文档库 最新最全的文档下载
当前位置:文档库 › 电动汽车驱动电机选型报告

电动汽车驱动电机选型报告

电动汽车驱动电机选型报告
电动汽车驱动电机选型报告

电动汽车车载网络综述

电动汽车车载网络 引言 汽车技术发展到今天,很多新型电气设备得到了大量应用,尤其是电动汽车的电气系统已经变成了一个复杂的大系统。为了满足电动汽车各子系统的实时性要求,需要对公共数据实行共享 电动汽车作为清洁绿色的新能源汽车, 将在未来交通体系中发挥越来越重要的作用。 汽车中电器的技术含量和数量是衡景汽车性能的一个重要标志。汽车电器技术含量和数量的增加,意味着汽车性能的提高。但汽车电器的增加,同样使汽车电器之间的信息交且桥梁——线束和与其配套的电器接插件数量成倍上升。在1955年平均一辆汽车所用线束总长度为45 米。为了在提高性能与控制线束数量之问寻求一种有效的解决途径,在20世纪80年代初,出现了一种基于数据网络的车内信息交互方式——车载网络。 一、汽车车载网络的组成 车载网络按照应用加以划分,大致可以分为4 个系统:车身系统,动力传动系统、安全系统和信息系统。

图1奥迪A4的车载网络系统 车身系统电路主要有二大块: 主控单兀电路、受控单兀电路、门控单兀电路。 主控单元按收开关信号之后,先进行分析处理,然后通过CAN 总线把控制指令发 送给各受控端,各受控端晌应后作出相应的动作。 车前、车后控制端只接收主拄 端的指令,按主控端的要求执行,并把执行的结果反馈给主控端。门控单元不但 通过总接收主控端的指令,还接收车门上的开关信号输入。根据指令和开关信号, 门控单元会做出相应动作,然后把执行结果发往主控单元。 在动力传动系统内,动力传动系统模块的位置比较集中, 可固定在一处,利 用网络 将发动机舱内设置的模块连接起来。在将汽车的主要因素一跑、停止 与拐弯这些功能用网络连接起来时,就需要较高速的网络传输速度。动力数据总 线一般连接3块电脑,它们是发动机、ABS/ EDL 及自动变速器电脑(动力CAN 数 据总线实际可以连接安全气囊、四轮驱动与组合仪表等电脑 )。总线可以同时传 递10组数据,发动机电脑5组、AB 》EDL 电脑3组和自动变速器电脑2组。数 据总线以500Kbit /s 速率传递数据,每一数据组传递大约需要 0.25ms ,每一电 控单元7-20ms 发送一次数据。优先权顺序为ABVEDL 电控单元--发动机电控单 元 -- 自动变速器电控单元 因此,线束变长, 而且容易受到干扰的影响。 为了防干扰应尽量降低通信速 度,但,丹 駅 咗'i / - Q I "—-r__ L] 车身控 & 阳Poy 灯朮平调幣转萱/灯 厂是砸硕! —

电动汽车驱动电机的设计与选型

电动汽车驱动电机的设计与选型 全世界的汽车保有量和使用量的逐日增大,世界能源问题越来越突出,电动汽车方向逐渐出现并在汽车领域占有了一个非常重要的位置。早在20世纪50年代初,美国人罗伯特就发明了一种将电动机、传动系统和制动系统融为一体的轮毂装置。该轮毂于1968年被通用电气公司应用在大型的矿用自卸车上。 相对与传动汽车、单电机集中驱动的汽车,轮毂电机式电动汽车具有以下优点:动力控制通过电子线控技术实现对各电动轮进行无级变速控制,以及各电动轮之间的差速要求,省略了传统汽车所需的波箱、离合器、变速器、传动轴等;在电机所安装的位置同时可见,整车的结构变得简洁、紧凑,车身高降低,可利用空间大,传动效率高。容易实现各电动轮的电气制动、机电复合制动和制动能量回馈。底盘结构大为简化,使整车总布置和车身造型设计的自由度增加。若能将底盘承载功能与车身功能分离,则可实现相同底盘不同车身造型的产品多样化和系列化,从而缩短新车型的开发周期,降低开发成本。若在采用轮毂电机驱动系统的四轮电动汽车上导入线控四轮转向技术(4WS),实现车辆转向行驶高性能化,可有效减小转向半径,甚至实现零转向半径,大大增加了转向灵便性。(说起来很轻松,但是如果真正实现起

来,上面那段话恐怕十年之内都没办法产业化,比如机电复合制动,比如制动能量回馈,原理不难,难的是在技术、成本、产业、供应商等等条件都成熟起来之后......)1.电动汽车基本参数参数确定1.1 该电动汽车基本参数要求,如下表:1.2 动力性指标如下: 最大车速X;在车速=60km/h时爬坡度5%(3度);在车速=40km/h时爬坡度12% (6.8度);原地起步至100km/h的加速时间;最大爬坡度(16度);0到75km/h加速时间;具备2~3倍过载能力。2.电机参数设计一般来说,电动汽车整车动力性能指标中最高车速对应的是持续工作区,即电动机的额定功率;而最大爬坡度和全力加速时间对应的是短时工作区(1~5min),即电动机的峰值功率。2.1 以最高车速确定电机额定功率根据虽高车速计算电机功率时,不考虑加速阻力和坡道阻力,电机功率应满足:式中:电机输出功率,kw;传动系效率,取0.9;最大车重,取1400kg;滚动摩擦系数,取0.014;风阻系数,取0.33;迎风面积,取2.50㎡;最高车速,取100km/h。根据(1)(2)式,可以计算出满足最高车速时,电机输出额定功率为21.023kw[3]。2.2 根据要求车速的爬坡度计算 根据公式(4),其中在车速=60km/h时爬坡度5%可得:根据公式(4),其中在车速=40km/h时爬坡度12%可得: 根据(4)式,可以计算出满足车速为60km/h时,爬坡度为

