文档库 最新最全的文档下载
当前位置:文档库 › 300MW机组EH油系统常见故障分析及维护实用版

300MW机组EH油系统常见故障分析及维护实用版

300MW机组EH油系统常见故障分析及维护实用版
300MW机组EH油系统常见故障分析及维护实用版

YF-ED-J5398

可按资料类型定义编号300MW机组EH油系统常见故障分析及维护实用版

In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment.

(示范文稿)

二零XX年XX月XX日

300MW机组EH油系统常见故障

分析及维护实用版

提示:该操作规程文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。

1 EH油系统的特点

厦门嵩屿电厂300 MW汽轮机是上海汽轮机

厂引进西屋公司技术制造的N300-16.7/538/538

型机组。其中调节系统的工作介质是高压抗燃

油(化学名为三芳基磷酸脂,简称EH油)。

与采用透平油为工作介质的低压调节系统

相比,EH油系统有以下特点。

1.1 工作压力高

EH油系统的工作压力一般在13~14 MPa,

而低压调节系统的工作压力一般在2 MPa。由于

工作油压的提高,大大减小了液压部件的尺寸,改善了汽轮机调节系统的动态特性。

1.2 直接采用流量控制形式

EH油系统采用电液转换器(又称为伺服阀),直接将电信号转化为油动机油缸的进出油控制,从而控制油动机的行程。这使系统的迟缓率大大降低,对油压波动也不再敏感(一般在11~16 MPa范围内都能正常工作),提高了调节精度。

1.3 对油质的要求特别高

双喷咀挡板式电液转换器最小通流线性尺寸为0.025~0.05 mm,一般节流孔径为0.46~0.8 mm,故对高压抗燃油的杂质颗粒含量提出了很高的要求。

EH油具有较好的抗燃性能,但如果EH油中

混入过多的水、酒精或透平油等,将大大降低EH油的抗燃性,而且可能导致EH油的变质或老化,直接影响系统的正常运行。

1.4 具有在线维修功能

由于EH油系统设有双通道,某些部件有故障时可以从系统中隔离出来进行在线维修。

2 EH油系统常见故障

我厂的1,2号机组自投入运行以来,EH油系统发生了不少异常和故障,主要有以下几种:

(1)系统压力下降,个别调门无法正常开启;

(2)油动机卡涩,调门动作迟缓,有时泄油后不回座;

(3)在开关调门过程中发生某个调门不规

则频繁大幅度摆动,同时伴随着EH油系统压力的波动;

(4)EH油管道开裂、接头松脱、密封件损坏。

其中故障(1)~(3)大多发生在电液转换器、快速卸荷阀组件上,故障(4)主要和选材和安装工艺有关。

3 EH油系统故障原因分析

3.1 EH油系统压力下降

EH油系统压力下降的主要原因有:

(1)油中杂质将油泵出口滤网的滤芯堵塞;

(2)油箱控制块上溢流阀整定值偏低;

(3)油泵故障导致出力不足,备用油泵出口逆止阀不严;

(4)系统中存在非正常的泄漏,主要有:

①TV,GV,RSV快速卸荷阀未关严;

②电液转换器严重内漏;

③油动机活塞由于磨损、腐蚀,造成密封不严,漏流增大;

④IV快速卸荷阀底座压不严,造成泄漏增加;

⑤蓄能器回油阀、OPC试验放油阀等未关严;

⑥OPC、AST油进油管路堵塞。

3.2 油动机不受控制

油动机不受控制的主要原因有:

3.2.1 油质下降

3.2.1.1 油中大颗粒杂质进入

检修环境不清洁,密封件老化脱落,EH油

对油箱、管道内壁上有机物的溶解和剥离,金属间磨擦所产生的金属碎屑进入EH油中。

3.2.1.2 油的高温氧化和裂解

EH油局部过热就可能发生氧化或热裂解,导致酸值增加或产生沉淀,增加颗粒污染,温度升高还使油的电阻率降低,对电液转换器阀口的电化学腐蚀加剧,密封件加速老化。

3.2.1.3 油的水解和酸性腐蚀

EH油是一种磷酸脂,和其它脂类一样都能水解,磷酸脂水解后生成磷酸根和醇类。所产生的酸性产物又进一步催化水解,促进敏感部件的腐蚀。而且三芳基磷酸脂对周围环境中的潮气吸附能力很强,在南方的梅雨季节,可能使EH油中含水量增大,使水中的酸性指标增加,导电率增大。这会引起电液转换器的腐

蚀。从损坏的电液转换器来看,大部分的电液转换器受到不同程度的腐蚀,在滑阀凸肩、喷咀及节流孔处腐蚀尤为严重。

3.2.2 电液转换器滑阀两侧压力偏差大

(1)油中杂质堵塞电液转换器的喷咀;

(2)磨擦、酸性腐蚀造成滑阀的凸肩、滑块与滑座之间磨损,使滑阀相对与滑座之间的间隙加大,使漏流量增加;

(3)酸性油液对喷咀室、通道及节流孔等的腐蚀,改变了滑阀两侧的压力。

3.2.3 LVDT线性电压位移转换器故障,电液转换器机械零位不准等

(1)LVDT反馈断线或反馈信号受到干扰将会影响DEH指令信号与LVDT产生的反馈信号的差值,导致电液转换器输入的指令信号的改

变;

(2)电液转换器机械零位不准也可能影响DEH系统对电液转换器的控制。

3.3 EH油系统漏油

EH油外漏,主要原因有:

(1)工作压力高,而且还受到机组高温及高频振动影响,所以对EH油管道材质以及焊接工艺要求高,一些微裂纹可能扩大导致EH油管道开裂;

(2)EH油管路有些分布在高温区域,容易造成O型密封圈受热老化断裂。这一现象在汽轮机调门的O型密封圈上经常发生。

(3)EH油管路和汽机调门连接着,长期受到振动,可能由于接头的预紧力不足,造成接头松脱。这种现象比较少见,但在本厂的1号

机组的1B小汽轮机低压调门电液转换器EH油进油接头出现过多次。

4 EH油系统的日常维护及故障防范措施

4.1 EH油系统日常维护

要保证EH油系统的安全稳定运行就要加强对系统的日常维护。EH油的日常维护工作包括系统的清洁、检查、更换、EH油的更新等。根据各厂的实际情况,应将这些工作列出日程表,严格执行。

4.1.1 EH油系统的清洁

EH油系统应该定期进行清洁工作,扫除外表的灰尘油污。特别在执行检修工作时,要注意保持工作环境的清洁,对测量EH油的压力表/开关校验后,一般情况下需经过静置3 h以上并用无水酒精清洗,防止矿物油混入EH油中,

禁止对其使用四氯化碳等含氯清洗剂。对检修中新安装的EH油管道要进行吹扫,防止存在于管道中的杂质进入EH油系统。要定期进行油质化验,加强化学监督,不合格的油绝对不能进入EH油箱,不同厂家的EH油也不要混用,并及时进行EH油滤油工作,保证EH油的油质。

4.1.2 EH油系统的检查和试验

为了保证系统的连续运行和避免机组故障停机,必须遵循定期检查及试验规程。检查内容包括运动部件的磨损、超温、不对中、振动、液位等。检查与试验的具体步骤可参考有关说明书。根据我厂实际还专门制定了以下检查项目:

