文档库 最新最全的文档下载
当前位置:文档库 › 经典楼梯计算(手算)详细版

经典楼梯计算(手算)详细版

经典楼梯计算(手算)详细版
经典楼梯计算(手算)详细版

楼梯结构设计计算

楼梯的平面布置,踏步尺寸、栏杆形式等由建筑设计确定。板式楼梯和梁式楼梯是最常见的现浇楼梯,宾馆和公共建筑有时也采用一些特种楼梯,如螺旋板式楼梯和剪刀式楼梯(图8-1)。此外也有采用装配式楼梯的。这里主要介绍板式楼梯和梁式楼梯的计算机构造特点。

(a)剪刀式楼梯 (b)螺旋板式楼梯

图8-1 特种楼梯

楼梯的结构设计包括以下内容:

1) 根据建筑要求和施工条件,确定楼梯的结构型式和结构布置;

2) 根据建筑类别,按《荷载规范》确定楼梯的活荷载标准值。需要注意的是楼梯的活荷载往往比所在楼面的活荷载大。生产车间楼梯的活荷载可按实际情况确定,但不宜小于3.5kN /m(按水平投影面计算)。除以上竖向荷载外,设计楼梯栏杆时尚应按规定考虑栏杆顶部水平荷载0.5kN /m(对于住宅、医院、幼儿园等)或1.0kN /m(对于学校、车站、展览馆等); 3).进行楼梯各部件的内力计算和截面设计;

4) 绘制施工图,特别应注意处理好连接部位的配筋构造。 1.板式楼梯

板式楼梯由梯段板、休息平台和平台梁组成(图8-2)。梯段是斜放的齿形板,支承在平台梁上和楼层梁上,底层下端一般支承在地垄墙上。板式楼梯的优点是下表面平整,施工支模较方便,外观比较轻巧。缺点是斜板较厚,约为梯段板斜长的1/25—1/30,其混凝土

图8-2 板式楼梯的组成 图8-3 梯段板的内力

用量和钢材用量都较多,一般适用于梯段板的水平跨长不超过3m 时。

板式楼梯的计算特点:梯段斜板按斜放的简支梁计算(图8-3),斜板的计算跨度取平台梁间的斜长净距'

n l 。

设楼梯单位水平长度上的竖向均布荷载q g p +=(与水平面垂直),则沿斜板单位斜长

上的竖向均布荷载

αcos '

p p =(与斜面垂直),此处α为梯段板与水平线间的夹角(图8-4),将'

p 分解为:

此处

'

,'y x p p 分别为'p 在垂直于斜板方向及沿斜板方向的分力,忽略'y p 对梯段板的影

响,只考虑'x p 对梯段板的弯曲作用。

n l 为梯段板的水平净跨长, 'n l 为其斜向净跨长, 因

故斜板弯矩:

2

222max 81)cos (cos 81)'('81n n n x pl l p l p M =?==

αα

斜板剪力:

αααcos 21

)cos (cos 21''212max

?=?=n n n x pl l p l p V

因此,可以得到简支斜板(梁)计算的特点为:

1) 简支斜梁在竖向均布荷载p (沿单位水平长度)作用下的最大弯矩,等于其水平投影长度的简支梁在户作用下的最大弯矩;

2) 最大剪力等于斜梁为水平投影长度的简支粱在p 作用下的最大剪力值乘以αcos ; 3) 截面承载力计算时梁的截面高度应垂直于斜面量取。

虽然斜板按简支计算,但由于梯段与平台梁整浇,平台对斜板的变形有一定约束作用,故计算板的跨中弯矩时,也可以近似取102

max n ql M =。为避免板在支座处产生裂缝,应在板上面配置一定量钢筋,一般取Ф8@200mm ,长度为4n l 。分布钢筋可采用Ф6或Ф8,每级踏步一根。

平台板一般都是单向板,可取lm 宽板带进行计算,平台板一端与平台梁整体连接,另

一端可能支承在砖墙上,也可能与过梁整浇,跨中弯矩可近似取为

2

81pl M =

,或取

2

101pl M ?

。考虑到板支座的转动会受到一定约束,一般应将板下部受力钢筋在支座附近

弯起一半,必要时可在支座处板上面配置一定量钢筋,伸出支承边缘长度为4n l , 如图(8-5)所示。

图8-4 斜板上的荷载 图8-5 平台板配筋

例8-1 某公共建筑现浇板式楼梯,楼梯结构平面布置见图(8-6)。层高3.6m ,踏步尺寸150× 300mm 。采用混凝土强度等级C25,钢筋为HPB235 和 HRB335。楼梯上均布活荷载标准值=3.5kN /m 2,试设计此楼梯。 1. 楼梯板计算