汽车用驱动电机的特点和选型方法

注:表中性能从高到底的符号依次为:◎、○、□ 从高效率区来讲,表现出来的结果是永磁同步电机高效率区更宽,这也和电机的本身原理是有关系。像交流异步电机转子一定要励磁,就会损失一部分的能量,永磁电机因为转子永磁体本身可以产生磁场,使得效率占优。对于开关磁阻电机来说,转子上没有永磁体,也不需要感应,完全靠磁阻的变化,所以效率比永磁电机来说更低一些。如果说到调速范围,交流异步电机和永磁同步电机具有同类的调速的性能;如果说到恒功率范围,由于交流异步电机自身的特性,它的恒功率区一定会比永磁同步电机低一些。作为电动汽车驱动电机使用,直流电机和永磁式电机在结构和面对复杂的工作环境适应性太差,很容易发生机械和退磁的故障。开关磁阻电机应用到电动汽车是必然的趋势。 3.电机参数的选择 驱动电机选型主要参考的参数为:最大转矩,峰值功率,额定功率,最高转速,基速。在驱动电机选型时,确定峰值功率的决定性因素是百公里加速时间,确定最大转矩的决定性因素是最大爬坡度。 3.1 驱动电机的额定功率选择 汽车行驶的方程式为[9]: (1) 其中, Ttq/ Nm为电机转矩,nt为传动系统效率,i为当前挡位的总传动比,ua/(km/h)为车速,g为重力加速度,α/°为爬坡角度,最大质量m/kg、迎风面积A/m2、空气阻力系数CD、车轮滚动半径r/m。 电动汽车需要满足上述力的相互平衡,同时满足功率的平衡。驱动电机的额定功率应当满足纯电动汽车对最高速度的要求。考虑到驱动电机有一定过载能力,可以代入90%最高速度计算额定功率[8]。即额定功率须满足: (2) 其中umax/(km/h)为持续最高车速。根据式(1)可计算得出额定功率P。 3.2 驱动电机的峰值功率选择 驱动电机的峰值功率应同时满足电动汽车瞬时最高车速,最大爬坡度和加速性能的要求。a.纯电动汽车以某一速度完成最大爬坡时的功率需求为: (3) 其中,Pmax-i/kW为满足最大爬坡度要求的峰值功率,αmax/°为最大爬坡角度,ui/(km/h)为爬坡车速。代入数据得到Pmax_i。 b.纯电动汽车加速时的功率需求为: (4) 其中,Pmax_a/kW为满足最短加速时间要求的峰值功率。 对等式两边进行处理并对时间积分,得到: (5) 其中,Ft/N为驱动力,ut/(km/h)为加速过程的终速,根据动力性能要求应取值100 km/h,t/s为百公里加速时间。要特别注意的是,驱动电机基速前恒转矩,基速后恒功率的特性决定了驱动力Ft为一分段函数,即: (u≤ui)(6) (u>ui)(6)

电动汽车驱动电机类型种类和结构原理图

电动汽车驱动电机类型种类和结构原理图 随着电动汽车行业的发展,各大汽车厂商纷纷开发了自家的电动车型。在雨后春笋般的的电动汽车市场,大家在看车的时候,厂商均推出了各自车型应用的电机。到底不同的电机有什么差别,下面本文就来讲讲新能源汽车电机的基础知识,介绍各种电机在电动汽车应用特点。 一、什么是电机? 所谓电机,就是将电能与机械能相互转换的一种电力元器件。当电能被转换成机械能时,电机表现出电动机的工作特性;当机械能被转换成电能时,电机表现出发电机的工作特性。大部分电动汽车在刹车制动的状态下,机械能将被转化成电能,通过发电机来给电池回馈充电。

二、电动汽车应用驱动电机特点 基于电动汽车的特点,对所采用的电机也有较高的要求。为了提升最高时速,电机应有较高的瞬时功率和功率密度(W/kg);为了增加1次充电行驶距离,电机应有较高的效率;而且电动汽车是变速工作的,所以电机应有较高的高低速综合效率;此外有很强的过载能力、大的启动转矩、转矩响应要快。电动车起动和爬坡时速度较低,但要求力矩较大;正常运行时需要的力矩较小,而速度很高。低速时为恒转矩特性,高速时为恒功率特性,且电动机的运行速度范围应该较宽。另外,电机还应具备坚固、可靠,有一定的防尘防水能力,且成本不能过高。 目前,从现已成熟的电机技术来看,开关磁阻电机在各个技术特性方面似乎很符合电动车的使用需要,但尚未得到广泛应用;而现今永磁同步电机在电动汽车行业应用较广泛;现在较为知名的特斯拉Model系列均采用异步电机。此外,如果按电流类型划分还可分为直流电机和交流电机两种。下面根据转速、功率密度、体积等多方面特性参数对比来了解4种较为典型的驱动电机特点。

电动车电机及电池选型计算

CV11改装成四轮轮边驱动电动车 1、参考纯电动车的设计目标,本课题提出了其基本性能要求和指标如下: 1)最高速度≥45Km/h; 2)最大爬坡度≥20%(5Km/h); 3)30Km/h匀速行驶下的续驶里程≥120Km; 4)0—30Km/h加速时间≤10S。 2、关于CV11整车参数 3、轮边电机选型计算 电机功率 根据车辆的功率平衡方程式,有: 因为最高车速为45Km/h,传动系效率为,质量为1485Kg,滚动阻力系数为,