(1)定期检查EH油泵电流。我厂EH油泵为恒压变流量泵,所以油泵电流是反映出EH油

系统流量的重要指标。EH油系统流量的变化反映出EH油系统的内部泄漏量的大小,可以反映出电液转换器工作是否正常,是否存在非正常的泄漏;

(2)定期检查LVDT,防止LVDT问题造成控制系统异常;

(3)定期对电液转换器进行检测,尽快发现存在的故障和隐患,及时处理;

(4)定期检查EH油管路接头、焊口及密封件,防止密封件损坏和接头松脱等故障发生;

(5)定期对硅藻土及纤维素精滤器运行状况进行监视。当水份和酸性指标超标时马上更换硅藻土,降低EH油中杂质的颗粒及酸性指标。

4.2 EH油系统的故障防范措施

为了确保EH油系统的正常运行,除了加强日常维护,还要针对系统的故障制定好防范措施。

4.2.1 改善油动机组件的工作环境

工作环境温度过高不仅会造成EH油的高温氧化和裂解,还可能造成EH油密封件O型圈老化断裂。因此应尽量降低EH油工作环境温度。

我厂采用具有较好抗燃及隔热效果的硅酸铝作为保温介质,对油管及油动机进行隔热。将EH油管及油动机门座等由原来保温材料内包改为外露于空气中。合理安排EH油管路,防止EH系统中由于对流或热辐射而存在局部过热点。如采取上述处理措施后,在2号机6台高压调速汽门油动机,连接件和油管上设置的54

个测温点在200 MW负荷时测得的温度平均值由原来的220℃降为97℃。

一般情况下,EH油系统应在机组停运3天以后才能停运,防止刚停运时汽机的高温造成部分残存在油动机组件里的EH油的高温氧化和裂解。

4.2.2 解决EH油系统含水量高的问题

EH油中含水量高将导致EH油的加速退化,还将影响到油的酸性等其余指标。由于我厂位于南方沿海,空气湿度大,在雨季湿度常达85%以上。解决EH油中含水问题就特别重要。

我厂在EH油箱呼吸器上加装干燥器,有效的防止了外部水分通过呼吸器侵入EH油箱。经常采用滤水机过滤,同时对再生装置进行改进,增加一套独立的再生装置。采取处理措施

前一年中7次采样的油中含水量平均值为

0.265%,采取措施后的每年7次采样的平均值降为0.088%。

4.2.3 解决EH油中O型圈经常损坏问题

O型圈是EH油系统中重要的密封件,它的损坏容易造成EH油泄漏,而且它损坏后的杂质还会对EH油产生污染。一般用于矿物油的橡胶、涂料等都不适用于EH油。如选用不合适的材料将会发生溶胀、腐蚀现象。

应用在EH油中的O型圈必须采用氟化橡胶,不得采用其他橡胶材料代替,并且要求在安装前应对O型圈进行认真检查,防止有缺陷的O型圈被安装至系统中。

5 结论

EH油系统在汽轮机控制中具有很重要的作

300MW机组EH油系统常见故障分析及维护详细版

文件编号:GD/FS-1483 The Daily Operation Mode, It Includes All The Implementation Items, And Acts To Regulate Individual Actions, Regulate Or Limit All Their Behaviors, And Finally Simplify Management Process. 编辑:_________________ 单位:_________________ 日期:_________________ (操作规程范本系列) 300MW 机组EH 油系统常见故障分析及维护详细版

300MW机组EH油系统常见故障 分析及维护详细版 提示语:本操作规程文件适合使用于日常的规则或运作模式中,包含所有的执行事项,并作用于规范个体行动,规范或限制其所有行为,最终实现简化管理过程,提高管理效率。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 1 EH油系统的特点 厦门嵩屿电厂300 MW汽轮机是上海汽轮机厂引进西屋公司技术制造的N300-16.7/538/538型机组。其中调节系统的工作介质是高压抗燃油(化学名为三芳基磷酸脂,简称EH油)。 与采用透平油为工作介质的低压调节系统相比,EH油系统有以下特点。 1.1 工作压力高 EH油系统的工作压力一般在13~14 MPa,而低压调节系统的工作压力一般在2 MPa。由于工作

油压的提高,大大减小了液压部件的尺寸,改善了汽轮机调节系统的动态特性。 1.2 直接采用流量控制形式 EH油系统采用电液转换器(又称为伺服阀),直接将电信号转化为油动机油缸的进出油控制,从而控制油动机的行程。这使系统的迟缓率大大降低,对油压波动也不再敏感(一般在11~16 MPa范围内都能正常工作),提高了调节精度。 1.3 对油质的要求特别高 双喷咀挡板式电液转换器最小通流线性尺寸为0.025~0.05 mm,一般节流孔径为0.46~0.8 mm,故对高压抗燃油的杂质颗粒含量提出了很高的要求。 EH油具有较好的抗燃性能,但如果EH油中混入过多的水、酒精或透平油等,将大大降低EH油的

EH油系统功能、参数、常见故障、日常维护

EH油系统功能、参数、常见故障、日常维护 及汽轮机的保护—危急遮断控制系统 一、EH油系统按其功能分为三大部分:EH供油系统,执行机构,危急遮断控制 系统。 1、EH供油系统 EH供油系统的功能是提供高压抗燃油(化学名为三芳基磷酸脂,简称EH 油),并由它来驱动伺服执行机构,这种抗燃油具有良好的抗燃性和流体热稳定性。但是如果EH油中混入过多的水、酒精或其他油液等,将大大降低EH油的抗燃性,而且会加快EH油的变质或老化,直接影响系统的正常运行。对伺服阀的阀口处形成腐蚀,造成伺服阀内漏、卡塞;伺服阀一旦卡死,会导致油动机不受控制,蒸汽阀门不能开启。伺服阀、电磁阀、节流孔、通道等的故障大多和油质有关。因此,EH供油系统对油质要求特别高。 EH供油系统主要由不锈钢油箱、磁棒、油系统管道、控制块、逆止阀、安全溢流阀、蓄能器、EH油泵、一套自循环滤油系统(EH油再生装置)和自循环冷却系统(冷油器)组成。 EH油从油箱经油泵入口滤网、入口门、EH油泵(恒压变量柱塞泵)、EH油控制块(包括出口滤网、逆止阀、出口门、溢流阀)后,经高压供油母管送至各执行机构和危急遮断系统,系统执行机构的回油经有压回油母管、回油滤网、冷却器回到油箱;危急遮断系统的回油经无压回油母管回到油箱。 供油系统设备简要介绍 1)油箱:容积为757升,在油箱上装有液位开关、磁性过滤器、空气滤清器、控制块,另外在油箱底部外侧装有电加热器,间接对EH油进行加热。 2)EH油泵:油泵出口压力整定在14.5±0.5Mpa,油泵启动后,即向系统供油,当系统需要增加或减少用油量时,油泵会自动改变输出流量,维持系统压力,当系统瞬间用油量很大时高压蓄能器将参与供油。正常运行时一台油泵足以满足系统所需油量,偶尔在系统调节时间较长(如甩负荷),或部分高压蓄能器损坏使系统油压降低的情况下,备用油泵可投入运行。 3)EH油控制块:安装于油箱顶部。包括:油泵出口滤芯、油泵出口逆止阀、油泵出口门、溢流阀 4)溢流阀:是防止EH油系统油压过高而设置的,当油泵上的控制阀失灵,系统

