端各配1台台车,考虑隧道处于曲线上的因素,选用长度为9m的台车。紧急停靠带的衬砌砼待全隧衬砌完成后,在台车钢模内加设活动的、带弧形的3015钢模板,并用特制的梳型模加固和调整尺寸,行人、行车横洞及其它预留洞室采用特制台架施工。砼采用S8(C25)防水砼,砼搅拌运输车运输(200m 以上),输送泵泵送砼灌注入模,拌合站集中拌制。 四、施工辅助设施方案: 1、施工用电: 隧道用电利用洞口安装的变压器供电。洞内利用电缆线接至工作面后使用,动力电采用 400V/380V,照明采用安全变压器(36V)供电。 2、施工用风: 在进出口洞口各设40m3供风站一个,供洞内开挖、支护、通风用风。 3、施工通风: 本隧道从两头掘进,单头掘进长度约714~825m,经分析计算,决定本隧道施工通风采用管道压入式通风方式,风管采用维尼龙布基风管,管径采用φ1000mm,进口右洞和出口左洞洞口各配置1台容量不小于1000 m3/min的轴流式通风机。

隧道围岩分级及其主要力学参数

隧道围岩分级及其主要力学参数 一、一般规定 在公路勘察设计过程中,是根据周边岩体或土体的稳定特性进行围岩分级的。围岩分Ⅰ~Ⅵ级,由于每级间范围较大,施工阶段对Ⅲ、Ⅳ、Ⅴ基本级别,再进行亚级划分。在公路隧道按土质特性和工程特性分:岩质围岩分级——Ⅰ~Ⅴ级;土质围岩分级Ⅳ~Ⅵ级。对岩质围岩和土质围岩分别采用不同的指标体系进行评定:岩质围岩基本指标为岩质的坚硬程度和完整程度,修正指标为地下水状态,主要软弱结构面产状及初始地应力状态。 土质围岩分级指标体系宜根据土性差异而组成,粘土质围岩基本指标为潮湿程度。沙质土围岩基本指标为密实程度。修正指标潮湿程度。碎石土围岩基本指标为密实程度。至于膨胀土、冻土作为专门研究,这里暂不述。围岩分级指标体系中可用定性分析,也可用定量分析,但由于工地施工条件时间等因素,一般我们仅采用定性分析。下面我讲定性分析来确定围岩级别。 1、确定岩性及风化程度。 2、结构面发育,主要结构面结合程度,主要结构面类型,甚至产状倾角、走向结构面张开度,张裂隙。 3、水的状况涌水量等。 二、岩石坚硬程度的定性划分 1、坚硬岩:锤击声清脆、震手、难击碎,有回弹感,浸水后大多无吸水反应,如微风化的花岗岩——正长岩,闪长岩,辉绿岩,玄

武岩,安山岩,片麻岩,石英片麻岩,硅质板岩,石英岩,硅质胶结的砾岩,石英砂岩,硅质石灰岩等等。 2、较坚硬岩:锤击声较清脆,有轻微回弹,稍震手,较难击碎,浸水后有轻微吸水反应。如未风化~微风化的熔结凝灰岩、大理岩、板岩、白云岩、石灰岩、钙质胶结的砂岩等。 3、较软岩:锤击声不清脆,无回弹,较易击碎,浸水后指甲可刻击印痕。如未风化~微风化的凝灰岩,砂质泥岩,泥灰岩,泥质砂岩,粉砂岩,页岩等。 4、软岩:锤击声哑,无回弹,有凹痕,多击碎,手可掰开。如强风化的坚硬岩,弱风化~强风化的较坚硬岩,弱分化的较软岩,未风化的泥岩等。 5、极软岩:锤击声哑,无回弹,有较深凹痕,手可捏碎,浸水后可捏成团,如全风化的各种岩类,各种半成岩。Rc——岩石单轴饱和抗压强度、定性质与岩石的对应关系,一般Rc>60MPa——坚硬岩,Rc=60~30 MPa为较坚硬岩;Rc=3 0~15MPa为较软岩;Rc=15~5MPa 软岩;Rc<5Mpa极软岩。也可用Rc=22.82Is(50),Is(50)——岩石点荷载强度指数。这里不多说。 三、岩质围岩的完整度的定性划分 这是根据岩体的结构状况来定性划分 1、完整:节理裂隙,不发育,节理裂隙1-2组,平均间距>1.0m 层面结合好,一般。 2、较完整:节理裂隙,不发育,节理裂隙1-2组,平均间距1.0m