风阻系数为,迎风面积为㎡。 因此计算得出电机在最高车速下的驱动功率为,因此每个电机最大功率为。根据爬坡性能确定的最大功率 其中爬坡速度为5Km/h,传动系效率为,质量为1485Kg,滚动阻力系数为,爬坡度为20%。 考虑到坡度不大的情况下,cosα=1,sinα=tanα。 因此计算得出电机在以5Km/h,20%爬坡时的驱动功率为,因此每个电机最大功率为。 汽车起步加速过程可以按下式来表示: 其中x为拟合系数,一般取左右;t m为起步加速过程的时间(s);Vm为起步加速过程的末车速(Km/h)。 整车在加速过程的末时刻,动力源输出最大功率,此时速度为30Km/h,旋转质量换算系数为,加速时间为10S,,拟合系数x取。 因此计算得出电机要满足从0—30Km/h加速时间为10S需要的最大功率为,因此每个电机最大功率为。 综上所诉,电机的最大驱动功率应满足: 则有:最大功率为,取过载系数为2,因此额定功率为。 电机最高转速 电机转速及转矩公式如下: 其中最大车速为45Km/h,轮胎滚动半径为。 电机最大转矩 电机的基数、额定转矩

电机符合基速以下恒转矩,基速以上恒功率,因此在基速时,电机有最大功率和最大转矩。根据以下公式: 经过计算,取额定转速为250rpm,额定转矩为124Nm。 综合以上理论计算,根据设计目标确定的需求电机参数(经减速器后)如下表所示: 4、动力电池选型计算 纯电动汽车在行驶过程中的能量完全来自于动力电池组,动力电池组的容量越大,汽车的续驶里程就越长,但是相应的电池组的体积和重量也越大。 首先电池组总电压需要达到电机控制器的电压等级,一般为电机控制器的额定工作电压,因此动力电池组总电压暂取48V。 其次根据设计目标中以30Km/h行驶的续驶里程为120Km来计算匀速行驶所需的能量。匀速行驶时纯电动汽车的需求功率为: 式中,速度为30Km/h,计算得到功率为,那么四个电机所需总功率为。因为以30Km/h 行驶120Km需要用时4h,考虑到电池组放电效率为,而放电深度为80%,因此电池总能量为。 根据电池总能量可以求出电池容量,由公式: 得到,C=302Ah,汽车在实际行驶中,有加速以及爬坡情况,而在这两种工况下转矩增大,需要很大的放电电流,因此耗能比匀速行驶时要多,由上述理论计算结合实际的电池供应商的情况,最终选择。

电动汽车驱动电机匹配设计.

电动汽车驱动电机匹配设计 目录 1 概述 (1) 2 世界电动汽车发展史 (2) 3 电驱动系统的基本要求 (5) 3.1电驱动系统结构 (5) 3.2电机的基本性能要求 (6) 4 电动汽车基本参数参数确定 (7) 4.1电动汽车基本参数要求 (7) 4.2 动力性指标 (7) 5 电机参数设计 (7) 5.1 以最高车速确定电机额定功率 (7) 5.2 根据要求车速的爬坡度计算 (8) 5.3 根据最大爬坡度确定电机的额定功率 (9) 5.4 根据额定功率来确定电机的最大功率 (9) 5.5 电机额定转速和转速的选择 (9) 6 传动系最大传动比的设计 (10) 7 电机的种类与性能分析 (11) 7.1 直流电动机 (11) 7.2交流三相感应电动机 (11)

7.3 永磁无刷直流电动机 (11) 7.4 开关磁阻电动机 (12) 8 电机的选择 (13) 9 电机其他选择与设计 (15) 9.1 电机形状位置设计 (15) 9.2 电机冷却设计 (15) 10 总结与展望 (17) 10.1 总结 (17) 10.2 问题与展望 (17) 致谢 (18) 参考文献 (19) 1.概述 汽车工业在促进世界经济飞速发展和给人们生活提供便利的同时,又展现出了其双刃剑的另一面,它将能源与环境问题推到了日益尴尬的处境。“能源、环境和安全”成为了21世纪世界汽车工业发展的3大主题。其中,能源与环境问题作为全球面临的重大挑战和制约汽车工业可持续发展的症结所在,更成为重中之重。电动汽车使用电能作为动力能源,而电能具有来源广、清洁无污染等特点。电动汽车被公认为21世纪重要的交通工具。 电动汽车是指汽车行驶的动力全部或部分来自电机驱动系统的汽车,它主要以动力电池组为车载能量源,是涉及机械、电子、电力、微机控制等多学科的高科技技术产品。按照汽车行驶动力来源的不同,一般将电动汽车划分为纯电动汽车(Pure Electric Vehicle,PEV)、混合动力电动汽车(Hybrid Electric Vehicle,HEV)、插电式混合动力电动汽车(Plug-in Hybrid Electric Vehicle,PHEV)和燃料电池电动汽车(Fuel Cell Electric Vehicle,FCEV)4种基本类型。 自1881年法国电气工程师Gustave Trouve制造出首辆电动汽车开始,电动汽车经历了曲折起伏的几个发展阶段,其中的决定因素就是动力电池技术和人们