300MW机组EH油系统常见故障分析及维护

300MW机组EH油系统常见故障分析及维护 作者:赵刚 〔摘要〕分析了嵩屿电厂300MW机组在EH油系统发生的故障,提出了日常爱护和防范措施。 〔关键词〕EH油系统;故障;爱护;防范 1 EH油系统的特点 厦门嵩屿电厂300 MW汽轮机是上海汽轮机厂引进西屋公司技术制造的N300-16.7/538/538型机组。其中调剂系统的工作介质是高压抗燃油(化学名为三芳基磷酸脂,简称EH油)。 与采纳透平油为工作介质的低压调剂系统相比,EH油系统有以下特点。 1.1 工作压力高 EH油系统的工作压力一样在13~14 MPa,而低压调剂系统的工作压力一样在2 MPa。由于工作油压的提高,大大减小了液压部件的尺寸,改善了汽轮机调剂系统的动态特性。1.2 直截了当采纳流量操纵形式 EH油系统采纳电液转换器(又称为伺服阀),直截了当将电信号转化为油动机油缸的进出油操纵,从而操纵油动机的行程。这使系统的迟缓率大大降低,对油压波动也不再敏锐(一样在11~16 MPa范畴内都能正常工作),提高了调剂精度。 1.3 对油质的要求专门高 双喷咀挡板式电液转换器最小通流线性尺寸为0.025~0.05 mm,一样节流孔径为0.46~0.8 mm,故对高压抗燃油的杂质颗粒含量提出了专门高的要求。 EH油具有较好的抗燃性能,但假如EH油中混入过多的水、酒精或透平油等,将大大降低EH油的抗燃性,而且可能导致EH油的变质或老化,直截了当阻碍系统的正常运行。 1.4 具有在线修理功能 由于EH油系统设有双通道,某些部件有故障时能够从系统中隔离出来进行在线修理。 2 EH油系统常见故障 我厂的1,2号机组自投入运行以来,EH油系统发生了许多专门和故障,要紧有以下几种: (1) 系统压力下降,个不调门无法正常开启; (2) 油动机卡涩,调门动作迟缓,有时泄油后不回座; (3) 在开关调门过程中发生某个调门不规则频繁大幅度摆动,同时相伴着EH油系统压力的波动; (4) EH油管道开裂、接头松脱、密封件损坏。 其中故障(1)~(3)大多发生在电液转换器、快速卸荷阀组件上,故障(4)要紧和选材和安装工艺有关。 3 EH油系统故障缘故分析 3.1 EH油系统压力下降 EH油系统压力下降的要紧缘故有: (1) 油中杂质将油泵出口滤网的滤芯堵塞; (2) 油箱操纵块上溢流阀整定值偏低; (3) 油泵故障导致出力不足,备用油泵出口逆止阀不严; (4) 系统中存在非正常的泄漏,要紧有: ①TV,GV,RSV快速卸荷阀未关严;

汽轮机EH油系统故障的原因分析和防范措施

汽轮机EH油系统故障的原因分析和防范措施 发表时间:2019-12-27T15:17:37.487Z 来源:《中国电业》2019年第18期作者:赵建兵[导读] 汽轮机的EH油系统是机组的重要调节系统,它与机组的正常调节、运行联系紧密 摘要:汽轮机的EH油系统是机组的重要调节系统,它与机组的正常调节、运行联系紧密。一旦EH油系统出现故障将会导致机组运行受到影响,甚至机组会出现故障,从而使工作无法进行正常工作。为保证汽轮机机组的正常运行,本文就对汽轮机EH油系统进行故障分析,然后提出相关措施应对这些故障。 关键词:汽轮机;EH油系统;故障分析 EH油系统在运行过程中可能会出现一些故障,这将会给汽轮机的运行带来影响,可能导致机组无法正常运行。很多因素都会使EH油系统产生故障,对EH油系统的这些可能出现故障的因素进行分析可有效应对EH油系统出现的问题。这对提升EH油系统的可靠性、保证机组的正常运行有着积极的意义。 1、EH油系统特点 EH油系统的供油系统采用高压变量柱塞泵-溢流阀系统模式,这样供油能够持续稳定的进行,不会影响到供油系统的正常运行[1]。高压变量柱塞泵、溢流阀以及蓄能器等能够进行压力能量上的供应,从而实现供油。供油系统的压力并非一成不变,可通过针型阀进行压力上的调节。供油管道上装设有五个高压蓄能器,这样可在汽轮机阀门大幅调整的情况下进行能量的吸收,从而使供油系统可保持稳定的压力。压力的恒定对供油管道有着一定的保护效果,这不会使供油管道出现振动的情况[2]。在EH油压回油管的两侧安装抵押蓄能器,其效果也是进行压力的保持,但其主要通过吸油保持压力值,这样也减少了油管的振动。 2、EH油特性 EH油在刚合成的情况下呈淡黄色,而且其外观较为均匀透明,油内部无沉淀物质,密度要大于1。由于一些物质的密度大于水的密度,所以管道内部出现的杂质、污染物等容易漂浮于油面,这样在系统中运行极有可能会造成堵塞,或者造成相关部件的磨损。EH油还具备一些特性,例如抗磨、耐压、具备良好的润滑效果等等。但其价格较高,对密封的金属材料也有一定的要求,不合适的金属材料可能导致腐蚀、溶胀的情况发生等。而且高温的情况下会使EH油老化较快,这样会增大电导率,从而使EH油容易发生裂解、氧化、沉淀等。 3、EH油系统故障 在EH油系统中有些常见故障,这些故障绝大多数情况下影响了系统的正常运行。首先是油质污染,由于油系统中掺杂了大量的杂质所以EH油系统受到严重污染。EH油系统供油管道的接头出现松动、密封圈造成损坏或者供油管道出现裂缝等都可能会使EH油喷射,这样必须停止机组的运行进行故障的处理,严重的情况下可能会造成管道的炸裂。电液伺服阀故障也是较为多发的故障,一般在高压调门运行中突然关闭。调门摆动也可能是LVDT故障,此外,还有油压偏低的故障,当DCS上发声光报警信号就表明油压异常,需要进行处理。 4、故障原因分析 4.1 油系统污染 当EH油油泵的内部发生磨损或者油管生锈就极有可能造成金属碎屑掉入油系统。而且通过进行油泵解体情况分析以及油样分析得到的结果已经确定为上述原因造成油泵内部的磨损,这种情况下需更换新的EH油泵进行处理,而且要进行整个油系统的冲洗,祛除之前物质对EH油质的影响。 4.2 油质劣化 EH油在受到高温的情况下可能会发生化学反应,例如氧化或者裂解,这样就可能会使油的酸性提升,也可能出现沉淀的情况。另外,温度的升高还会降低EH油的电阻率,这样可能会加剧电化学腐蚀,进而使密封元件老化。不仅如此,EH油还容易水解,其遇水可能会生成酸性磷酸脂以及酚类等,这些产物还会催化水解的进行,这种情况下就极有可能促进敏感部件的腐蚀。磷酸酯具备非常强的抗燃油极性和潮气吸附能力,这样会增大EH油中的水分与氯根的含量,进而增大导电率,造成伺服阀的腐蚀。 4.3 油系统漏油 当EH油管出现裂缝,或者接口位置出现空隙时非常容易导致出现漏油的情况。当油管处于长期的非正常振动或者油管在受到氧化的情况下容易出现裂缝。出现裂缝的情况非常恶劣,这很有可能会导致油管炸裂。所以出现油管裂缝的情况不容小觑,要及时进行处理。有些EH油管工作在高温的情况下,这样密封圈就会受到高温的影响,这样便容易老化断裂,进而导致漏油故障的产生。另外,EH油管和汽轮机相连,由于受到长期振动或者温度的影响,所以可能会使接头的预紧力不足,造成接头松动,从而使EH油外漏。 4.4 伺服阀故障 造成伺服阀故障的原因有很多,像油质的污染、主汽门的摆动等都会使伺服阀出现故障,这将严重影响到机组的安全运行。为有效应对该故障首先分析伺服阀主阀芯的故障,当伺服阀主芯受到颗粒污染的影响时很有可能会出现淤积、卡涩或者冲蚀的情况。其中淤积失效为主阀处于未工作状态,再加上内部存在压力,这样就会使阀芯和阀套中出现淤积。MOOG阀的尺寸一般在0.025-0.05mm范围内,其容易受到小颗粒的影响,而且淤积物越多阀芯工作位置就会加大摩擦,从而使伺服阀不能稳定工作,进而出现伺服阀窜动的情况。卡涩失效则是由于主阀芯淤积力过大,导致无法驱动使其工作。冲蚀失效则是由于较硬的颗粒冲击阀芯、阀套造成。这会造成阀芯或者阀套棱边的损坏,可通过EH油泵电流判断这一故障。若测试电流值大于油泵额定工作电流的二分之一,则说明伺服阀内部出现漏油。另外,伺服阀的工作环境也会对伺服阀产生影响,有些电厂的伺服阀工作温度超过70摄氏度,这样长期进行工作会使力矩马达异常。由于外部高频信号的影响DEH控制信号可能会受到干扰,这会使伺服阀出现抖动,在一定的程度上提升了伺服阀的损坏率。不仅DEH控制信号,LVDT反馈或者反馈信号受到干扰都可能会导致伺服阀输入指令信号的改变。 4.5 油管管材、焊接质量存在问题 EH油管处于高压的工作状态,一般为14-16MPa,若是油管的管材质量不合要求,或者油管的焊接存在问题,这样加上机组的振动与温度的影响也就容易导致油管出现裂缝,或者增大油管裂缝。 5、故障预防处理