隧道开挖围岩稳定性分析

隧道开挖围岩稳定性分析 发表时间:2020-04-03T01:52:44.878Z 来源:《建筑学研究前沿》2019年24期作者:马智勇[导读] 我国西部地区地质条件复杂,存在岩溶、高地应力等复杂地质体。隧道穿越这些复杂地质构造时,会产生严重的变形破坏。 中铁二十局集团有限公司 摘要:我国西部地区地质条件复杂,存在岩溶、高地应力等复杂地质体。隧道穿越这些复杂地质构造时,会产生严重的变形破坏。如果处理不当,可能造成重大事故,造成人员和财产损失。在开挖过程中,不同的开挖方法对隧道围岩的影响也会不同,导致隧道围岩应力重分布的差异很大。围岩应力应变随开挖断面的变化而变化。目前,对围岩稳定性的判断方法主要有理论分析、工程类比和数值分析,其中数值分析法是最适合分析隧道施工的方法。 关键词:隧道开挖;围岩;稳定性 1地形地貌 隧道高程93.05m~640.1m,相对高差547.05m,地层岩性主要为中侏罗统自流井组(J2Z)和沙溪庙组、下侏罗统和上三叠统香溪组(t3-j1x)。岩性为砂岩、泥岩、砂质泥岩、粉砂岩,含薄层炭质页岩、炭质泥岩。 2软弱岩群稳定性 2.1软岩地层工程地质特征 单轴抗压强度小于30MPa的岩层称为软岩。软岩地层具有强度低、孔隙率低、胶结程度高、受构造面切割和风化影响大等特点。在隧道围岩压力的作用下,工程岩体具有明显的变形。软岩隧道围岩具有强度低、结构软弱、易吸水膨胀等特点,隧道围岩变形较大。 2.2软岩地层围岩变形分析 对于围岩是否会发生较大变形及变形量,支护压力和地应力作用下隧道围岩相对变形及掌子面变形预测公式如下:式中:εt一一隧道径向相对变形,指径向挤压变形量和隧道半径或者跨度之比; εf一一隧道掌子面相对变形,指掌子面挤压变形量和隧道半径或者跨度之比; σcm一一岩体单轴抗压强度; σci一一岩石单轴抗压强度; Pi一一支护压力; Po一一隧道中的原岩应力,取3σ1–σ3,即σmax。 3坚硬岩组围岩稳定性分析 根据切向应力准则,将围岩的切向应力(σo)与岩石的抗压强度(σc)之比作为判断有无岩爆及发生岩爆等级划分原则,结果表明: σo/σc<0.30一一一一一一一一一一一无岩爆 σo/σc介于0.30~50一一一一一一一轻微岩爆 σo/σc介于0.50~0.70一一一一一一中等岩爆 σo/σc>0.70一一一一一一一一一一一强烈岩爆 由于地下洞室的开挖,原地应力状态将受到一定程度的扰动,在洞壁及其一定深度范围形成应力的二次分布和应力集中。应力集中的结果,使得洞壁附近的切向应力有可能超过其临界值,从而产生岩爆。为了计算围岩的切向应力(σ0),首先需要作一定假设,将隧道的横截面抽象为受两向正应力作用的平面应变模型。两向正应力其中之一为上覆岩石自重作用引起的垂向应力(Sv);其二维水平向正应力(σn),它是根据实测的原地应力状态(SH、Sh以及SH的方向)利用线弹性理论公式计算得出,其计算公式如下:

高速公路隧道洞身开挖作业施工方案和施工方法

高速公路隧道洞身开挖作业施工方案和施工方法 1.1隧道开挖作业根据不同围岩类别分别采取不同的开挖方法 Ⅰ、Ⅱ类围岩地段,采用短台阶法施工,需要时保留上台阶核心土;Ⅲ类围岩采用正台阶人工开挖,微震控制光面爆破开挖,Ⅳ类围岩采用微震控制光面爆破法全断面开挖。Ⅱ、Ⅲ、Ⅳ类围岩地段爆破施工,采用人工YT28型风动凿岩机钻孔。 1.2施工方法及施工步骤 隧道Ⅰ类围岩施工方法与施工步骤见下: 隧道Ⅱ、Ⅲ类围岩施工方法与施工步骤见下:

隧道Ⅳ类围岩施工方法与施工步骤见下: 1.3光面爆破施工工艺

隧道围岩开挖是否能够得到控制,钻爆是最关键的因素。钻爆过程最容易出现的就是围岩的超欠挖,超欠挖现象直接造成围岩局部应力集中,对硬岩容易产生岩爆现象,对软岩则可能出现坍塌,容易引发安全事故,不利于隧道围岩的自稳能力。同时超欠挖现象也大大增加了施工难度及喷射混凝土的使用量。为确保隧道施工过程的围岩开挖得到控制,本工程围岩开挖应用光面爆破施工技术,具体工艺见如下步骤: ⑴放样布眼 钻眼前,测量人员要用罐装喷漆准确绘出开挖面的中线和轮廓线,标出炮眼钻设位置,其误差不得超过5cm。施工过程中使用全站仪(本工程使用的是带红外瞄准功能的全站仪)控制开挖方向和开挖轮廓线。 ⑵定位开眼 人工YT28型风动凿岩机钻孔按炮眼布置图正确钻孔。对于掏槽眼和周边眼的钻眼精度要求比其它眼要高,开眼误差要控制在3cm和5cm以内。 ⑶钻眼

钻工要熟悉炮眼布置图,要能熟练地操练凿岩机械,特别是钻周边眼,一定要有丰富施工经验的老钻工司钻,台车下面有专人指挥,以确保周边眼有准确的外插角(眼深3m时,外插角小于3度),应尽可能使两茬交界处台阶小于15cm。同时,应根据眼口位置及掌子面岩石和凹凸程度调整炮眼深度,以保证炮眼底在同一平面上。 ⑷清孔 装药前,必须用由钢筋弯制的炮钩和小于炮眼直径的高压风管输入高压风将炮眼石屑刮出和吹净。 ⑸装药 装药需分片分组按炮眼设计图确定的装药量自上而下进行,雷管要“对号入座”。所有炮眼均以炮泥堵塞,堵塞长度不小于20cm。 ⑹联结起爆网络 起爆网络为复式网络,以保证起爆的可靠性和准确性。联结时要注意:导爆管不能打结和拉细;各炮眼雷管连接次数应相同;引爆雷管应用黑胶布包扎在离一导爆管自由端10cm以上处。网络