板倾斜度 ,5.0300150==αtg 894.0cos =α 设板厚h=120mm ;约为板斜长的1/30。 取lm 宽板带计算 (1) 荷载计算

图8-6 例8-1的楼梯结构平面

荷载分项系数

2.1=G γ 4.1=Q γ

基本组合的总荷载设计值 m kN p /82.124.15.32.16.6=?+?= 表8-1 梯段板的荷载 (2) 截面设计

板水平计算跨度m l n 3.3=

弯矩设计值

m kN pl M n ?=??==

96.133.382.1210110122

选配?10@110mm, A s =714mm 2

分布筋?8,每级踏步下一根,梯段板配筋见图(8-7)。

表8-2 平台板的荷载

2. 平台板计算

设平台板厚h=70mm, 取lm 宽板带计算。 (1) 荷载计算 总荷载设计值 (2) 截面设计 板的计算跨度

弯矩设计值

m kN pl M ?=??==

54.276.119.810110122

选配?6/8@140mm, A s =281mm 2 平台板配筋见图(8-7)。

图8-7 梯段板和平台板配筋

3. 平台梁B1计算

设平台梁截面 mm b 200= mm h 350= (1) 荷载计算

总荷载设计值 m kN p /44.304.193.82.195.14=?+?= (2) 截面设计

计算跨度 m l l n 53.3)24.06.3(05.105.10=-== 弯矩设计值 剪力设计值 截面按倒L 形计算,

mm

h b b f f 550705200'5'=?+=+=

经计算属第一类T 形截面, 采用HRB335钢筋 选2?14+1?16,A s =509.1mm 2 斜截面受剪承载力计算 配置箍筋?6@200mm 满足要求

平台梁配筋见图(8-8)。

图8-8 平台梁配筋

2.梁式楼梯

梁式楼梯由踏步板,斜梁和平台板、平台梁组成(图8-9)。其荷载传递为: 1)踏步板

踏步板按两端简支在斜梁上的单向板考虑,计算时一般取一个踏步作为计算单元,踏步板为梯形截面,板的计算高度可近似取平均高度2/)(21h h h +=(图8-10)板厚一般不小于30mm~40mm ,每一踏步一般需配置不少于2?6的受力钢筋,沿斜向布置间距不大于300mm 的?6分布钢筋。

图8-9 梁式楼梯的组成 图8-10 踏步板

2)斜边梁

斜边梁的内力计算特点与梯段斜板相同。踏步板可能位于斜梁截面高度的上部,也可能位于下部,计算时可近似取为矩形截面。图(8-11)为斜边梁的配筋构造图。 3)平台梁

平台梁主要承受斜边梁传来的集中荷载(由上、下楼梯斜梁传来)和平台板传来的均布荷载,平台梁一般按简支梁计算。

图8-11 斜梁的配筋

例8-2 某数学楼楼梯活荷载标准值为2.5kN /m 2,踏步面层采用30mm 厚水磨石,底面为20mm 厚,混合砂浆抹灰,混凝土采用C25,梁中受力钢筋采用HRB335,其余钢筋采用HPB235,楼梯结构布置如图(8-12)所示。试设计此楼梯。

(a)楼梯结构平面 (b)楼梯结构剖面

图8-12 梁式楼梯结构布置图

解: 1. 踏步板(TB 一1)的计算

(1)荷载计算 (踏步尺寸mm mm b a 15030011?=?。底板厚d=40mm) 恒荷载

踏步板自重

m

kN /08.1253.02045

.0195.02.1=??+?

踏步面层重 m kN /35.065.0)15.03.0(2.1=?+?

(计算踏步板自重时,前述ABCDE 五角形踏步截面面积可按上底为

mm d 45894.0/40cos /==?,下底为mm d b 195894.0/40150cos /1=+=+?,高为

a 1=300mm 的梯形截面计算。)

踏步抹灰重

m kN /14.01702.0894.03

.02.1=???

g=1.08+0.35+0.14=1.57kN/m 使用活荷载 m kN q /05.13.05.24.1=??=

垂直于水平面的荷载及垂直于斜面的荷载分别为 (2)内力计算

斜梁截面尺寸选用150mmX350mm ,则踏步的计算跨度为 踏步板的跨中弯矩 (3)截面承载力计算

取一踏步()150300(11mm mm b a ?+?为计算单元, 已知

,894.0'5626cos cos 0

==?等效矩形截面的高度h 和宽度b 为 则:

则: 2

min 9.874.1297.2510027.0mm bh A s =??==ρ

踏步板应按min ρ配筋,每米宽沿斜面配置的受力钢筋

m

mm A s /9.261894.03001000

9.872=??=

,为保证每个踏步至少有两根钢筋,故选用

?8@150(A s =335mm 2) 2. 楼梯斜梁(TL 一1)计算 (1) 荷载

踏步板传来 m

kN /99.73.01

)15.0253.1(62.221=??+??

斜梁自重

m kN /56.1894.01

2515.0)04.035.0(2.1=?

??-?

斜梁抹灰

m kN /28.0894.01

21702.0)04.035.0(2.1=?

???-?

楼梯栏杆 m kN /12.01.02.1=? 总计 m kN q g /95.9=+ (2) 内力计算

取平台梁截面尺寸mm mm h b 450200?=?,则斜梁计算跨度: 斜梁跨中弯矩和支座剪力为: (3) 截面承载能力计算

取mm a h h 315353500=-=-= 翼缘有效宽度'

f b

按梁跨考虑

mm

l b f 6336/'0==

按梁肋净距考虑 mm b s b f 915150215302'0=+=+=

由于

,1.0350/40/'>=h h f 'f b 可不按翼缘厚度考虑,最后应取

mm

b f 633'=.