电动汽车用驱动电机系统的现状及发展趋势

电动汽车用驱动电机系统的现状及发展趋势 中国汽车技术研究中心窦汝振李磊宋建锋 摘要:介绍了我国电动汽车用驱动电机系统的研发现状,以及车用系统与普通工业用系统间的差异,指出了发展趋势。 1 引言 我国汽车工业的发展面临着来自能源安全、环境保护和气候变化等可持续发展要求的多重挑战。随着近几年汽车保有量的快速增加,汽车能源消耗增长呈现加速趋势,进一步加剧了我国石油供需矛盾。在当前石油资源日益紧张,价格不断攀升的国际形势下,发展电动汽车特别是混合动力汽车是缓解我国石油资源短缺现状的有效途径,也是增强我国汽车工业核心竞争力的重大战略举措。 经过“八五”、“九五”规划的实施,特别是“十五”国家863电动汽车重大专项,我国已实现了官、产、学、研的资源整合,具有了电动汽车用驱动电机系统自主研发能力。在国家“三纵三横”总体布局中(如附图所示),驱动电机及其控制系统被列为“三横”中的共性技术之一。 附图国家“十五”电动汽车重大专项布局示意 2 电动汽车用驱动电机系统的特点及分类 电动汽车对驱动电机系统的要求至少包括: (1)基速以下输出大转矩,以适应车辆的启动、加速、负荷爬坡、频繁起停等复杂工况; (2)基速以上为恒功率运行,以适应最高车速、超车等要求; (3)全转速运行范围内的效率最优化,以提高车辆的续驶里程; (4)结构坚固、体积小、重量轻、良好的环境适应性和高可靠性; (5)低成本及大批量生产能力。 电动汽车最早采用了直流电机系统,特点是成本低、控制简单,但重量大,需要定期维护。随电力电子技术、自动控制技术、计算机控制技术的发展,包括异步电机及永磁电机在内的交流电机系统体现出比直流电机系统更加优越的性能,目前已逐步取代了直流电机控制系统。特别是借助于设计方法、开发工具及永磁材料的不断进步,用于驱动的永磁同步电动机得到了飞速发展。 电动汽车中常用的交流电机主要有异步、永磁、开关磁阻三大类型,其特点如表1所示。

新能源电动汽车电驱动系统

新能源电动汽车电驱动 系统 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

现代电动汽车电驱动系统主要由四大部分组成:驱动电机、变速器、功率变换器和控制器。驱动电机是电气驱动系统的核心,其性能和效率直接影响电动汽车的性能。驱动电机和变速器的尺寸、重量也会影响到汽车的整体效率。功率变换器和控制器则对电动汽车的安全可靠运行有很大关系。 电驱动系统的由以下几个部分组成: 1.电动汽车驱动电机 选用小型轻量的高效电机,对目前电池容量较小、续驶里程较短的电动汽车现状显得尤为重要。早期电动汽车驱动电机大部分采用他励直流电机(DCM)。直流电机驱动系统改变输入电压或电流就可以实现对其转矩的独立控制,进行平滑调速,具有良好的动态特性,并且有成本低、技术成熟等优点。但是,直流电机的绝对效率低,体积、质量大,碳刷和换向器维护量大,散热困难等缺陷,使其在现代电动汽车中应用越来越少。随着电力电子技术、大规模集成电路和计算机技术的发展以及新材料的出现和现代控制理论的应用,机电一体化的交流驱动系统显示了它的优越性,如效率高、能量密度大、驱动力大、有效的再生制动、工作可靠和几乎无需维护等,使得交流驱动系统开始越来越多地应用于电动汽车中。目前在电动汽车中,主要采用永磁同步电机(PMSM)驱动系统、开关磁阻电机(SRM)驱动系统和异步感应电机(肼)驱动系统。 永磁同步电机(PMSM)是一种高性能的电机,具有体积小、重量轻、结构简单、效率高、控制灵活的优点,在电动汽车上得到了广泛的应用,是当前电动汽车用电动机的研发热点,是异步感应电机的最有力的竞争对手。目前,由日本研制的电动汽车主要采用这种电机,如Honda公司的EV Plus、Nissan公司的Altra和Toyota公司的RAV4及Prius车型等。但是,永磁电机的磁钢价格较高,磁性能受温度振动等因素的影响,有高温退磁等问题。 开关磁阻电机(SRM)是由磁阻电机和开关电路控制器组成的机电一体化新型调速电机。开关磁阻电机工作时,依次使定子线圈中的电流导通或截止,电流变化形成的磁场吸引转子的凸出磁极从而产生转矩。开关磁阻电机结构简单,成本较低,可靠性高,起动性能和调速性能好,控制装置也比较简单。然而在实际应用中,开关磁阻电动机存在着转矩波动大、噪声大、需要位置检测器等缺点,所以目前应用开关磁阻电机的驱动系统仍然很少,主要以Chloride公司的“Lucas”电动汽车为代表。 异步感应电机(M)具有结构简单、坚固、成本低、可靠性高、转矩脉动小、噪声小、转速极限高、无需位置传感器及免维护等特点,因而在电动汽车驱动电机领域里,是应用很广泛的一种无换向器电机。近年来,由IM驱动的电动汽车几乎都采用矢量控制和直接转矩控制。美国以及欧洲研制的电动汽车多采用这种电动机。 异步电机的矢量控制调速技术也比较成熟,其电驱动系统具有良好的性能,因此被较早地应用于电动汽车,目前仍然是电动汽车驱动系统的主流产品。迄今为止,美国“Impact’’系列、“ETX.2”型,日本“Cedric"、“OTwn"、“FEV"型,德国 “T4”、“190’’型等电动汽车均采用异步感应电机。异步电机的最大缺点是驱动电路复杂,效率比永磁电机和开关磁阻电机低,特别是在轻载运行时效率更低。因此,如何进一步提高异步电机的运行效率,己经成为人们关注的重要课题。 2.变速器