有关隧道围岩的分级

关于隧道围岩的分级 最近一段时间学习了关于隧道围岩分级的问题,逐渐的了解了隧道的施工工艺及工序,也在网上查找了一些关于围岩问题的文章,学习了,很深奥,有很多东西还是不能够理解,希望能交到良师益友向您学习,本文章来自于百度文库,我整理了下,其中有些内容是我通过查找规范所得。 《公路隧道设计规范JTGD70-2004》 《公路工程地质勘察规范JTJ064-98》 《岩土工程勘察规范GB50021-2001》 《水工隧洞设计规范》(SL279-2002) 《工程岩体分级标准》(GB50218-94) 《铁路隧道设计规范》(TB10003-2005) 《地铁设计规范》(GB50157-2003) 《锚杆喷射混凝土支护技术规范》(50086-2001) 《公路隧道施工技术规范》(JTJF60-2009) 《工程岩体分级标准》(GB50218-94) 名词解释: 围岩:围岩是隧道开挖后其周围产生的应力重分布范围内的岩体,或指隧道开挖后对其稳定性产生影响的那部分岩体,(这里所指的岩体是土体与岩体的总称)

在不同的岩体中开挖隧道后岩体所表现出的性态是不同的,可归纳为充分稳定、基本稳定、暂时稳定和不稳定四种。 岩爆:岩体中聚积的弹性变形能在地下工程开挖中突然猛烈释放,使岩石爆裂并弹射出来的现象。轻微的岩爆仅剥落岩片,无弹射现象。严重的可测到4.6级的震级,一般持续几天或几个月。发生岩爆的原因是岩体中有较高的地应力,并且超过了岩石本身的强度,同时岩石具有较高的脆性度和弹性。这时一旦地下工程破坏了岩体的平衡,强大的能量把岩石破坏,并将破碎岩石抛出。预防岩爆的方法是应力解除法、注水软化法和使用锚栓-钢丝网-混凝土支护。 在JTJD70-2004《公路隧道设计规范》中关于隧道围岩级别划分为六级,级别越大围岩越差,六级为土,但目前实施中不同,《岩土工程勘察规范GB50021-2001》中规定地下铁道围岩分类应按 GB50307-1999《地下铁道,轻轨交通岩土工程勘查规范》, GB50307-1999《地下铁道,轻轨交通岩土工程勘查规范》中的围岩分类方法引自原《铁路隧道设计规范》(TB10003-1999)围岩分级是根据《工程岩体分级标准》(GB50218-94)结合工程经验得来的,勘察是为设计服务的,所以在地铁工程勘察中,如果还利用地铁勘察规范进行围岩分类,易给设计带来不便。 公路隧道围岩分级将围岩分为6级,给出了主要围岩的工程地质特征、结构特征,和完整性等指标并预测了隧道开挖后可能出现的塌方、滑动、膨胀、挤出、岩爆、突然涌水、及瓦斯突出等失稳的部位和地段,给出了相应的工程措施,

隧道掌子面稳定性控制理论研究(文献综述)

隧道掌子面稳定性控制理论研究 摘要:随着现代交通的快速发展,地下工程建设项目越来越多,深埋、长大及偏压隧道的需求也日益增大。隧道在施工过程中频繁地遇到各种复杂的地质情况,而其隧道在穿越各种地层时也将遇到各种地质灾害。面对这种情况,隧道掌子面稳定性控制的研究显得十分重要。本文通过查阅国内外学者的研究成果,对掌子面周围土体及围岩、支护技术、信息处理技术和预测检测技术进行粗略地总结,对掌子面稳定性研究现状进行探讨,从中总结出掌子面稳定性研究的进步与不足之处。 关键词:隧道掌子面稳定性支护技术预测与检测信息处理 1前言 中国是一个多山的国家,其60%的全国面积属于山区和高原地区。在修建山区铁路时,隧道工程是必不可少的。随着科技水平的进步,隧道工程的技术水平也跟着提升了。尤其是在隧道现代化设计理念的提出,以及现代化机械设备和施工新技术的不断创新,实现了隧道工程的跨越式进步,其集中体现在城市地铁、长大深埋隧道、过江过海隧道等各类用途的地下工程及隧道工程。20世纪将成为人类向地下方向发展的世纪。而隧道工程的技术也将不断发展创新,同时也面临着各种新技术的挑战。 隧道工程的发展正面临着开挖技术、支护技术和施工组织等方面的技术性问题。但是隧道工程实际上还是一个地质工程,在隧道的建设过程中,会遇到各种各样的地质环境,同时在施工过程中也就产生了各种地质难题。比如,隧道在软弱破碎带时,其围岩具有稳定性差、受力复杂等特点,常常会形成软弱围岩大变形等地质灾害。而且围岩受力普遍复杂,围岩的应力分布及变化情况复杂,在隧道施工中都存在很多困难,常常造成塌方等安全事故。因此针对隧道施工的特点及地层围岩变形特性可知,隧道开挖面的稳定性是十分重要的。而一直以来,国内外的隧道工程因为掌子面失稳而发生的事故也屡见不鲜。国内的如2011年4月20日,兰新铁路第二双线甘青段小平羌隧道在进行初期支护施工时,发生拱部局部坍塌,掌子面发生坍塌事故,坍塌部位距隧道洞口约300米,塌陷纵深