判别T 形截面类型:

m

kN M m kN h h h b f f f f c ?=>?=?-???=-1882)405.0315(406339.11)'5.0(''01α故按等一类T 型截面计算 故选用2

12, 2

226mm A s =

由于无腹筋梁的抗剪能力:

可按构造要求配置箍筋, 选用双肢箍?6@300. 3. 平台梁(TL 一2)计算 (1) 荷载

斜梁传来的集中力 kN Q G 9.188.395.921

=??=

+

平台板传来的均布恒荷载

平台板传来的均布活荷载 m

kN /5.35.2)2.026

.1(4.1=?+?

平台梁自重 m kN /34.225)06.045.0(2.02.1=?-?? 平台梁抹灰 m kN /32.017)06.045.0(02.02.12=?-??? 总计 m kN q g /15.9=+ (2) 内力计算(计算简图见图8-13) 平台梁计算跨度 故取 m l 95.30= 跨中弯矩 支座剪力

考虑计算的斜截面应取在斜梁内侧,故

图8-13 平台梁计算简图

(3) 正截面承载力计算 翼缘有效宽度b f ’, 按梁跨度考虑

mm

l b f 6586/39506/'0===

按梁肋净距考虑

mm b s b f 1000200216002'0=+=+=

最后应取

mm

b f 658'=

判别T 型截面类型:

m

kN M m kN h h h b f f f f c ?=>?=?-???=-56167)605.0415(606589.11)'5.0(''01α按第一类T 形截面计算 选用2

18(A s =509m 2)

(4) 斜截面承载力计算 由于无腹筋梁的承载力 可按构造要求配置箍筋, 选用双肢箍?6@200。

(a)TB —1; (b)TL 一1; (c)TL 一2 图8-14 踏步板、斜梁和平台梁配筋图

(5)附加箍筋计算

采用附加箍筋承受由斜梁传来的集中力,若附加箍筋仍采用双肢箍筋?6,则附加箍筋总数为:

59

.12103.28218900

1=??=+=

yv sv f nA Q G m 个

斜梁侧需附加2个?6的双肢箍筋。

踏步板(TB 一1)、斜梁(TL 一1)和平台梁(TL 一2)的配筋图如图(8-14a 、b 、 c)所示。 3.现浇楼梯的一些构造处理

1) 当楼梯下净高不够,可将楼层梁向内移动(图8-15),这样板式楼梯的梯段就成为折线形。对此设计中应注意两个问题:(1)梯段中的水平段,其板厚应与梯段相同,不能处理成和平台板同厚;(2)折角处的下部受拉纵筋不允许沿板底弯折,以免产生向外的合力将该处的混凝土崩脱,应将此处纵筋断开,各自延伸至上面再行锚固。若板的弯折位置靠近楼层梁,板内可能出现负弯矩,则板上面还应配置承担负弯矩的短钢筋(图8-16)。

图8-15 楼层梁内移时 图8-16 板内折角时的配筋

2) 若遇折线形斜梁,梁内折角处的受拉纵向钢筋应分开配置,并各自延伸以满足锚固要求,同时还应在该处增设箍筋。该箍筋应足以承受未伸入受压区域的纵向受拉钢筋的合力,且在任何情况下不应小于全部纵向受拉钢筋合力的35%。由箍筋承受的纵向受拉钢筋的合力,可按下式计算(图8-17)。

未伸人受压区域的纵向受拉钢筋的合力 全部纵向受拉钢筋合力的35%为

式中 A s ——全部纵向受拉钢筋的截面面积;

A s1——未伸人受压区域的纵向受拉钢筋的截面面积:

α——构件的内折角。

图8-17 折线形斜梁内折角处配筋

按上述条件求得的箍筋, 应设置在长度为

α

83

htg s =的范围内。

经典楼梯计算(手算)详解

第8章楼梯结构设计计算 楼梯的平面布置,踏步尺寸、栏杆形式等由建筑设计确定。板式楼梯和梁式楼梯是最常见的现浇楼梯,宾馆和公共建筑有时也采用一些特种楼梯,如螺旋板式楼梯和剪刀式楼梯(图8-1)。此外也有采用装配式楼梯的。这里主要介绍板式楼梯和梁式楼梯的计算机构造特点。 (a)剪刀式楼梯(b)螺旋板式楼梯 图8-1 特种楼梯 楼梯的结构设计包括以下内容: 1) 根据建筑要求和施工条件,确定楼梯的结构型式和结构布置; 2) 根据建筑类别,按《荷载规范》确定楼梯的活荷载标准值。需要注意的是楼梯的活荷载往往比所在楼面的活荷载大。生产车间楼梯的活荷载可按实际情况确定,但不宜小于3.5kN /m(按水平投影面计算)。除以上竖向荷载外,设计楼梯栏杆时尚应按规定考虑栏杆顶部水平荷载0.5kN/m(对于住宅、医院、幼儿园等)或1.0kN/m(对于学校、车站、展览馆等); 3).进行楼梯各部件的内力计算和截面设计; 4) 绘制施工图,特别应注意处理好连接部位的配筋构造。 1.板式楼梯 板式楼梯由梯段板、休息平台和平台梁组成(图8-2)。梯段是斜放的齿形板,支承在平台梁上和楼层梁上,底层下端一般支承在地垄墙上。板式楼梯的优点是下表面平整,施工支模较方便,外观比较轻巧。缺点是斜板较厚,约为梯段板斜长的1/25—1/30,其混凝土