电动汽车电机选择与及设计

电动汽车 电动汽车电机选择与设计 学院:机械与车辆学院指导教师: : : : 摘要: 介绍了轮毂电机相对于燃油汽车和单电机集中驱动系统的优势,比较了各种电动汽车用电机的基本性能,选择不同性能的电机满足现状电动汽车的性能、结构需要,并对电动汽车的动力驱动——轮毂电机、以及涉及动力模块上结构、功能上的设计。 关键词:电动汽车;驱动系统;轮毂电机

概述 全世界的汽车保有量和使用量的逐日增大,世界能源问题越来越突出,电动汽车方向逐渐出现并在汽车领域占有了一个非常重要的位置,由于传统汽车的技术成熟,人们对汽车的性能要求已经达到一个比较高的程度。在对于电动汽车普及方面上,这是一个很大的障碍。但是,新能源汽车的开发发展是必然的,应当冲破旧思想的束缚,大胆创新,将电动汽车的优势充分体现是如今比较重要的一步。 早在20世纪50年代初,美国人罗伯特就发明了一种将电动机、传动系统和制动系统融为一体的轮毂装置。该轮毂于1968年被通用电气公司应用在大型的矿用自卸车上。相对与传动汽车、单电机集中驱动的汽车,轮毂电机式电动汽车具有以下优点: (1)动力控制通过电子线控技术实现对各电动轮进行无级变速控制,以及各电动轮之间的差速要求,省略了传统汽车所需的波箱、离合器、变速器、传动轴等;在电机所安装的位置同时可见,整车的结构变得简洁、紧凑,车身高降低,可利用空间大,传动效率高。 (2)容易实现各电动轮的电气制动、机电复合制动和制动能量回馈。 (3)底架结构大为简化,使整车总布置和车身造型设计的自由度增加。若能将底架承载功能与车身功能分离,则可实现相同底盘不同车身造型的产品多样化和系列化,从而缩短新车型的开发周期,降低开发成本。 (4)若在采用轮毂电机驱动系统的四轮电动汽车上导人线控四轮

电动车驱动电机和控制技术综述

电动车驱动电机及其控制技术综述 摘要:简述了电动车驱动系统及特点,在此基础上详细分析并比较了电动车主要电气驱动系统,着重介绍了一种深埋式永磁同步电动机及其控制系统,最后简要概述了电动车电气驱动系统的发展方向。 1 概述 电动车是一种安全、经济、清洁的绿色交通工具,不仅在能源、环境方面有其独特的优越性和竞争力,而且能够更方便地采用现代控制技术实现其机电一体化的目标,因而具有广阔的发展前景。 现有电动车大致可以分为以下几个主要部分:蓄电池、电池管理、充电系统、驱动系统、整车管理系统及车体等。驱动系统为电动车提供所需的动力,负责将电能转换成机械能。无论何种电动车的驱动系统,均具有基本相同的结构,都可以分成能源供给子系统、电气驱动子系统、机械传动子系统三部分,其中电气驱动子系统是电动车的心脏,主要包括电动机、功率电子元器件及控制部分。如图1所示。 其中,电动车驱动系统均具有相同或相似的功能模块,如图2所示。 2 电动车电气驱动系统比较 电动机的类型对电气驱动系统以及电动车整体性能影响非常大,评价电动车的电气驱动系统实质上主要就是对不同电动机及其控制方式进行比较和分析。目前正在应用或开发的电动车电动机主要有直流电动机、感应电动机、永磁无刷电动机、开关磁阻电动机四类。由这四类电动机所组成的驱动系统,其总体比较如下表所示。 电动车电气驱动系统用电动机比较表 下面分别对这几种电气驱动系统进行较为详细地分析和阐述。 2.1 直流驱动系统

直流电动机结构简单,具有优良的电磁转矩控制特性,所以直到20世纪80年代中期,它仍是国内外的主要研发对象。而且,目前国内用于电动车的绝大多数是直流驱动系统。 但普通直流电动机的机械换向结构易产生电火花,不宜在多尘、潮湿、易燃易爆环境中使用,其换向器维护困难,很难向大容量、高速度发展。此外,电火花产生的电磁干扰,对高度电子化的电动汽车来说将是致命的。此外,直流电动机价格高、体积和重量大。随着控制理论和电力电子技术的发展,直流驱动系统与其它驱动系统相比,已大大处于劣势。因此,目前国外各大公司研制的电动车电气驱动系统已逐渐淘汰了直流驱动系统。 2.2 感应电动机驱动系统 2.2.1 感应电动机 电动车感应电动机与一般感应电动机相比较具有以下特征: (1)稳定运行时,与一般感应电动机工况相似。 (2)驱动电动机没有一般感应电动机的起动过程,转差率小,转子上的集肤效应不明显。 (3)运行频率不是50hz,而是远远在此之上。 (4)采用变频调速方式时,转速与极数之间没有严格对应关系。 为此,电动车感应电动机设计方面如下特点: (1)尽力扩大恒转矩区,使电动机在高速运转时也能有较高转矩。而要提高转矩,则需尽量减小定转子之间的气隙,同时减小漏抗。 (2)更注重电动机的电磁优化设计,使转矩、功率和效率等因素达到综合最优。 (3)减少重量、体积,以增加与车体的适配性。 2.2.2 控制技术 应用于感应电动机的变频控制技术主要有三种:v/f控制、转差频率控制、矢量控制。20世纪90年代以前主要以pwm方式实现v/f控制和转差频率控制,但这两种控制技术因转速控制范围小,转矩特性不理想,而对于需频繁起动、加减速的电动车不太适宜。近几年