公路隧道施工过程监测技术

试题 第1题 属非接触量测断面测定超欠挖的方法是() A.求开挖出渣量的方法 B.使用激光束的方法 C.使用投影机的方法 D.极坐标法 答案:D 您的答案:B 题目分数:3 此题得分:0.0 批注: 第2题 锚杆施工时,对砂浆锚杆应尺量钻孔直径,孔径大于杆体直径()时,可认为孔径符合要求 A.50mm B.30mm C.15mm D.10mm 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注: 第3题 喷射混凝土()是表示其物理力学性能及耐久性的一个综合指标,所以工程实际往往把它做 为检测喷射混凝土质量的重要指标 A.厚度 B.抗压强度 C.抗拉强度 D.粘结强度 答案:A 您的答案:D 题目分数:3 此题得分:0.0

批注: 第4题 喷射混凝土与围岩粘结强度试验试块采用()方法制作 A.喷大板切割法、成型试验法 B.凿方切割法、直接拉拔法 C.喷大板切割法、凿方割切法 D.成型试验法、直接拉拔法 答案:D 您的答案:D 题目分数:3 此题得分:3.0 批注: 第5题 形状扁平的隧道容易在拱顶出现() A.压缩区 B.拉伸区 C.剪切区 D.变形区 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第6题 防水卷材往洞壁上的固定方法有()两种 A.热合法和冷粘法 B.有钉铺设和无钉铺设 C.环向铺设和纵向铺设 D.有钉铺设和环向铺设 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第7题 隧道锚杆杆体长度偏差不得小于设计长度的(?) A.60%

B.85% C.90% D.95% 答案:D 您的答案:D 题目分数:3 此题得分:3.0 批注: 第8题 以下检测方法不属于隧道内混凝土衬砌厚度检测方法的是 A.凿芯法 B.回弹法 C.地质雷达法 D.激光断面仪法 答案:B 您的答案:B 题目分数:4 此题得分:4.0 批注: 第9题 隧道施工监控量测中()的主要目的是了解隧道围岩的径向位移分布和松驰范围,优化锚杆参数,指导施工 A.围岩周边位移量测 B.拱顶下沉量测 C.地表下沉量测 D.围岩内部位移量测 答案:D 您的答案:D 题目分数:4 此题得分:4.0 批注: 第10题 ()对于埋深较浅,固结程度低的地层,水平成层的场合更为重要 A.围岩周边位移量测 B.拱顶下沉量测 C.地面下沉量测 D.围岩内部位移量测 答案:B

隧道围岩级别划分与判定

隧道围岩级别划分与判定 隧道围岩分级就是评定围岩性质、判断隧道围岩稳定性,作为选择隧道位置、支护类型的依据和指导安全施工。 1 国标《锚杆喷射混凝土支护技术规范》围岩分级 1.1围岩分级 围岩级别的划分应根据岩石坚硬性岩体完整性结构面特征地下水和地应力状况等因素综合确定并应符合表1.1规定。 表1.1 围岩分级 注1 围岩按定性分级与定量指标分级有差别时一般应以低者为准。 2 本表声波指标以孔测法测试值为准如果用其他方法测试时可通过对比试验进行换算。 3 层状岩体按单层厚度可划分为 厚层大于0 .5m 中厚层0 .1~0 .5m 薄层小于0 .1m 4 一般条件下确定围岩级别时应以岩石单轴湿饱和抗压强度为准当洞跨小于5m,服务年限小于10 年的工程确定围岩级别时可采用点荷载强度指标代替岩块单轴饱和抗压强度指标可不做岩体声波指标测试 5 测定岩石强度做单轴抗压强度测定后可不做点荷载强度测定。 3公路隧道围岩分级 3.1公路隧道围岩分级 围岩级别可根据调查、勘探、试验等资料、岩石隧道的围岩定性特征、围岩基本质量指标(BQ)或修正的围岩质量指标[BQ]值、土体隧道中的土体类型、

密实状态等定性特征,按表3.1确定。当根据岩体基本质量定性划分与(BQ)值确定的级别不一致时,应重新审查定性特征和定量指标计算参数的可靠性,并对它们重新观察、测试。在工程可行性研究和初勘阶段,可采用定性划分的方法或工程类比方法进行围岩级别划分。 表3.1 公路隧道围岩分级 注:本表不适用于特殊条件的围岩分级,如膨胀性围岩、多年冻土等。 3.2围岩分级的主要因素 公路隧道围岩分级的综合评判方法采用两步分级,并按以下顺序进行:(1)根据岩石的坚硬程度和岩体完整程度两个基本因素的定性特征和定量的岩体基本质量指标(BQ),综合进行初步分级。(2)对围岩进行详细定级时,应在岩体基本质量分级基础上,考虑修正因素的影响修正岩体基本质量指标值。(3)按修正后的岩体基本质量指标[BQ],结合岩体的定性特征综合评判,确定围岩的详细分级。 3.2.1岩石坚硬程度 1 岩石坚硬程度可按表3.2.1-1定性划分。 表3.2.1-1 岩石坚硬程度的定性划分 2岩石坚硬程度定量指标用岩石单轴饱和抗压强度(Rc)表达。Rc一般采用实测值,若无实测值时,可采用实测的岩石点荷载强度指数Is(50)的换算值,即按式(3.2.1)计算: Rc= Is(50)0.75 (3.2.1) 3 Rc与岩石坚硬程度定性划分的关系,可按表3.2.1-2确定。 表3.2.1-2 Rc与岩石坚硬程度定性划分的关系 3.2.2岩体完整程度 1岩石完整程度可按表3.2.2-1定性划分。