图8-2 板式楼梯的组成 图8-3 梯段板的内力 用量和钢材用量都较多,一般适用于梯段板的水平跨长不超过3m 时。 板式楼梯的计算特点:梯段斜板按斜放的简支梁计算(图8-3),斜板的计算跨度取平台梁间的斜长净距' n l 。 设楼梯单位水平长度上的竖向均布荷载q g p +=(与水平面垂直),则沿斜板单位斜长 上的竖向均布荷载 αcos 'p p =(与斜面垂直),此处α为梯段板与水平线间的夹角(图8-4),将' p 分解为: ααα c o s c o s c o s ''?==p p p x

框架砌体结构荷载手算计算书

一.工程概况 注:结构高度指室外地坪至檐口或大屋面(斜屋面至屋面中间高) 三. 设计依据 《建筑结构可靠度设计统一标准》 GB 50068-2001 《建筑结构荷载规范》 GB 50009-2012 《建筑抗震设计规范》 GB 50011-2010 《混凝土结构设计规范》 GB 50010-2010 《高层建筑混凝土结构技术规程》 JGJ 3-2010 《建筑地基基础设计规范》 GB 50007-2011 《建筑桩基技术规范》 JGJ 94-2008 《建筑抗震鉴定标准》 GB 50023-2009 《建筑抗震加固技术规程》 JGJ 116-2009 《回弹法检测混凝土抗压强度技术规程》 JGJ/T 23-2011 《房屋质量检测规程》 DG/TJ08-79-2008 《现有建筑抗震鉴定与加固规程》 DGJ08-81-2000 《建筑工程抗震设防分类标准》 GB 50223-2008 《建筑结构检测技术标准》 GB/T 50344-2004 《建筑变形测量规范》 JGJ8 2007 四. 可变荷载标准值选用(kN/㎡) 五.上部永久荷载标准值及构件计算 (一)二层楼面荷载

阅览室/教室: 120厚预制混凝土空心板 2.00 kN/m2 板底粉刷或吊顶0.50 kN/m2 板顶50mm找平层 1.00 kN/m2 板顶瓷砖地板0.55 kN/m2 合计 4.05 kN/m2楼梯间: 按常见楼梯荷载取值8.00 kN/m2(二)三层楼面荷载 阅览室/教室: 100厚钢筋混凝土现浇板 2.50 kN/m2 板底粉刷或吊顶0.50 kN/m2 板顶50mm厚找平层 1.00 kN/m2 板顶瓷砖地板0.55 kN/m2 合计 4.55 kN/m2 楼梯间: 按常见楼梯荷载取值8.00 kN/m2(三)屋面荷载 阅览室/教室: 100厚钢筋混凝土现浇板 2.50 kN/m2 板底粉刷或吊顶0.50 kN/m2 板顶20mm厚找平层0.40 kN/m2 保温层0.40 kN/m2 50mm厚找坡层 1.00 kN/m2 防水层0.35 kN/m2 保护层 1.00 kN/m2 合计 6.15 kN/m2 (三)墙体荷载 1

楼梯习题5计算过程

设计条件:该住宅为三层,层高3.0米,楼梯间开间2.7米,进深5.4米。底层设有住宅出入口,楼梯间四壁均为普通240砖墙承重结构,室内外高差450. 楼梯计算过程: 1.本建筑为住宅楼,根据建筑性质初步确定踏步尺寸b=260,h=175 2.根据楼梯间宽度确定梯段宽度:梯间净宽度2700-240=2460 梯井宽取60,单梯段宽度为(2460-60)/2=1200 3.平台尺寸取1200 方案一:长短跑 4.第一梯段高度确定:因要求平台下开门,门高2100,梯梁高300。故第一梯段高度必须达到2100+300=2400 5.第一梯段踏步数:n1=2400/175=13.71取14步 6.第一梯段长度:(14-1)*260=3380 7.校核楼梯长度尺寸:5400-240-2*1200=2760<3380不满足要求 方案二:利用室外高差和长短跑:(室内外高差450) 8.第一梯段高度确定:因要求平台下开门,门高2100,梯梁高300。故第一梯段高度必须达到2100+300=2400 9.室外高差450。将室内外高差移入300到楼梯间,剩下150做室内外高差,故第一梯段高2400-300=2100 10.第一梯段踏步数:n1=2100/175=12步 11.第一梯段长度:(12-1)*260=2860

12.校核楼梯长度尺寸:5400-240-2*1200=2760<2860不满足要求 方案三:利用室外高差和长短跑:(室内外高差450) 1.第一梯段高度确定:因要求平台下开门,门高2100,梯梁高300。故第一梯段高度必须达到2100+300=2400 2.室外高差450。将室内外高差移入300到楼梯间,剩下150做室内外高差,故第一梯段高2400-300=2100 3.第一梯段最少踏步数:n1=2100/175=12步 4.第一梯段最小长度:(12-1)X260=2860 5.校核楼梯长度尺寸:5400-240-2*1200=2760<2860不满足要求 6.调整平台尺寸:正平台尺寸:1200休息平台5400-240-1200-3120=840<1200平台宽度不够,将平台伸出外墙600 7.调整第一梯段踏步高度:2100/12=175 8.第二梯段高度:3000-2100=900 9.第二梯段踏步数:900/175=5.14取6步 10.第二梯段长度:(6-1)*260=1300 11.调整第二梯段踏步高度:900/6=150 12.第二层楼梯设计为等跑梯段,每梯段高度3000/2=1500。校核梯段净高900+1500=2400>2200满足要求 13.第三段高1500,踏步数1500/150=10步,梯段长260*(10-1)=2340 14.第四段1500,踏步数1500/150=10步,梯段长260*(10-1)=2340