纯电动汽车驱动电机应用概述

纯电动汽车驱动电机应用概述 郑金凤 胡冰乐 张翔 (福建农林大学机电工程学院,福建 福州 350002) 摘 要:介绍了目前纯电动汽车的发展状况,叙述了纯电动汽车驱动电机不同类型的特点及相关的控制方法。还介绍了一些目前应用比较广泛的驱动电机控制方法的主要内容及其所解决的相关问题。 关键词:纯电动汽车 驱动电机 矢量控制 直接转矩控制 中图分类号:TP202 文献标识码:A Driving Motor for Electric Vehicles Application Overview Zheng Jinfeng Hu Bingle Zhang Xiang (College of Mechanical and Electronic Engineering,Fujian Agriculture and Forestry University,Fuzhou 350002,China) Abstract: the current state of development of electric vehicles and features of the electric vehicles are described.Otherwise,driving motors and its control methods are narrated. Also major contents of some driving motor control methods applied extensively at present and its related issues are discussed. Key words:Electric vehicle,Drive motor,Vector control,Direct Torque Control 引言 由于环境保护越来越受消费者和政府的重视,以及能源价格的不断上涨,使得世界的汽车制造商都纷纷加大开新能源汽车开发力度。在去年金融危机的影响下,今年以来,由于全球大多主流的汽车市场纷纷出现衰退,尤其以美国和日本为代表的两大汽车市场出现了急剧下滑,使得美国和日本汽车厂家不得不加速原本保守的计划,从而重新刺激美国和日本等原有核心市场。而电动汽车以电能为能源,具有零排放无污染的突出优点,因此备受汽车界的推崇。在中国,政府今年也不断的推出各种政策来促进纯电动汽车的发展。回顾一下国际上电动汽车的发展史,连这次至少有四次,世界汽车工业界要启动纯电动汽车,但是前三次都失败了。前三次失败主要是因为电池。前三次基本上都是以铅酸电池为基础,由于他的比能量和比价格都比较差,所以没有得到推广。现在随着电池技术的不断发展,使得纯电动汽车的推广得以实现。现在纯电动汽车主要采用的是锂电池,锂电池的比能量是铅酸电池的八到十倍,且质量轻。今年比亚迪、丰田、奇瑞等汽车公司都将推出各自的纯电动汽车。并且电动汽车将可能慢慢成为汽车发展的一种趋势和必然[1,2,3]。 1各种电动汽车驱动电机的性能[4-11] 纯电动汽车关键的难点重点在于电池技术和驱动电机。电池技术已经在一定程度上得到了突破。下面主要讨论一下驱动电机的相关状况。 1.1电动汽车驱动电机控制的关键问题 电动汽车是以车载电源为动力,并采用电动机驱动的一种交通工具。电机及其驱动系统是电动汽车的核心部件之一,由于电动汽车在运行过程中频繁起动和加减速操作,对驱动系统的有着很高的要求。下面主要阐述控制过程中的一些关键问题: (1)用在电动汽车的电动机应具有瞬时功率大、过载能力强(过载3~4倍)、加速性能好,使用寿命长的特点。 (2)电动汽车用电动机调速范围应该宽广,包括恒转矩区和恒功率区。要求在低速运行时可以输出大恒定转矩,来适应快速起动、加速、负荷爬坡等要求;高速时能够输出恒定功率,能有较大的调速范围,以适应平坦的路面、超车等高速行驶要求。

电动车电机及电池选型计算

电动车电机及电池选型 计算 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

C V11改装成四轮轮边驱动电动车 1、参考纯电动车的设计目标,本课题提出了其基本性能要求和指标如下: 1)最高速度≥45Km/h; 2)最大爬坡度≥20%(5Km/h); 3)30Km/h匀速行驶下的续驶里程≥120Km; 4)0—30Km/h加速时间≤10S。 2、关于CV11整车参数 3、轮边电机选型计算 电机功率 根据车辆的功率平衡方程式,有: 因为最高车速为45Km/h,传动系效率为,质量为1485Kg,滚动阻力系数为,风阻系数为,迎风面积为㎡。 因此计算得出电机在最高车速下的驱动功率为,因此每个电机最大功率为。 根据爬坡性能确定的最大功率

其中爬坡速度为5Km/h,传动系效率为,质量为1485Kg,滚动阻力系数为,爬坡度为20%。 考虑到坡度不大的情况下,cosα=1,sinα=tanα。 因此计算得出电机在以5Km/h,20%爬坡时的驱动功率为,因此每个电机最大功率为。 汽车起步加速过程可以按下式来表示: 其中x为拟合系数,一般取左右;tm为起步加速过程的时间(s);Vm为起步加速过程的末车速(Km/h)。 整车在加速过程的末时刻,动力源输出最大功率,此时速度为30Km/h,旋转质量换算系数为,加速时间为10S,,拟合系数x取。 因此计算得出电机要满足从0—30Km/h加速时间为10S需要的最大功率为,因此每个电机最大功率为。 综上所诉,电机的最大驱动功率应满足: 则有:最大功率为,取过载系数为2,因此额定功率为。 电机最高转速 电机转速及转矩公式如下: 其中最大车速为45Km/h,轮胎滚动半径为。 电机最大转矩 电机的基数、额定转矩 电机符合基速以下恒转矩,基速以上恒功率,因此在基速时,电机有最大功率和最大转矩。根据以下公式: 经过计算,取额定转速为250rpm,额定转矩为124Nm。