EH油系统常见故障分析及维护

EH油系统常见故障分析及维护 1 EH油系统的特点 与采用透平油为工作介质的低压调节系统相比,EH油系统有以下特点。 1.1 工作压力高 EH油系统的工作压力一般在13~14 MPa,而低压调节系统的工作压力一般在2 MPa。由于工作油压的提高,大大减小了液压部件的尺寸,改善了汽轮机调节系统的动态特性。 1.2 直接采用流量控制形式 EH油系统采用电液转换器(又称为伺服阀),直接将电信号转化为油动机油缸的进出油控制,从而控制油动机的行程。这使系统的迟缓率大大降低,对油压波动也不再敏感(一般在11~16 MPa范围内都能正常工作),提高了调节精度。 1.3 对油质的要求特别高 双喷咀挡板式电液转换器最小通流线性尺寸为0.025~0.05 mm,一般节流孔径为0.46~0.8 mm,故对高压抗燃油的杂质颗粒含量提出了很高的要求。 EH油具有较好的抗燃性能,但如果EH油中混入过多的水、酒精或透平油等,将大大降低EH油的抗燃性,而且可能导致EH油的变质或老化,直接影响系统的正常运行。 1.4 具有在线维修功能 由于EH油系统设有双通道,某些部件有故障时可以从系统中隔离出来进行在线维修。 2 EH油系统常见故障 我厂的1,2号机组自投入运行以来,EH油系统发生了不少异常和故障,主要有以下几种: (1) 系统压力下降,个别调门无法正常开启; (2) 油动机卡涩,调门动作迟缓,有时泄油后不回座; (3) 在开关调门过程中发生某个调门不规则频繁大幅度摆动,同时伴随着EH油系统压力的波动; (4) EH油管道开裂、接头松脱、密封件损坏。 其中故障(1)~(3)大多发生在电液转换器、快速卸荷阀组件上,故障(4)主要和选材和安装工艺有关。 3 EH油系统故障原因分析 3.1 EH油系统压力下降 EH油系统压力下降的主要原因有: (1) 油中杂质将油泵出口滤网的滤芯堵塞; (2) 油箱控制块上溢流阀整定值偏低; (3) 油泵故障导致出力不足,备用油泵出口逆止阀不严; (4) 系统中存在非正常的泄漏,主要有: ①TV,GV,RSV快速卸荷阀未关严; ②电液转换器严重内漏; ③油动机活塞由于磨损、腐蚀,造成密封不严,漏流增大; ④IV快速卸荷阀底座压不严,造成泄漏增加; ⑤蓄能器回油阀、OPC试验放油阀等未关严; ⑥OPC、AST油进油管路堵塞。 3.2 油动机不受控制 油动机不受控制的主要原因有: 3.2.1 油质下降

EH油系统的典型故障及处理

EH油系统的典型故障及处理 摘要:对于EH油系统机组运行中存在的问题进行分析,同时根据管理任务,制 定明确的故障处理计划,将EH油系统机组运行管理分为燃油系统检查、管理维护、机组隐患排查等多项内容,以减少系统故障为主要目标。针对运行中的问题 进行深入探讨,提出溢流阀、单向阀等一系列的改进措施,提高整个系统的安全性,避免安全事故出现。 关键词:系统概况;典型故障;冷却方案;故障及隐患处理 前言 EH油系统是发电厂主要设备,为了能够向用户提供稳定的电能,作业人员在管理层指导下,定期对机组进行故障检查,认真检查系统运行中的潜在隐患。常 见的冷凝式汽轮机由单流高压缸、单流中亚缸、双流低压缸等部分构成,选择合 适的设备型号,避免限度避免设备故障。人为因素、设备自身功能等都会对EH 油系统的运行状态产生影响,对作业人员来说,要想保障机组、设备的安全运行,及时关注电磁阀的异动情况,对于膜片结合面出现的漏油情况,及时做好处理, 采取有效措施以免膜片油压增高,保证电磁阀和轴承的安全运作。 1.EH油系统运行概况 某发电厂机组是超高压、一次中间再热、双缸双排气、凝气式机组,型号为 N150-13.24/535/535。某作业人员日常巡视中发现:EH油系统运行中,油压突然 下降,隔膜压力忽高忽低,系统压力无法满足标准化作业要求,于是及时上报管 理层。依次对轴承、过滤网、油泵、控制中心、蓄能器、供油母管等部位进行仔 细检查,了解油压变化、温度变化,加强现代化系统监控,全面掌握电磁阀、轴承、蓄能器、整个系统的运行状态。 2.EH油系统及运行中的常见故障 2.1 EH油系统构成 EH油系统的主要任务是,为EH系统提供充足的动力用油,具有明显的液压 油理化特征和运行特性,燃油具有液体的稳定性和良好的抗燃性。EH油系统由 EH油泵、EH油箱、过滤网、溢流阀、蓄能器、入口门、冷油器及一整套完善的 自循环冷却系统和自动滤油系统组成。 2.2 EH油系统运行原理 EH油从油箱中依次经过入口滤网、油泵、油控制模块、溢流阀等过程,经过高压供油母管和蓄能器,在执行机构的辅助下从供油母管经回油滤管、冷却器等 部分回到油箱。机组运行的过程中,回油母管利用紧急控制模块对油箱和油泵中 的油进行控制,为提高系统运行的安全性,在节流孔之间安装两个压力开关,监 控电磁阀的运行状态。 2.3常见故障 2.3.1漏油故障 运行过程中观察到薄膜阀漏油严重,主要是因为:螺栓规格仅有M10,螺栓 设计不够合理,整定油压的设计未从实际情况出发,轴承溢油阀泄压不通畅,油 压不稳定,时而过高、时而过低,机组运行不可靠,影响机组正常运行,还引发 严重的安全隐患。 2.3.2阀门杆脱落故障