178 某六层高校宿舍楼框架结构设计全套图纸及计算书全套资料4900平米左右

丽水广播电视大学土木工程毕业设计(论文)丽水中学宿舍楼设计 学院(系): 专业班级: 学生姓名: 指导教师:

摘要 该工程为框架结构,主体为六层,该地区抗震设防烈度为6度,第二分组,场地类别为III类场地。主导风向为西南,基本风压0.45kN/m,基本雪压0.3 kN/m2。楼﹑屋盖均采用现浇钢筋混凝土结构。 本设计贯彻“实用、安全、经济、美观”的设计原则。按照建筑设计规范,认真考虑影响设计的各项因素。根据结构与建筑的总体与细部的关系。 本设计主要进行了结构方案中横向框架第8轴抗震设计。在确定框架布局之后,先进行了层间荷载代表值的计算,接着利用顶点位移法求出自震周期,进而按底部剪力法计算水平地震荷载作用下大小,进而求出在水平荷载作用下的结构内力(弯矩、剪力、轴力)。接着计算竖向荷载(恒载及活荷载)作用下的结构内力。是找出最不利的一组或几组内力组合。选取最安全的结果计算配筋并绘图。此外还进行了结构方案中的室内楼梯的设计。完成了平台板,梯段板,平台梁等构件的内力和配筋计算及施工图绘制。对楼板进行了配筋计算,本设计采用桩基础,对基础承台进行了受力和配筋计算。 手工计算完毕后,用结构分析软件PKPM进行了整体框架计算。 设计成果包括计算书和施工图纸两部分. 关键词:框架结构抗震设计荷载计算内力计算计算配筋

Abstract The project for the frame structure, main body of six layers the region seismic fortification intensity is 6 degrees, the second group, site category III class site. Dominant wind direction for the southwest the basic wind pressure of 0.45 KN/m, basic snow pressure of 0.3 KN/m2. Floor, roof adopts the cast-in-place reinforced concrete structure. The design and implement "practical, safe, economic, beautiful" design principle. According to the architectural design specification, carefully consider the various factors that affect the design. According to the relationship of structure and building overall with details. This design mainly has carried on the structure scheme of transverse frame shaft 8 seismic in design. In determining the frame layout, has carried on the first floor between load on behalf of value calculation, and then use vertex displacement method from the earthquake cycle, and then press the bottom shear method under horizontal seismic load size, and then calculate the structural internal force under the horizontal load (bending moment, shear force and axial force). Then calculate vertical load (dead load and live load) under the action of internal force of structure. Is to find out the most unfavorable one or several groups of internal force combination. Choose the safest results reinforcement and drawing. In addition, the structure of indoor stair designs. Completed the flat pallet bench board, platform beam component such as the internal force and reinforcement calculation and construction drawings. On the floor reinforcement calculation, this design USES the pile foundation, foundation pile caps for the force and reinforcement calculation. After the manual calculation, using the structure analysis software PKPM calculation has carried on the overall framework. Design results including the calculation and construction drawings Keywords: frame structure seismic design load calculation of internal force calculation of reinforcement calculation

楼梯结构计算示例(手算方法步骤以及如何用输入参数-用探索者出图)

楼梯计算实例 已知条件:某公共建筑三跑现浇板式楼梯,楼梯平面布置见图1所示。 图1 楼梯平面 设计信息:层高3.0m,踏步尺寸为176mm×240mm,采用C30混凝土,HRB400钢筋。楼梯建筑做法如下表1所示,设计该楼梯。 1、地面砖楼面 10厚磨光花岗石(大理石)板 板背面刮水泥浆粘贴 稀水泥浆擦缝 20厚1:3水泥砂浆结合层 素水泥浆一道 120厚现浇混凝土楼板 2、水泥砂浆顶棚 120厚现浇混凝土楼板 素水泥浆一道,局部底板不平时,聚合物水泥砂浆找补 7厚1:2.5水泥砂浆打底扫毛或划出纹道 7厚1:2水泥砂浆找平 q=2.0kN/m2。 参考《建筑结构荷载规范》,可知设计均布活荷载标准值为 k 设计步骤: 一、熟读建筑平面图,了解建筑做法与结构布置, 该楼梯为三跑形式,台阶数n=17,划分梯板为三个:TB1、TB2、TB3,如图

2所示。 图2 梯板划分 二、梯板TB3结构设计 1、荷载计算: 1)梯段板荷载 板厚取t=120mm,板的倾斜角的正切tanа=176/240=0.733,cosа=0.806。取1m宽板带计算。恒荷载与活荷载具体计算如表2所示。 总荷载设计值为p1=1.35*7.95+1.4*0.7*2.0=12.69kN/m。 荷载种类荷载标准值kN/m 恒荷载 1、面层荷载(0.01*28+0.02*20)*(0.176+0.24)/0.24=1.179 2、三角形踏步0.5*0.176*0.24*25/0.24=2.2 3、混凝土斜板0.12*25/0.806=3.722 4、板底抹灰0.014*20/0.806=0.347 5、栏杆线荷载0.5 小计7.95 活荷载 2.0 设平台板的厚度t=120mm,取1m宽板带计算。恒荷载与活荷载具体计算列 于表3。 总荷载设计值p2=1.2*4.46+1.4*2.0=8.15kN/m 荷载种类荷载标准值 恒大理石面层(0.01*28+0.02*20)=0.68