纯电动汽车的驱动电机系统详解

纯电动汽车的驱动电机系统详解 驱动电机系统是电动汽车三大核心系统之一,是车辆行驶的主要驱动系统,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。一、驱动电机系统介绍驱动电机系统由驱动电机、驱动电机控制器(MCU)构成,通过高低压线束、冷却管路与整车其他系统连接,如图1所示。整车控制器(VCU)根据加速踏板、制动踏板、挡位等信号通过CAN网络向电机控制器MCU发送指令,实时调节驱动电机的扭矩输出,以实现整车的怠速、加速、能量回收等功能。电机控制器能对自身温度、电机的运行温度、转子位置进行实时监测,并把相关信息传递给整车控制器VCU,进而调节水泵和冷却风扇工作,使电机保持在理想温度下工作。驱动电机技术指标参数,如表1所示,驱动电机控制器技术参数如表2所示。1、驱动电机永磁同步电机是一种典型的驱动电机(图2),具有效率高、体积小、可靠性高等优点,是动力系统的执行机构,是电能转化为机械能载体。它依靠内置旋转变压器、温度传感器(图3)来提供电机的工作状态信息,并将电机运行状态信息实时发送给MCU。旋转变压器检测电机转子位置,经过电机控制器内旋变解码器解码后,电机控制器可获知电机当前转子位置,从而控制相应的IGBT功率管导通,按顺序给定子三个线圈通电,驱

动电机旋转。温度传感器的作用是检测电机绕组温度,并提信息供给MCU,再由MCU通过CAN线传给VCU,进而控制水泵工作、水路循环、冷却电子扇工作,调节电机工作温度。驱动电机上有一个低压接口和三根高压线(V、U、W)接口,如图4所示。其中低压接口各端子定义如表3所示,电机控制器也正是通过低压端口获取的电机温度信息和电机 转子当前位置信息。2、驱动电机控制器驱动电机控制器MCU结构如图5所示,它内部采用三相两电平电压源型逆变器,是驱动电机系统的控制核心,称为智能功率模块,它以IGBT(绝缘栅双极型晶体管)为核心,辅以驱动集成电路、主控集成电路。MCU对所有的输入信号进行处理,并将驱动电机控制系统运行状态信息通过CAN2.0网络发送给整车控制器VCU。驱动电机控制器内含故障诊断电路,当电机出现异常时,达到一定条件后,它将会激活一个错误代码并发送给VCU整车控制器,同时也会储存该故障码和相关数据。驱动电机控制器主要依靠电流传感器(图6)、电压传感器、温度传感器来进行电机运行状态的监测,根据相应参数进行电压、电流的调整控制以及其它控制功能的完成。电流传感器用于检测电机工作实际电流,包括母线电流、三相交流电流。电压传感器用于检测供给电机控制器工作的实际电压,包括动力电池电压、12V蓄电池电压。温度传感器用于检测电机控制系统的工作温度,包括IGBT模块的温度。驱动电

电动汽车用驱动电机发展现状与趋势分析

龙源期刊网 https://www.wendangku.net/doc/9814523193.html, 电动汽车用驱动电机发展现状与趋势分析 作者:张勇 来源:《时代汽车》2016年第12期 摘要:目前,我国电动汽车行业正在不断发展,相关的生产技术也逐步完善。本文中,笔者即将对电动汽车用驱动电机进行介绍,并就驱动电机目前的发展状况以及在将来一段时间的发展趋势作出相关分析。 关键词:电动汽车;驱动电机;现状;趋势 1电动汽车用驱动电机概述 目前,电动汽车的不同特性对于驱动电机提出了不同类型的要求。其中,对速度要求较高的电动汽车,要求其电机的瞬时功率及功率密度值较高;而要求电池使用周期较长,充电后可以行使更远距离的电动汽车,要求电机的效率应相对较高;此外,电动汽车还要求驱动电机具有比较理想的高低速综合效率,用材坚固,耐用性强,且具有理想的防水性能,性价比高等特性。依据上述要求,目前国内设计生产的比较常见的驱动电机主要包括下述4种类型。 1.1直流有刷电机 直流有刷电机是一种采用直流供电的驱动电机,是最早研发并使用的电动汽车用驱动电机类型,且目前在很多类型的电动汽车中仍旧在广泛使用。直流有刷电机最大的优势在于控制特性较好,简单易于操作,且目前国内的生产技术较为成熟,质量比较稳定。 然而,直流有刷电机之所以后来逐步为其他类型的驱动电机所取代,正是由于其也存在着一些比较突显的缺陷。首先,由于直流有刷电机具有电刷及机械换向器两个结构,导致其电机过载能力及速度得不到有效的提高,且使用过程中对零部件的维护成本较高。此外,直流有刷电机的损耗主要发生在转子部分,这便导致产生的热量散失难度较大,对转矩质量比参数需要进一步优化。第三,直流有刷电机在运行过程中,电刷容易因摩擦产生火花,从而形成电磁干扰对电动汽车的正常运行造成不利影响。第四,由于采用的是机械换向器,因此会对电机的容量、转速等性能造成限制,越来越无法满足用户对于驱动电机的需求。 1.2感应电机 目前电动汽车中最为常用的就是交流三相感应电机。此类电机的定子和转子是通过对硅钢片进行叠压后制成的,没有其他零部件接触。具有结构简单,性能稳定,耐用性能优良等特点。此外,该电机的功率范围较广;可以通过空气进行冷却,也可以通过液体冷却;同时,对于周边环境具有很好的适应性能。相比于其他类型的驱动电机,感应电机的质量小,价位低,性价比高,并且保养及维修成本也相对较低。