EH油系统功能、参数、常见故障、日常维护和汽轮机保护-危急遮断控制系统

EH油系统功能、参数、常见故障、日常维护和汽轮机的保护—危急遮断控制系统 一、EH油系统按其功能分为三大部分:EH供油系统,执行机构,危急遮断控制 系统。 1、EH供油系统 EH供油系统的功能是提供高压抗燃油(化学名为三芳基磷酸脂,简称EH 油),并由它来驱动伺服执行机构,这种抗燃油具有良好的抗燃性和流体热稳定性。但是如果EH油中混入过多的水、酒精或其他油液等,将大大降低EH油的抗燃性,而且会加快EH油的变质或老化,直接影响系统的正常运行。对伺服阀的阀口处形成腐蚀,造成伺服阀内漏、卡塞;伺服阀一旦卡死,会导致油动机不受控制,蒸汽阀门不能开启。伺服阀、电磁阀、节流孔、通道等的故障大多和油质有关。因此,EH供油系统对油质要求特别高。 EH供油系统主要由不锈钢油箱、磁棒、油系统管道、控制块、逆止阀、安全溢流阀、蓄能器、EH油泵、一套自循环滤油系统(EH油再生装置)和自循环冷却系统(冷油器)组成。 EH油从油箱经油泵入口滤网、入口门、EH油泵(恒压变量柱塞泵)、EH油控制块(包括出口滤网、逆止阀、出口门、溢流阀)后,经高压供油母管送至各执行机构和危急遮断系统,系统执行机构的回油经有压回油母管、回油滤网、冷却器回到油箱;危急遮断系统的回油经无压回油母管回到油箱。 供油系统设备简要介绍 1)油箱:容积为757升,在油箱上装有液位开关、磁性过滤器、空气滤清器、控制块,另外在油箱底部外侧装有电加热器,间接对EH油进行加热。

2)EH油泵:油泵出口压力整定在14.5±0.5Mpa,油泵启动后,即向系统供油,当系统需要增加或减少用油量时,油泵会自动改变输出流量,维持系统压力,当系统瞬间用油量很大时高压蓄能器将参与供油。正常运行时一台油泵足以满足系统所需油量,偶尔在系统调节时间较长(如甩负荷),或部分高压蓄能器损坏使系统油压降低的情况下,备用油泵可投入运行。 3)EH油控制块:安装于油箱顶部。包括:油泵出口滤芯、油泵出口逆止阀、油泵出口门、溢流阀 4)溢流阀:是防止EH油系统油压过高而设置的,当油泵上的控制阀失灵,系统油压>17±0.2MPa时溢流阀动作,将油泄回到油箱。 5)油泵出口滤芯:每台泵有两个并联出口滤网,对进入系统的抗燃油进行过滤。6)油泵出口逆止阀:作用是防止系统油压进入备用油泵,可以对备用油泵进行在线检修,同时也可以在线更换油泵出口滤芯。 7)高压蓄能器:一个高压蓄能器安装在EH油箱旁,吸收EH油泵出口高频脉动压力,维持系统油压平衡。在左、右侧高压主汽门旁各有两个高压蓄能器与高压供油母管相连,当系统瞬间用油量增大时,参与向系统供油,维持系统正常或瞬时油压,保证系统油压稳定。它是通过一个蓄能器块与油系统相连,蓄能器块上有两个截止阀,一个用来将蓄能器与系统隔离,另一个是将蓄能器中的高压油排到无压回油母管,最后回到油箱。正常运行时不能同时对两个或两个以上蓄能器同时解列。否则在系统油压产生波动时无法维持压力稳定。 8)低压蓄能器:在左、右侧高压主汽门旁各安装有两个低压蓄能器,与有压回油母管相连,另外它作为一个缓冲器在负荷快速卸去时,吸收回油系统的油压,消除排油压力波动。 蓄能器是由一个合成橡胶软胆和钢瓶外壳组成,橡胶软胆是用来将气室与油室分开,软胆中充有干燥氮气,外壳上装有与之相连的充氮防护气阀。高压蓄能器中氮气压力为9.3Mpa,低于8.2Mpa就要对高压蓄能器进行充气,低压蓄能器中氮气压力为0.21Mpa,低于0.17Mpa,就要对低压蓄能器进行充气。 9)EH油再生装置:在油箱旁安装有一套EH油再生装置,用来储存吸附剂和使抗燃油得到再生,它由硅藻土滤器(使油保持中性、去除水份等)和纤维滤器(去除杂质)串联组成。当油温在43~55℃之间,任何一个滤器压力高达0.21Mpa 时,就需更换滤芯。

300MW机组EH油系统常见故障分析及维护示范文本

300MW机组EH油系统常见故障分析及维护示范 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

300MW机组EH油系统常见故障分析 及维护示范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1 EH油系统的特点 厦门嵩屿电厂300 MW汽轮机是上海汽轮机厂引进西 屋公司技术制造的N300-16.7/538/538型机组。其中调节 系统的工作介质是高压抗燃油(化学名为三芳基磷酸脂, 简称EH油)。 与采用透平油为工作介质的低压调节系统相比,EH油 系统有以下特点。 1.1 工作压力高 EH油系统的工作压力一般在13~14 MPa,而低压调 节系统的工作压力一般在2 MPa。由于工作油压的提高, 大大减小了液压部件的尺寸,改善了汽轮机调节系统的动

态特性。 1.2 直接采用流量控制形式 EH油系统采用电液转换器(又称为伺服阀),直接将电信号转化为油动机油缸的进出油控制,从而控制油动机的行程。这使系统的迟缓率大大降低,对油压波动也不再敏感(一般在11~16 MPa范围内都能正常工作),提高了调节精度。 1.3 对油质的要求特别高 双喷咀挡板式电液转换器最小通流线性尺寸为0.025~0.05 mm,一般节流孔径为0.46~0.8 mm,故对高压抗燃油的杂质颗粒含量提出了很高的要求。 EH油具有较好的抗燃性能,但如果EH油中混入过多的水、酒精或透平油等,将大大降低EH油的抗燃性,而且可能导致EH油的变质或老化,直接影响系统的正常运行。 1.4 具有在线维修功能