毕业设计手算计算书基本步骤模板1

1 建筑设计 1.1 建筑方案的比选与确定 根据毕业设计任务书的要求,在参观了一些办公大楼的基础上,我先后做出了三个方案,经过初选,摈弃方案三,现将方案一与方案二做一比较,以此确定最终的建筑设计方案。 1.1.1建筑功能比较 由于此保险公司办公楼要求有营业大厅,故可以采用两种方式,一种是将营业大厅单独设置在一边,即采用裙楼的方式,主楼办公区8层,裙楼2层,这样功能划分明确,且建筑物有错落感,外形美观,但结构布置和计算麻烦些;另一种则用对称的柱网,一楼设置营业大厅,与办公区2-8层的布置不同,这样主要的问题就是底层的功能划分了,考虑方便,美观,防火等,此方案绘图和计算相对容易些,考虑到是初次设计完整的一栋框架结构,主要目的是掌握思想方法,故采用方案2,柱网完全采用对称布置。关于底层平面的布置的问题又有如下两种方案: 方案一建筑底层平面布置完全对称,这样有利于引导人流,且外形较好,里面效果好,现浇整体布局较为紧凑,便于设计计算和施工;由于底层有大型的营业大厅,而且要求与办公区隔离,该方案楼梯布置比较困难,若分两边布置,则使建筑无门厅主楼梯,不利于交通组织,将其因为对称布局带来的优势丧失,且将对电梯的布置带来问题;若于中门厅处布置一部主楼梯,则为了防火需要(以防形成“袋形走廊”),要在建筑两侧加设防火楼梯与防火出口,造成不经济,且将楼梯置于建筑两头不利于抗震设计。 方案二建筑底层平面非对称布置,可能导致交通组织不明确,但在设置两个入口后问题得到解决,营业大厅不布置在中间,而是放在最右边,有其单独的入口,中间用一道门即可与办公区的门厅隔离,达到设计要求。该方案楼梯布置较为合理,于门厅布置主楼梯一部,通向楼顶,设置防火卷门,即起到消防楼梯的作用,引导人流且同两部电

梁式楼梯计算书(示例)

梁式楼梯计算 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、工程名称: LT-1 二、示意图 三、基本资料 1.依据规范: 《建筑结构荷载规范》(GB50009-2012) 《混凝土结构设计规范》(GB 50010-2010) 2.几何参数: 楼梯类型:梁式楼梯(__╱ 型)支座条件:两端固定 斜梯段水平长度: L1 = 1400 mm 下平台长度: L3 = 1220 mm 梯段净跨: L n = L1+L3 = 1400+1220 = 2620 mm 楼梯高度:H = 960mm 楼梯宽度:W = 1800 mm 梯板厚:t = 100 mm 楼梯级数:n = 6(阶) 踏步宽度: b = 280 mm 踏步高度:h = 160 mm 上平台楼梯梁宽度: b1 = 400 mm 下平台楼梯梁宽度: b2 = 400 mm 楼梯梁高度:h3 = 450 mm 楼梯梁宽度: b3 = 200 mm 水平段楼板厚度: h4 = 100 mm 3.荷载标准值: 可变荷载:q = 3.50kN/m2面层荷载:q m = 1.50kN/m2 栏杆荷载:q f = 1.00kN/m 永久荷载分项系数: γG = 1.20 可变荷载分项系数: γQ = 1.40 准永久值系数: ψq = 0.50 4.材料信息: 混凝土强度等级: C30 f c = 14.30 N/mm2 f tk = 2.01 N/mm2f t = 1.43 N/mm2 梯梁纵筋强度等级: HRB400 E S = 200000 N/mm2 f y = 360.0 N/mm2 受拉区纵向钢筋类别:带肋钢筋 其余钢筋选用HPB300钢f yv = 270.0 N/mm2 保护层厚度: c = 30 mm

钢楼梯计算书

清河4#钢梯计算书 项目编号: No.1项目名称: XXX项目 计算人: XXX设计师专业负责人: XXX总工 校核人: XXX设计师日期: 2015-XX-XX 中国建筑科学研究院