海底隧道围岩稳定性分析与控制研究

海底隧道围岩稳定性分析与控制研究 随着我国交通事业的大发展,将有大批量的越江跨海通道投入建设,水下隧道已受到越来越多的关注。与山岭隧道相比,跨海隧道通常具有地质勘探困难、单口连续掘进距离较长、衬砌结构受长期的动静水压力作用、防排水难度大、围岩成拱作用较低、不良地质体段易发生涌水事故等特点,因此在海底隧道衬砌结构的设计和分析计算方面,将具有与一般隧道不尽相同的关键技术问题,亟待在设计中着重反映。论文研究以我国目前蓬勃发展的海底隧道为背景,以富水条件下隧道围岩稳定性及其控制技术为研究重点,综合采用理论解析、数值模拟、室内模型试验和现场监测等多种研究手段,主要开展了以下方面的研究工作:(1)基于弹性力学中厚壁圆筒承受均布压力的拉梅解答和Mohr-Coulomb屈服条件,推导了考虑渗流场和围岩超前位移释放的含衬砌海底圆形隧洞的弹塑性解析公式。根据本文推导过程,可推演满足其它屈服条件和流动法则的隧道围岩应力与位移的弹塑性解答。 同时结合一座海底隧道的工程实例,本文采用解析公式对围岩塑性区范围、应力场、位移场和渗流场的分布进行了理论分析,得到了各场的分布规律和演化特点,并讨论了海底隧道顶板厚度、海水深度、内水水头、衬砌围岩物理力学参数及其渗透性关系等因素的影响规律。(2)基于前人研究成果,针对暗挖海底隧道开挖面围岩稳定性问题,总结了极限分析上限法、楔形体模型、二维对数螺旋线模型,以及条分法模型等4种理论分析模型,并考虑了开挖面滑移体上部地层压力等因素,对理论解析公式进行了修正。结合海底隧道工程实例,采用数值模拟方法,与理论解析方法进行了对比分析,并讨论了围岩粘聚力、摩擦角、海水水位、超前注浆等因素的影响。(3)依托厦门翔安海底隧道,对穿越陆域全、强风化花岗岩段的地层变形进行了现场监测,指出了产生地层大变形的力学机制,总结了拱顶沉降、海床沉降、地层水平变形、海床开裂随隧道施工过程的发生、发展规律,并建立了它们之间的关系,提出通过易于监测的隧道拱顶下沉量及收敛值判断海床地层的完整性,实现对海床状态的信息化控制。 (4)采用FLAC3D有限差分软件模拟分析翔安隧道穿越海域F1风化深槽段的围岩稳定性,指出地下水的渗流作用对海底隧道的围岩变形影响较大,由渗流引起的隧道围岩变形在向上传递过程中折减较小,且超前导洞开挖对围岩渗流场的