EH油系统故障分析及处理

EH系统的典型故障分析及处理 时学军 (大唐辽源发电厂吉林辽源 136200) 摘要:随着装机容量的不断增大,调节控制系统经过液调、电液联合调节,逐步发展成为单存的电调节系统,其发展经过几年的试应用期,技术不断完善,现电调系统已经处于成型并不断发展阶段。虽然电调在现代大型机组应用中得到普及,但是由于机组安装或设备质量问题,机组运行中也出现各种故障,如机组负荷摆动、主汽门、调节汽门门杆卡涩、EH油压波动、在线试验装置故障,甚至造成机组跳闸的不安全事件。本文就EH油系统经常出现的典型故障,结合现场实际进行分析并提出相应处理方法。 关键词:EH油系统;典型故障;原因分析及处理方法 EH油系统故障现象、原因及处理方法从以下几方面进行说明。 1、 EH油压波动。 EH油压波动是指在机组正常工作的情况下(非阀门大幅度调整),EH油压上下波动范围大于1.0MPa。 EH系统中配置的二台主油泵是恒压变量泵。恒压变量泵是通过泵出口压力的变化自动调整泵的输出流量来达到压力恒定的目的,所以,从理论上讲恒压泵是有一定的压力波动。但如果压力波动范围超过1.0MPa,则认为该泵出现调节故障。当然,如果此时泵的最低输出压力大于11.2MPa,并不影响机组运行。 出现EH油压波动现象,主要是由于泵的调节装置动作不灵活造成的。调节装置分为二部分:调节阀和推动机构。调节阀装在泵的上部,感受泵出口压力变化并转化成推动机构的推力,其上的调整螺钉用于设定系统压力。当调节阀阀芯出现卡涩或摩擦阻力增大时,不能及时将泵出口压力信号转换成推动机构的推力,造成泵流量调整滞后于压力变化,使泵输出压力波动。出现这种情况,可以拆下调节阀并解体,清洗相关零件,检查阀芯磨损情况,复装后基本可以消除该阀故障。 推动机构在泵体内部,活塞产生的推动力克服弹簧力来决定泵斜盘倾角。当推动活塞发生卡涩或摩擦力增大时,调节阀输出的压力信号变化不能及时转化成斜盘倾角(即泵输出流量)变化,使泵的输出压力发生波动。出现这种情况,需清洗推动机构的相关零件,并检查推动活塞的表面质量。因该部分机构装在泵体内,最好由泵制造商委派的专业技术人员来完成。 2、抗燃油酸值升高。 抗燃油新油酸度指标为0.03(mgKOH/g),新华公司规定的运行指标为0.1,当酸度指标超过0.1时,我们认为抗燃油酸度过高,高酸度会导致抗燃油产生沉淀、起泡和空气间隔等问题。

300MW机组EH油系统常见故障分析及维护实用版

YF-ED-J5398 可按资料类型定义编号300MW机组EH油系统常见故障分析及维护实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

300MW机组EH油系统常见故障 分析及维护实用版 提示:该操作规程文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1 EH油系统的特点 厦门嵩屿电厂300 MW汽轮机是上海汽轮机 厂引进西屋公司技术制造的N300-16.7/538/538 型机组。其中调节系统的工作介质是高压抗燃 油(化学名为三芳基磷酸脂,简称EH油)。 与采用透平油为工作介质的低压调节系统 相比,EH油系统有以下特点。 1.1 工作压力高 EH油系统的工作压力一般在13~14 MPa, 而低压调节系统的工作压力一般在2 MPa。由于

工作油压的提高,大大减小了液压部件的尺寸,改善了汽轮机调节系统的动态特性。 1.2 直接采用流量控制形式 EH油系统采用电液转换器(又称为伺服阀),直接将电信号转化为油动机油缸的进出油控制,从而控制油动机的行程。这使系统的迟缓率大大降低,对油压波动也不再敏感(一般在11~16 MPa范围内都能正常工作),提高了调节精度。 1.3 对油质的要求特别高 双喷咀挡板式电液转换器最小通流线性尺寸为0.025~0.05 mm,一般节流孔径为0.46~0.8 mm,故对高压抗燃油的杂质颗粒含量提出了很高的要求。 EH油具有较好的抗燃性能,但如果EH油中

300MW机组EH油系统常见故障分析及维护正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training. 300MW机组EH油系统常见故障分析及维护正式版

300MW机组EH油系统常见故障分析及 维护正式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加 施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事 项。文档可以直接使用,也可根据实际需要修订后使用。 1 EH油系统的特点 厦门嵩屿电厂300 MW汽轮机是上海汽轮机厂引进西屋公司技术制造的N300-16.7/538/538型机组。其中调节系统的工作介质是高压抗燃油(化学名为三芳基磷酸脂,简称EH油)。 与采用透平油为工作介质的低压调节系统相比,EH油系统有以下特点。 1.1 工作压力高 EH油系统的工作压力一般在13~14 MPa,而低压调节系统的工作压力一般在2 MPa。由于工作油压的提高,大大减小了液

压部件的尺寸,改善了汽轮机调节系统的动态特性。 1.2 直接采用流量控制形式 EH油系统采用电液转换器(又称为伺服阀),直接将电信号转化为油动机油缸的进出油控制,从而控制油动机的行程。这使系统的迟缓率大大降低,对油压波动也不再敏感(一般在11~16 MPa范围内都能正常工作),提高了调节精度。 1.3 对油质的要求特别高 双喷咀挡板式电液转换器最小通流线性尺寸为0.025~0.05 mm,一般节流孔径为0.46~0.8 mm,故对高压抗燃油的杂质颗粒含量提出了很高的要求。 EH油具有较好的抗燃性能,但如果EH

EH油系统常见故障的分析与处理

EH油系统常见故障的分析与对策 [摘要]针对EH油系统主要部件常见机械故障原因进行了分析,为该系统正常运行和处 理故障提供一定的参考。 [关键词]EH油系统故障分析对策 1 前言 随着自动化程度的提高,汽轮机数字电液控制系统已在汽轮机上得到广泛应用,EH油系统作为汽轮机数字电液控制系统的重要组成部分,它以高压抗燃油为介质,主要由供油系统、执行机构和危急遮断系统三大部分组成,完成DEH指令信号到汽轮机阀门动作的转换,它的故障严重危及汽轮机的安全运行。 2 常见机械故障的分析处理 2.1伺服阀 2.1.1 伺服阀工作原理 伺服阀又称电液转换器,它将控制输出信号转换成液压信号,是EH油系统的核心部件,它由一个力矩马达和两级液压扩大及机械反馈系统组成。当有电信号输入时,伺服阀力矩马达中的电磁铁线圈中就有电流通过,产生一旋转力矩使衔铁旋转,带动与之相连的挡板转动,此挡板伸到两个喷嘴中间。正常情况下,挡板两侧与喷嘴的距离相等,使两侧喷嘴的泄油面积相等。喷嘴两侧油压相等。当有电信号输入,衔铁带动挡板转动,挡板移近一只喷嘴,使这只喷嘴的泄油面积变小,流量变小,喷嘴前油压变高,对侧则相反,这样就将电信号转变为机械位移信号,最终转变为油压信号,并通过喷嘴挡板系统将信号放大。挡板两侧喷嘴前油压与下部滑阀的两腔室相同,两端油压差使滑阀移动,并由滑阀上的凸肩控制的油口开启或关闭,以控制高压油通向油动机活塞下腔,克服弹簧力打开阀门,或将活塞下腔通向回油,关小阀门。伺服阀中还设置了反馈弹簧,并设有机械偏零,在失去电信号时,滑阀偏向一侧,使阀门关闭。 图一伺服阀 2.1.2 伺服阀主要故障