目录 一. 设计依据........................................................................................................................................................................................... 二. 计算软件信息................................................................................................................................................................................... 三. 结构模型概况................................................................................................................................................................................... 1. 系统总信息................................................................................................................................................................................. 2. 楼层信息..................................................................................................................................................................................... 3. 各层等效尺寸............................................................................................................................................................................. 4. 层塔属性..................................................................................................................................................................................... 四. 工况和组合....................................................................................................................................................................................... 1. 工况设定..................................................................................................................................................................................... 2. 工况信息..................................................................................................................................................................................... 3. 构件内力基本组合系数............................................................................................................................................................. 五. 质量信息........................................................................................................................................................................................... 1. 结构质量分布............................................................................................................................................................................. 2. 各层刚心、偏心率信息............................................................................................................................................................. 六. 立面规则性....................................................................................................................................................................................... 1. 楼层侧向剪切刚度..................................................................................................................................................................... 2. [楼层剪力/层间位移]刚度.......................................................................................................................................................... 3. 各楼层受剪承载力..................................................................................................................................................................... 4. 楼层薄弱层调整系数................................................................................................................................................................. 七. 抗震分析及调整............................................................................................................................................................................... 1. 结构周期及振型方向................................................................................................................................................................. 2. 各地震方向参与振型的有效质量系数..................................................................................................................................... 3. 地震作用下结构剪重比及其调整............................................................................................................................................. 4. 偶然偏心信息............................................................................................................................................................................. 八. 结构体系指标及二道防线调整....................................................................................................................................................... 1. 竖向构件倾覆力矩及百分比(抗规方式) .................................................................................................................................. 2. 竖向构件地震剪力及百分比..................................................................................................................................................... 3. 单塔多塔通用的框架0.2Vo(0.25Vo)调整系数......................................................................................................................... 九. 变形验算........................................................................................................................................................................................... 1. 普通结构楼层位移指标统计..................................................................................................................................................... 十. 抗倾覆和稳定验算........................................................................................................................................................................... 1. 抗倾覆验算................................................................................................................................................................................. 2. 整体稳定刚重比验算................................................................................................................................................................. 3. 二阶效应系数及内力放大.........................................................................................................................................................十一. 超筋超限信息............................................................................................................................................................................... 1. 超筋超限信息汇总.....................................................................................................................................................................十二. 指标汇总.......................................................................................................................................................................................

旋转楼梯计算书

异型楼梯计算(YXT-1)项目名称构件编号日期设计校对审核执行规范: 《混凝土结构设计规范》(GB 50010-2010),本文简称《混凝土规范》《建筑结构荷载规范》(GB 50009-2001),本文简称《荷载规范》钢材:Q235;-----------------------------------------------------------------------1基本资料1.1几何信息: 形状长度/半径(mm)夹角(度) 高差(mm)踏步数踏步宽(mm)弧线4900481870 12.5342.1弧线4900160弧线4900482210 14.7293.2弧线4900160弧线4900281360 9.1 266.1 弧线4900 320 (图1平面尺寸图) 1.2截面信息: 板宽度:B=2600mm 斜板厚度:H s =120mm 平台厚度:H p =150mm 踏步高度:H t =150mm 底端约束:固定顶端约束:固定1.3材料信息: 混凝土等级:C25,f c =11.90N/mm 2 混凝土容重:γ=25.00kN/mm 3 1.4荷载信息: 附加恒荷载标准值:g=1.500kN/m 2活荷载标准值:q=3.500kN/m 2 恒载分项系数:γG =1.200,活载分项系数:γQ =1.400 2计算内容 2.1荷载设计值计算 自重计算说明:参考<<钢筋混凝土薄壳结构设计规程>>(JGJ/T 22-98)第3.2.6条 壳板的自重按照壳板的实际重量折算成平均厚度重量计算 2.2内力计算:

计算横截面的法向弯矩Mn(kN.m),径向弯矩Mr(kN.m),法向剪力Vn(kN)径向剪力Vr(kN),轴力N(kN),扭矩T(kN)说明 (1)采用有限元计算方法,单元为厚薄通用的壳单元 (2)基本假定:对于楼梯斜段,把锯齿状变截面简化成等厚度的截面,截面高度取锯齿最小处的厚度 (3)内力示意图:如下图所示: (图2截面内力示意图) 3计算过程以及计算结果3.1荷载计算 3.1.1第一段(楼梯):(1)计算自重均布荷载g s : 螺旋楼梯高差ΔH=1870mm ;总转角ω=0.84弧度 楼梯的螺旋倾角:α=atan(ΔH/(R*ω)=atan(1870/4900/0.84)=0.427(弧度)踏步的高度h1=H s /cos(α)=120/cos(0.427)=132mm 踏步的高度h2=h1+Ht=132+150=282mm 内侧半径R1=R-B/2=4900-2600/2=3600外侧半径R2=R+B/2=4900-2600/2=6200 单个踏步对应的辐射角度:Δω=ω/N=0.8/12.5=0.067(弧度)内侧边长度:t1=2*R1*sin(Δω/2)=2*3600*sin(0.07/2)=242mm 外侧边长度:t2=2*R2*sin(Δω/2)=2*6200*sin(0.07/2)=417mm 踏步平面投影梯形的高度:H =2599mm 内侧三角形面积A1=0.5*t1*H=0.5*0.242*2.599=0.31426m 2 外侧三角形面积A2=0.5*t2*H=0.5*0.417*2.599=0.54122m 2 内侧分割体的体积V 1:0.05715m 3 外侧分割体的体积V 2:0.12549m 3 自重等效荷载g s =(V 1+V 2)*γ/(A 1+A 2)=0.18264/0.85548*25.00=5.337kN/m 3 (2)计算均布荷载设计值: 恒荷载g k =g+g s =1.500+5.337=6.837kN/m 2 本段荷载设计值Q=1.40*3.500+1.20*6.837=13.105kN/m 2 将水平投影荷载转换成沿着斜板分布的荷载:11.93kN/m 2 3.1.2第二段(平台):(1)计算自重均布荷载g s :