影响隧道围岩稳定性因素

B RIDGE&TUNNEL 桥梁隧道 毫无疑问,隧道围岩的稳定性对隧道的正常运营是至关重要的。从许多隧道发生的交通事故中可以知道,隧道围岩的稳定性不仅与岩石的性质、岩体的结构与构造、地下水、岩体的天然应力状态、地质构造等自然因素有关,而且还与隧道的开挖方式及支护的形式和时间等因素有关。但其中起主导作用的还是岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水等自然因素。因此了解这些因素对围岩稳定性的影响和机理,才能够客观实际的采取相应的维护隧道围岩稳定的措施。 岩石性质及岩体的结构 围岩的岩石性质和岩体结构通过围岩的强度来影响围岩的稳定性,是影响围岩稳定性的基本因素。从岩性的角度,可以将围岩分为塑性围岩和脆性围岩,塑性围岩主要包括各类粘土质岩石、粘土岩类、破碎松散岩石以及吸水易膨胀的岩石等,通常具有风化速度快,力学强度低以及遇水软化、崩解、膨胀等不良性质,故对隧道围岩的稳定最为不利;脆1性围岩主要各类坚硬体,由于这类岩石本身的强度远高于结构面岩石的强度,故这类围岩2的强度主要取决于岩体的结构,岩性本身的影响不是很显著。从围岩的完整性(围岩完整性可以用岩石质量指标RQD、节理组数J n、节理面粗糙程度J y、节理变质系数Ja、裂隙水降低系数Jw、应力降低系数SRF 八类因素进行定量分析) 角度,可以将围岩分为五级即:完整、较完整、破碎、较破碎、极破碎。如果隧道围岩的整体性质良好、节理裂隙不发育(如脆性围岩) 即围岩为完整或较完整。那么,隧道开挖后,围岩产生的二次应力一般不会使岩体发生破坏, 即使发生破坏,变形的量值也是较少 的。这种情况下,围岩岩性对围岩的稳 定性的影响是很微弱的,即一般是稳定 的,可以不采取支护,能适应各种断面 形状及尺寸的隧道。如果隧道围岩的整 体性质差、强度低,节理裂隙发育或围 岩破碎(如塑性围岩)即围岩为破碎、较 破碎或极破碎,则围岩的二次应力会产 生较大的塑性变形或破坏区域,同时节 理裂隙间的岩层错动会使滑移变形增 大,势必给围岩的稳定带来重大的影 响,不利于隧道洞室稳定;软硬相间的 岩体,由于其中软岩层强度低,有的因 层间错动成为软弱围岩而对围岩的稳定 性不利。 从岩体的结构角度,可将岩体结 构划分为整体块状结构(整体结构和块 状结构) 、层状结构(薄层状结构和厚层 状结构) 、碎裂结构(构镶嵌结构和层状 碎裂结构) 、散体结构(破碎结构和松散 结构) 。松散结构及破碎结构岩体的稳 定性最差;薄层状结构岩体次之;厚层状 块体最好。对于脆性的厚层状和块状岩 体,其强度主要受软弱结构面的分布特 点和较弱夹层的物质成分所控制,结构 面对围岩的影响,不仅取决于结构面 的本身特征,还与结构面的组合关系 及这种组合与临空面的交切关系密切 相关。一般情况下,当结构面的倾角 ≤30°时,就会出现不利于围岩稳定 的分离体,特别是当分离体的尺寸小 于隧道洞跨径时,就有可能向洞内产 生滑移,造成局部失稳;当倾角> 30° 时,将不会出现不利于围岩稳定性的 分离体。而软弱夹层对围岩稳定性的 影响主要取决于它的性状和分布。一 般认为软弱夹层的矿物成分、粗细颗 粒含量、含水量、易溶盐和有机质等 的含量是决定其性质的主要因素,对 不同类型的软弱夹层,这些因素是不 大相同的。由于软弱夹层的抗强度较 低,故不利于隧道围岩的稳定。 围岩岩体的变形和破坏的形式特 点,不仅与岩体内的初始应力状态和隧 道形状有关,而且还与围岩的岩性及岩 体结构有关,但主要的是和围岩的岩性 及结构有关(见表1) 。 岩体的天然应力状态 岩体的天然应力是岩体的自重应 力、构造应力、变异及残余应力在某一 个具体地区以特定方式作用的结果。已 经有大量的实践资料证明,大多数地区 的岩体的天然应力状态是以水平方向为 主的即水平应力通常大于垂直应力。一 般情况下,隧道轴向与水平主应力垂 直,以改善隧道周边的应力状态。但水 平应力很大时,则隧道方向最好与之平 行以保证边墙的稳定性。然而,岩体的 天然应力对隧道的影响主要取决于垂直 于隧道轴向水平应力的大小与天然应 力的比值(ζ) ,它们是围岩内应力重分 布状态的主要因素。例如,圆形隧道, 当ζ= 1 时,围岩中不会出现拉应力集 中,压应力分布也比较均匀,围岩稳定 性最好;当ζ≤1/ 3 时围岩出现拉应力, 压应力集中也较大,对围岩稳定不利。 最大天然主应力的数量级及隧道轴向的 关系,对隧道围岩的变形特征有明显的 影响,因为最大主应力方向围岩破坏的 概率及严重程度比其它方向大。因此, 估算这种应力的大小并设法消除或利用 非常重要的。 地质构造 褶曲和断裂破坏了岩层的完整性 降低了岩体的力学强度,一般来说,岩 分析影响隧道围岩稳定性因素 文/王冠勇 TRANSPOWORLD 2012No.13(Jul) 234

渗流作用下复合地层盾构隧道施工开挖面稳定性及控制研究

渗流作用下复合地层盾构隧道施工开挖面稳定性及控制研究今年来,随着城市建设的快速发展,城市规模不断扩大,城市密集度不断提高,城市交通逐渐恶化,环境污染越发严重,严重制约了经济和社会的进一步发展。为缓解地面交通压力,改善城市交通环境,促进城市的可持续发展,城市建设逐步转变为大力开发地下空间的全新理念,盾构法作为一种较新的施工方式,在城市地下空间的施工中的应用也逐渐增加。但随着盾构技术的发展以及开挖的要求越来越高,所面临的问题也越来越多,施工过程中开挖面稳定性的预测和控制非常困难,极易发生地表沉陷、开挖面突涌水等灾害事故。据不完全统计,我国的北京、上海、广州、南京、深圳等主要城市在地铁盾构隧道建设中均发生过重大开挖面失稳事故,造成了重大的经济损失和人员伤亡。 针对地铁建设环境条件复杂、地层敏感性高、控制标准严苛的特点,如何有效的预测和控制开挖面稳定性,成为盾构隧道施工的核心问题之一。本文以地铁隧道土压平衡盾构施工为主要研究对象,依托济南地铁盾构隧道工程,通过室内实验、理论分析、数值计算、模型试验和现场试验等手段,深入研究复合地层盾构施工开挖面失稳机理、渗流作用下开挖面失稳破坏灾变演化特性以及失稳防治技术体系,取得了具有一定理论价值和工程意义的研究成果,主要包括:(1)总结提出了盾构施工工法选型流程,从地层渗透系数、颗粒级配、岩土体特性和地下水状态等方面对盾构选型适用性进行了总结和研究。开发了界面友好、人机交互的盾构施工工法软件系统,结合案例工程,对盾构在复杂地质环境特别是穿越富水复合地层的工法选型等施工关键技术进行了深入研究。(2)通过大量开挖面失稳导致的地表塌陷和隧道突涌水灾害的系统收集与整理,分析了灾害的孕险环境和诱发因子,揭示了典型灾害源的赋存特征,提出了开挖面失稳孕灾性评价的指标体系,建立了属性识别模型。 依托开发的风险控制软件系统,对高风险段进行动态评价,提出土压平衡盾构施工开挖面失稳的防控措施和应急预案。(3)基于极限分析上限定理,构建了三维旋转体优化破坏模型,利用开挖面临界破坏时外力所做功的功率与土体内部耗散功相等的原理,推导了开挖面极限支护力求解公式,通过MATLAB编程计算程序,求解土压平衡盾构在均质地层和复合地层开挖面失稳临界支护压力。对于复合地层,分别分析了覆土层和穿越层两种工况下隧道埋深、岩土体特性、地下水位等