伺服阀主要故障为卡涩和电化学腐蚀,主要表现为油动机始终处于全开或全关位置而无法控制。伺服阀与阀套间隙只有2μm左右,极易造成卡涩,一旦卡死,将导致调节过程无法控制;另外伺服阀的喷嘴与挡板之间也容易发生卡涩,伺服阀喷嘴与挡板之间的间隙在0.03mm左右,当油中有颗粒卡在当中时,就会使挡板始终靠近一个喷嘴且反馈杆无法将其拉回,主阀芯两端的压差始终存在,造成阀芯向一个方向开足,油动机就会处于全开或全关位置而无法控制。当其发生卡涩时,最好交给专业厂家修理。 当EH油中的氯离子含量较高时,大量的氯离子会聚集在伺服阀的阀口处形成电化学腐蚀,造成伺服阀内漏,EH油压力降低,回油温度、压力升高。伺服阀通过调整阀的开口来控制输出流量,当伺服阀达到全流量701L/min 时,其阀芯的行程也不超过1mm,可见阀口处的流速相当高,伺服阀属于零开口滑阀,其零位密封是阀芯的台阶的尖角来保证,当阀芯尖角被腐蚀掉0.1mm后,其内泄就可能达到1020L/min,无法实现对汽轮机的精确控制,甚至无法开启油动机。伺服阀发生电化学腐蚀后,必须更换阀芯和阀套,在运行过程中必须严格控制抗燃油中的氯离子的含量,防止电化学腐蚀的发生。若氯离子含量超标,要要对EH油系统进行彻底清洗并换油。 2.2 快速卸荷阀 2.2.1快速卸荷阀动作过程 快速卸荷阀安装在油动机液压块上,当机组紧急停机或危急脱扣装置动作时,危急遮断油失压,滑阀上移,压力油与回油导通,使得油动机下腔的压力油经卸荷阀回油快速释放,这时不论伺服放大器输出的信号大小,在阀门弹簧力的作用下,均使阀门关闭。 图二快速卸荷阀 2.2.2快速卸荷阀常见故障 卸荷阀的常见故障是杯状滑阀卡涩或关不严,造成系统泄漏,严重时油动机无法开启,内漏时大量压力油通过卸荷阀回到回油管产生大量的热量使回油管道发热。通过检查回油管道温度可以判断是否内漏。出现卸荷阀卡涩或关闭不严的故障后,可以通过清洗卸荷阀的方法排除。当调节螺钉未旋紧或针形阀处未关严时,危急遮断油通过先导阀泄去,油动机同样会产生内漏;压力油与危急遮断油之间的小孔堵塞,危急遮断油无法产生,油动机也会产生