楼梯工程量计算规则及公式

1、楼梯工程量 ⑴、现浇楼梯面积;⑵、楼梯的实际体积;⑶、楼梯栏板、栏杆;⑷楼梯装修: 楼梯侧面装修;楼梯底面装修。⑸楼梯模板。 2、楼梯工程量计算方法 ⑴楼梯的水平投影面积 现浇混凝土楼梯按设计图示尺寸以水平投影面积计算。不扣除宽度小于 500mm的楼梯井,伸入墙内部分不计算。 ①楼梯的水平投影面积包括踏步、斜梁、休息平台、平台梁以及楼梯与楼板连接的梁(楼梯与楼板的划分以楼梯梁的外侧面为分界)。 ②当整体楼梯与现浇楼板无梯梁连接时,以楼梯的最后一个踏步边缘加300mm 为界。 ⑵楼梯的实际体积(部分地区) 分别计算楼梯踏步、楼梯板、休息平台碌体积。 楼梯体积=踏步体积+梯板体积 ①踏步体积=三角形面积(1/2*踏步宽度*踏步高度)*梯板净宽*踏宽数。 其中: 踏步个数=踏宽数+1;踏宽数=楼梯净长/踏步宽度(楼梯净长: 等于踏步段水平投影净长,即扣减(墙)后的长度);踏步高度=楼梯高度/ (踏步个数+1);梯板净宽=楼梯宽度扣减墙后的宽度。 ②梯板体积=梯板净宽*楼梯斜长*梯板厚度。其中:

楼梯斜长=K*<梯水平投影长度(楼梯水平投影长度=楼梯净长;K=[SQRT (踏 步宽度八2 +踏步高度A2) ]/踏步宽度) ③休息平台体积: 计算同板。 如果休息平台与墙相交,扣除与墙相交部分体积 ⑶楼梯栏板、栏杆 ①栏板按面积或者体积计算 栏板体积=栏板面积弗板厚度计算 栏板面积=栏板xx笔板高度计算 栏板xx是楼梯的实际xx,即斜xx ②栏杆按xx或者吨位进行计算 栏杆长度是按照楼梯的实际长度(即斜长度)进行计算的。 ⑷楼梯装修: 楼梯侧面装修;楼梯底面装修。 ①楼梯装饰按设计图示尺寸以楼梯(包括踏步、休息平台及500mm以内的楼梯井)水平投影面积计算。楼梯与楼地面相连时,算至梯口梁内侧边沿;无梯口梁者,算至最上一层踏步边沿加300mM2楼梯侧面装修=踏步侧面面积 +梯板侧面积 其中: 踏步侧面面积=1/2*踏步宽度*踏步高度*踏步个数;梯板侧面积= 楼梯斜长*梯板厚度。 ③楼梯底面装修=楼梯底部面积 ⑸楼梯模板=楼梯侧模+楼梯底模;计算同装修面积

楼梯结构设计手算计算书

楼梯详细手算计算书(结构设计) 平台板设计(对斜板取1m 宽作为其计算单元) (TB-1) 1、确定斜板板厚度t 斜板的水平投影净长 L 1n =3080 mm 斜板的斜向净长 L 1n , = L 1n /cos α=3080/(280/2 2280 150+)=3080/0.881=3496 mm 斜板厚度t 1=(1/25~1/30)L 1n , =(1/25~1/30)×3496=140~117 mm , 取t 1=120 mm 2、荷载计算 荷载种类 荷载标准值(kN/m ) 恒荷载 栏杆自重 0.2 锯齿形斜板自重 r 2(d/2+t 1/cos α)=25×(0.15/2+0.12/0.881)=5.28 20厚面层 r 1c 1(e+d)/e=20×0.02×(0.28+0.15)/0.28=0.61 板底20厚混合砂浆 r 3c 2/cos α=17×0.02/0.881=0.39 横荷载合计g 6.5 活荷载 3.5 注:r 1、r 2、r 3为材料容重 E 、d 为踏步宽和高 c 1为踏步面层厚度 α为楼梯斜板的倾角 t 1为斜板的厚度 c 2为板底粉刷的厚度 3、荷载效应组合 由可变荷载效应控制的组合: P=1.2×6.5+1.4×3.5=12.7 kN/m 由永久荷载效应控制的组合: P=1.35×6.5+1.4×0.7×3.5=12.21 kN/m 所以选永久荷载效应控制的组合来进行计算,取P=12.7 kN/m 4、内力计算 斜板的内力一般只需计算跨中最大弯矩即可。考虑到斜板两端均与梁整体浇注,对板有约束作用,所以跨中最大弯矩取:M=Pl 1n 2/10=12.7×3.082/10=12.05 kN ·m 5、配筋计算 h 0=t 1-20=120-20=100 mm αs =M/α1f c bh 0 2 =12.05×106 /(1.0×11.9×1000×1002)=0.1013 γs =0.5(1+s a 2-1)=0.5(1+0.1013*21-)=0.9465 A S =M/f y γs h 0=12.05×106 /(360×0.9465×100)=354 mm 2 选用受力钢筋 10@180,A S =436 mm 2 ;分布钢筋 8@200。

相关文档
相关文档 最新文档