公路隧道施工过程检测技术

第1题 属非接触量测断面测定超欠挖的方法是() A. 求开挖岀渣量的方法 B. 使用激光束的方法 C. 使用投影机的方法 D. 极坐标法 答案:D 您的答案:D 题目分数:3 此题得分:3.0 批注: 第2题 锚杆施工时,对砂浆锚杆应尺量钻孔直径,孔径大于杆体直径()时, 可认为孔径符合要求 A. 50mm B. 30mm C. 15mm D. 10mm 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注: 第3题 喷射混凝土()是表示其物理力学性能及耐久性的一个综合指标, 所以工程实际往往把它做为检测喷射混凝土质量的重要指标 A. 厚度 B. 抗压强度 C. 抗拉强度 D. 粘结强度 答案:A 您的答案:A 题目分数:3 此题得分:3.0 批注: 第4题 喷射混凝土与围岩粘结强度试验试块采用()方法制作

A. 喷大板切割法、成型试验法 B. 凿方切割法、直接拉拔法 C. 喷大板切割法、凿方割切法 D. 成型试验法、直接拉拔法 答案:D 您的答案:D 题目分数:3 此题得分:3.0 批注: 第5题 形状扁平的隧道容易在拱顶岀现() A. 压缩区 B. 拉伸区 C. 剪切区 D. 变形区 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第6题 防水卷材往洞壁上的固定方法有()两种 A. 热合法和冷粘法 B. 有钉铺设和无钉铺设 C. 环向铺设和纵向铺设 D. 有钉铺设和环向铺设 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第7题 隧道锚杆杆体长度偏差不得小于设计长度的(?) A. 60% B. 85% C. 90%

隧道围岩分级及其应用

第三节 s 隧道围岩分级及其应用 隧道围岩分级是正确进行隧道设计与施工的基础。一个合理的、符合地下工程实际情况的围岩分级,对于改善地下结构设计、发展新的隧道施工工艺、降低工程造价、多快好省地修建隧道有着十分重要的意义。 近年来,由于各种类型地下工程的大量修建,隧道围岩分级的研究也得到了很大的发展,出现了各种各样不同的围岩分类;但都是为一定的工程目的服务的。如提供选择施工方法的根据和开挖的难易程度,确定结构上的荷载或给出隧道临时支撑与衬砌结构的类型和参考尺寸等。 人们对围岩及其自然规律的认识是不断深化的,因此,对围岩分类也有一个发展过程。在早期,从国外情况来看,如日本,最初主要借用适合于土石方工程的“国铁土石分类”来进行隧道的设计与施工,主要是根据开挖岩(土)体的难易程度(强度)来划分的。前苏联在很长的时期内采用以岩石的坚固性来分类,采用一个综合注的指标f值,称为岩石坚固性系数。理论上坚固性是岩体抵抗任何外力作用及其造成破坏的能力,不同于强度和硬度,而实际上只反映岩石抗压强度的性能,很少考虏岩体的构造特征。在英、美等国,主要沿用泰沙基(K,Terzaghi)提出的分级法,其中考虑到一些岩体的构造和岩性等影响,比较好地反映隧道围岩的稳定状况。目前美国也有用岩石质量指标(RQD)或隧道围岩在不支护条件下,暂时稳定的时间作为分级依据。 我国五十年代初期,铁路隧道围岩分级,基本上是沿用解放前的以岩石极限抗压强度与岩石天然容重为基础,这种分级仅运用上石方工程的土石分级法,没有适合隧道围岩的专门分类,只是把隧道围岩分为坚石、次坚石、松石及土质四类。以后,借用苏联的岩石坚固系数进行分类,即通常所谓的普氏系数(f值)。在长期大量的地下工程实践中发现:这种单纯以岩石坚固性(主要是强度)指标为基础的分类方法,不能全面反映隧道围岩的实际状态。逐渐认识到:隧道的破坏,主要取决于围岩的稳定性,而影响围岩稳定性的因素是多方面的,其中隧道围岩结构特征和完整状态,是影响围岩稳定性的主要因素。隧道围岩体的强度,对隧道的稳定性有着重要的影响,地下水、风化程度也是隧道围岩丧失稳定性的重要原因。 从围岩的稳定性出发,1975年编制了我国“铁路隧道围岩分类”,这个分类由稳定到不稳定共分六类,代替了多年沿用的从岩石坚固性系数来分级的方法。 我国公路隧道围岩分级起步较晚,随着我国经济的发展,公路交通得到较大的发展,大量的公路隧道修建,需要有一个适合我国工期的公路隧道围岩分级,于1990年,根据我国铁路隧道的围岩分级为基础,编制了我国“公路隧道围岩分级”。 从国外围岩分级的发展趋势看,围岩分级主要以隧道稳定性分级为主,且从对岩石的分级逐渐演变到对岩体的分级;从按单参数分级转变到按多参数分级,并逐渐向多参数组成的综合指标法演变;从经验性很强的分级逐步过渡到半经验、半定量分级和定量化分级,并将围岩分级与岩体力学的发展相联系,随着岩体力学的发展,这一趋势更为明显。在多参数综合分级法中,基本采用和差法或积商法。围岩分级方法是随着地质勘查方法的进步而快速发展的。围岩分级方法与隧道结构设计标准化、施工方法规范化的联系越来越密切。土质围岩分级方法逐步与岩质围岩分级方法分离,将会形成专门土质围岩分级方法。 从国内围岩分级的发展趋势看,从1975年以后,我国隧道围岩分级方法的发展基本与国际同步,主要以隧道稳定性进行分级,并在已颁布的国标和部标中体现了这一成果。此外,我国隧道围岩分级中更加重视施工阶段围岩级别的修正,即根据施工阶段获得的围岩分级信息对设计阶段的预分级进行修正。我国隧道围岩分级方法主要采用两个步骤:第一步以基本指标进行基本分级;第二步用修正指标对基本级别进行修正,最终获得修正后的围岩级别。