试论汽轮机EH油系统的常见故障及处理措施

试论汽轮机EH油系统的常见故障及处理措施 发表时间:2018-05-14T16:21:08.677Z 来源:《电力设备》2017年第34期作者:孙军 [导读] 摘要:EH油系统在各种型号的汽轮机中广泛应用,属于一种非常关键的安全系统,其自身运行可靠性与稳定性的高低对整个汽轮机是否能实现稳定运行产生巨大影响。 (中机国能电力工程有限公司上海市 200061) 摘要:EH油系统在各种型号的汽轮机中广泛应用,属于一种非常关键的安全系统,其自身运行可靠性与稳定性的高低对整个汽轮机是否能实现稳定运行产生巨大影响。因此,如果EH油系统出现故障的话,就会导致整个汽轮机无法正常工作,甚至会对整个电厂主设备产生极大不良影响。本文分析了汽轮机EH油系统的常见故障,并探究了处理这些故障问题的有效措施。 关键词:汽轮机;EH油系统;常见故障;处理措施 在科学技术迅猛发展的背景下,自动化技术被广泛应用到火力发电厂汽轮机中,而数字电液类型的控制系统是最常用的一种,主要组成部分是EH油系统,其关键介质是高压抗燃油,涵盖有供油系统、执行机构、遮断系统等。在具体的运行过程中,EH油系统受到数字电液系统的控制,并可把小功率是微弱电气输入信号转换为成大功率的液压能输出液压驱动阀门动作,以实现精准的控制目的。从而可以看出,如果EH油系统出现故障的话,势必对汽轮机的正常运行产生严重影响。 一、伺服阀故障与处理措施 伺服阀因卡涩原因导致汽轮机调门拒动是EH油系统频繁且经常出现的故障现象,出现该故障的原因和伺服阀的结构有很大关系。本文在研究中发现,伺服阀极易出现卡涩的位置是喷嘴部位与阀杆部位。伺服阀的阀套与阀芯的间隙大约为0.02毫米,阀芯在来自伺服阀线圈产生的电磁力矩之后会出现一定的位移,如果阀套与阀芯之间有杂物的话,就会出现卡涩,从而引起对应阀门出现卡涩故障。另一方面,伺服阀喷嘴的间隙大约是0.01毫米,如果油内有小颗粒卡到喷嘴中,就会导致挡板顺着滑阀位置的移动不顺畅,导致主阀芯两侧一直存在一定的压力差,导致伺服阀的真实开度与其电信号不相符,从而使得油动机始终处于全关或全开状态而难以控制。 如果出现了伺服阀卡涩故障后及时更换伺服阀,就可使得故障问题迎刃而解。并且,出现卡涩故障的伺服阀还可借助超声波对相关部件做彻底清洗之后,还有可能继续使用。EH油系统新的清洁度对伺服阀的寿命产生很大影响,油中含有的颗粒物、水分及各种设备在安装过程中携带的小颗粒也会导致伺服阀的寿命明显缩短。并且,EH油所具有的酸值过高的话也会对伺服阀产生较大的腐蚀性,不利于其使用周期的延长。需要提醒的是,火电厂汽轮机伺服阀发生动作异常问题的时候,并非都是伺服阀出现卡涩故障引起的,汽轮机汽门调节时出现的晃动,以及突然关闭等情况,都会使得伺服阀的电流信号出现异常现象。因此,在日常的伺服阀维护中,应查明具体原因,才能有效解决故障问题。 二、EH油泵故障与处理措施 通常情况下,EH油泵发生故障的主要原因是因为油泵出口位置的压力有过大波动,只要油泵缓慢上升或下降,对应的油泵电机中的电流就会随之发生一定变化,并且还会在油泵中伴随发出锤击声音。EH油泵之所以会出现这一故障,其原因主要有以下几点:①EH油具有较大粘度,而油泵与油箱之间具有较小的高度差,如果邮箱的油位不高且油温很低的话,油泵对应的吸力就会很小,当油吸入量没有达到额定标准时,油系统中就会有一定的空气存量,此时油泵就会出现“蹦蹦蹦”的声响。②EH油系统出现较大的压力波动时,主要原因是EH油泵对应的调节仪器动作不敏捷所引起的。油泵调节阀所具有的间隙一般为0.02--0.03毫米,如果EH油内的杂物颗粒进到调节阀中,就会导致调节阀芯卡涩,从而使得传递给油缸的变量推力就会不再线性或较为迟滞。发生卡涩位置的差异性,油压也会越来越低或越来越高,甚至会把阀芯突然冲击到另一个位置,导致泵输出压呈现出齿形波动。如果调压阀有频繁动作的时候,阀套与阀芯就会有较大磨损,从而使得阀芯径向空间不断增大。在这种情况下,变量油缸不再具有精准的位移,极易使得调压阀的调节功能降低,最终导致泵出口压力越来越高或越来越低。③因为变量油泵中活塞具有较小的内套间隙,并且进入的均为死油,如果EH油内的微粒杂志进入油箱的话,就难以排出。如果调压阀在压力油作用下使得活塞发生一定位移时遇到较大阻力,就不会具有线性特征。尤其是油缸活塞出现卡涩时,油泵斜盘受到的作用力就会发生突然变化,导致油泵位移随之突跳,出现齿形变化的油泵压力,从而使得电机电流也有一定变化,最终使得油泵中有蹦蹦蹦的敲击声发出。 要想有效地对油泵进行保护,应确保EH油的温度不超过20℃,同时油位不超过200毫米的时候不可启动油泵。如果需要启动油泵的话,就需要在油箱中设置加热装置,等到油温升高到一定标准之后才能启动油泵。一般情况下,在邮箱中安装的加热装置的同时,还应设置一个滤油泵,从而保证整个油箱的温度较为均匀。由于EH油泵的做工非常精密,要想确保其正常运行,就对油品质尤其是颗粒度有很高的要求。这就需要在油泵入口位置安装一个滤芯为10μm的杂质隔离设备以实现对油泵的有效保护,然而这个措施还不能对所有小颗粒实施有效阻挡,尤其是无法实现对变量油缸及跳崖装置的保护。因此,只有确保汽轮机中所使用的油都具有较高的清洁度,才能为油泵使用周期的延长提供保障。 三、EH油质故障与处理措施 EH油俗称抗燃油,其是一种具有抗燃性的液体纯磷酸酯,外观均匀、透明,新油为黄色,具有稳定的热氧化性,抗磨性强,挥发性低,没有沉淀物。由于EH油具有较高的燃点,如果发生起火现象的话能快速自灭,可减少火灾的发生率。所以,EH油在汽轮发电机组中得以广泛应用。但是,由于EH油极易出现酸度超标、高温氧化及杂质超标等问题,这就会造成油质的恶化,从而引发油质恶化故障。抗燃油的正常运行指标是颗粒度是NAS5级或SAE2级,酸度最大指标为0.1mg KOH/g。如果颗粒度过高的话,就会造成抗燃油系统内的各个精密元件之间出现卡涩或摩擦问题;酸度过高的话就会造成抗燃油出现气泡、沉淀,还可对精密元件产生较大的腐蚀作用。另一方面,EH油内存在超量的氯离子的话,就会让铁与氯离子之间发生化学反应,产生氯化铁,导致油质污染及元件腐蚀等问题的出现,并且还会急速增加油的颗粒度,最终形成恶性循环。造成EH油具有超标颗粒度的主要原因,是检修与安装环境的清洁度不达标;系统与管路的元件没有彻底清理;密封件因为老化原因有大量脱落;系统中会形成相对运动的各个部件因摩擦而形成一定量的金属碎屑;管道内壁有机物的剥离与融解。 基于EH油出现油质恶化的主要原因,要想有效预防这一故障问题的出现,应做好以下几点:①在检修EH油的时候,应保证清洁的外部环境,以有效预防各种杂物随着检修而进入到系统中;对元件及管路的外部、内部用无水酒精做彻底清晰,以有效预防水分与杂物进入系统的元件与管路中。②在布置EH油的时候应尽可能里高温区域有较大距离,以有效预防因局部温度过高而导致EH油具有过大的酸值。

论文:EH油系统的典型故障及处理

技术论文: EH油系统的典型故障及处理 作者:李世林 单位:山西省电建三公司汽机工程处 日期:2010-7-5

EH油系统的典型故障原因分析及处理方法 汽机工程处李世林 摘要:EH油系统的典型故障有:EH油压波动、EH油温过高、执行机构晃动、油管振动、抗燃油油质恶化等,现将本人在电建安装及试运过程中遇到的EH油系统的典型故障的原因与处理方法做一简要介绍,供处理同类问题时参考。 关键词:EH供油系统故障分析处理方法 前言:EH油系统的功能是提供高压抗燃油,并由它来驱动伺服执行机构,该执行机构响应从电子控制器来的电指令信号,以调节汽机各蒸汽阀的开度,该系统是否能够正常工作将直接影响机组的正常运行。 一、EH油压波动 EH油压波动是指在机组正常工作的情况下(非阀门大幅度调整),EH油压上下波动范围大于1.0MPa。EH系统中通常配置两台恒压变量柱塞泵作为主油泵。恒压变量泵是通过泵出口压力的变化自动调整泵的输出流量来达到压力恒定的目的,所以,从理论上讲恒压泵是有一定的压力波动。但如果压力波动范围超过1.0MPa,我们则认为该泵出现调节故障。 出现EH油压波动现象,主要是由于泵的调节装置动作不灵活造成的。调节装置分为二部分:调节阀和推动机构。调节阀装在泵的上部,感受泵出口压力变化并转化成推动机构的推力,其上的调整螺钉用于设定系统压力。当调节阀阀芯出现卡涩或摩擦阻力增大时,不能及时将泵出口压力信号转换成推动机构的推力,造成泵流量调整滞后于压力变化,使泵输出压力波动。出现这种情况,可以拆下调节阀并解体,清洗相关零件,检查阀芯磨损情况,复装后基本可以消除该阀故障。推动机构在泵体内部,活塞产生的推动力克服弹簧力来决定泵斜盘倾角。当推动活塞发生卡涩或摩擦力增大时,调节阀输出的压力信号变化不能及时转化成斜盘倾角(即泵输出流量)变化,使泵的输出压力发生波动。出现这种情况,需清洗推动机构的相关零件,并检查推动活塞的表面质量。因该部分机构装在泵体内,最好由泵制造厂家委派的专业技术人员来完成。 二、EH油温过高 EH油系统的正常工作油温为20℃~60℃,当油温长期高于60℃时,抗燃油的酸值会升高,油质就要变坏。油温过高排除环境因素之外,主要是由于系统内漏或冷却水系统故障造成的。 造成系统内漏过大的原因主要有以下几种:1)安全溢流阀泄漏。安全溢流阀的溢

相关文档
相关文档 最新文档