地基岩体稳定性分析

第一节坝基岩体抗滑稳定性分析 重力坝、支墩坝等挡水建筑物。 一、坝基岩体承受的荷载分析 (沿坝轴线方向取1m宽坝基(单宽坝基)为单位进行计算,如图10.1所示) 图10.1 坝体静水压力分布示意图 1.坝体重力W(kN) 式中:—坝体材料的容重(KN/m3); —坝体横截面面积(m2)。 2.静水压力 ①水平静水压力: ②竖直(向)静水压力:(阴影部分面积) 如: 3.泥沙压力(F) 由朗肯土压力理论: 式中:—泥沙的容重; —坝前淤积泥沙厚度; φ—泥沙的内摩擦角。 4.浪压力(P) 确定比较困难。 当坝的透水面为铅直面或坡度大于1∶1时。 ①时,水深处浪压力的剩余强度为: 式中:—波浪高度; —波浪长度; —波浪破碎的临界水深; —水深。 ②,在深度以下可不考虑浪压力的影响, 式中:。 5.扬压力(U)(作用于坝底上的渗流压力) 图10.2 坝底扬压力分布图 如图10.2所示。 ①在没有灌浆和排水设施的情况下 (即图中梯形面积) 式中:—单宽坝底所受扬压力; —坝底宽度; —不大于1.0的系数。 当时,(即“莱维(Levy)法则”) ②当坝基有灌浆帷幕和排水设施时,如仅有排水设施时,λ=0.8~0.9。 ③如果能确定坝基岩体内地下水渗流的水力梯度(I),则可按下式计算渗透压力:6.岩体重力(G) 7.地震力()

—地震影响系数;—坝体与滑面上部岩体重力。 图10.3 接触面滑动示意图 二、坝基岩体的破坏模式 根据坝基失稳时滑动面的位置,分为三种模型: 图10.4 岩体内滑动类型示意图 三、坝基岩体抗滑稳定性计算 1.接触面抗滑稳定性计算 如图10.5所示。 (1)抗滑稳定性系数:或 图10.5 接触面滑动受力示意图 —坝体与基岩接触面的摩擦系数; C—接触面的内聚力。 (2)为增大η,将坝体和岩体接触面设计成向上游倾斜的平面,如图10.6所示,作用于接触面的正压力:拉滑力: 滑动力: 图10.6 坝底面倾斜的情况及受力分析 (3)如果坝底面水平且嵌入岩基较深,如图10.7所示,那么在计算η时,应考虑下游岩体的抗力(被动压力)。 对楔体abd,在bd面上: 在bd法线方向: 图10.7 岩体抗力计算示意图 ∴岩体的抗力: 修正为: (因为工程设计中,只是部分利用或不利用岩体抗力。) 式中:ξ为抗力折减系数,0~1.0) 2.坝基岩体内滑动的稳定性计算 (1)沿水平软弱结构面滑动的情况 若滑动面埋深不大,一般不计入岩体抗力;如滑动面埋深较大则应考虑抗力的影响。如图10.8所示。 图10.8 倾向上游结构面滑动计算图 式中:,分别为坝基可能滑动面上总的法向压力和切向推力; 为可能滑动面上作用的扬压力; 为可能滑动面上游铅直边界上作用的水压力; 图10.9 倾向上游结构面滑动计算图 ,分别为可能滑动面的摩擦系数和粘聚力; A为可能滑动面的面积;

相关文档
相关文档 最新文档