电动汽车用电机可行性报告

1.我国电动汽车发展概况 1.1 产业背景 1.2 产业政策 1.3 发展状况 1.3.1 技术状况 1.3.2 产业化状况 1.3.3 产品状况 1.3.4 国内主要生产企业及其产品明细表 1.4 发展方向 1.4.1 未来趋势 1.4.2 专家评述 2.我国发展电动汽车的相关政策 2.1 国家发展电动汽车的相关政策(按出台时间、名称、主要内容列表) 2.2 各省市发展电动汽车的相关政策(对北京、山东、湖南、湖北、河南、安徽、天津等分述之) 2.3 电动汽车技术支持的相关单位与组织 3.电动汽车驱动系统与驱动电机 3.1 电动汽车对其驱动系统的主要技术要求 3.2 电动汽车驱动系统的分类及其说明 3.3 电动汽车驱动电机的分类及其技术指标汇总 3.4 国内电动汽车研发单位及其研发情况 3.5 电动汽车驱动电机发展方向 4.技术方案 4.1 永磁一磁阻同步电机先进性与可行性 4.2 永磁一磁阻同步电机的优越性 4.3 永磁一磁阻同步电机现有工作基础 5.技术路线 6.合作组织 7.投资估算 8.其他

国外电动汽车及其驱动系统(本网页可阅览) 1.电动汽车的技术特征 1.1 电动汽车的基本概念和基本分类 电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。它使用存储在电池中的电来发动。电动汽车主要有纯电动汽车、混合动力电动汽车和燃料电池电动汽车3种类型. 纯电动汽车 纯电动汽车是完全由二次电池(如铅酸电池、镍镉电池、镍氢电池或锂离子电池等)提供动力的汽车。 混合动力电动汽车 一般是指采用内燃机和电动机两种动力,将内燃机与储能器件(如高性能电池或超级电容器) 通过先进控制系统相结合, 提供车辆行驶所需要的动力, 混合动力电动汽车并未从根本上摆脱交通运输对石油资源的依赖。因此,混合动力电动汽车是电动汽车发展过程中的一种过渡车型。 燃料电池车 燃料电池车是利用氢气和氧气(或空气)在催化剂的作用下直接经电化学反应产生电能的装臵, 具有完全无污染(排放物为水)的优点, 1.2电动车的基本特点 概括来讲, 电动汽车与内燃机汽车相比有以下优点 (1)效率高:对能源的利用,电动汽车的总效率至少在19%以上(采用燃料电池时效率远高于这一数值),而内燃机汽车效率低于12%,由此可见, 电动汽车更加节能。 (2)环境污染小: 电动汽车排出的废气非常少甚至不排出废气, 产生的废热也明显少于内燃机汽车. (3)可使用多种能源: 可直接利用电厂输出的电能,也可以通过太阳能、化学能、机械能转化而获得电能。 (4)噪音低: 即使靠近正在高速运转的电动机也不会感觉到让人不舒服的噪音, 而内燃机的噪音则非常大。 (5)结构简单,使用维修方便,操作控制易实现自动化。 三种类型电动汽车的比较如附表所示

关于电动车电机及电池选型计算

关于电动车电机及电池选 型计算 This manuscript was revised on November 28, 2020

CV11改装成四轮轮边驱动电动车 1、参考纯电动车的设计目标,本课题提出了其基本性能要求和指标如下: 1)最高速度≥45Km/h; 2)最大爬坡度≥20%(5Km/h); 3)30Km/h匀速行驶下的续驶里程≥120Km; 4)0—30Km/h加速时间≤10S。 电机功率 根据车辆的功率平衡方程式,有: 因为最高车速为45Km/h,传动系效率为,质量为1485Kg,滚动阻力系数为,风阻系数为,迎风面积为㎡。 因此计算得出电机在最高车速下的驱动功率为,因此每个电机最大功率为。 根据爬坡性能确定的最大功率 其中爬坡速度为5Km/h,传动系效率为,质量为1485Kg,滚动阻力系数为,爬坡度为20%。 考虑到坡度不大的情况下,cosα=1,sinα=tanα。 因此计算得出电机在以5Km/h,20%爬坡时的驱动功率为,因此每个电机最大功率为。 汽车起步加速过程可以按下式来表示: 其中x为拟合系数,一般取左右;t m为起步加速过程的时间(s);Vm为起步加 速过程的末车速(Km/h)。 整车在加速过程的末时刻,动力源输出最大功率,此时速度为30Km/h,旋转质量换算系数为,加速时间为10S,,拟合系数x取。 因此计算得出电机要满足从0—30Km/h加速时间为10S需要的最大功率为,因此每个电机最大功率为。 综上所诉,电机的最大驱动功率应满足: 则有:最大功率为,取过载系数为2,因此额定功率为。 电机最高转速 电机转速及转矩公式如下: 其中最大车速为45Km/h,轮胎滚动半径为。 电机最大转矩

电动汽车用驱动电机系统的现状及发展趋势

电动汽车用驱动电机系统的现状及发展趋势

电动汽车用驱动电机系统的现状及发展趋势 中国汽车技术研究中心窦汝振李磊宋建锋 摘要:介绍了我国电动汽车用驱动电机系统的研发现状,以及车用系统与普通工业用系统间的差异,指出了发展趋势。 1 引言 我国汽车工业的发展面临着来自能源安全、环境保护和气候变化等可持续发展要求的多重挑战。随着近几年汽车保有量的快速增加,汽车能源消耗增长呈现加速趋势,进一步加剧了我国石油供需矛盾。在当前石油资源日益紧张,价格不断攀升的国际形势下,发展电动汽车特别是混合动力汽车是缓解我国石油资源短缺现状的有效途径,也是增强我国汽车工业核心竞争力的重大战略举措。 经过“八五”、“九五”规划的实施,特别是“十五”国家863电动汽车重大专项,我国已实现了官、产、学、研的资源整合,具有了电动汽车用驱动电机系统自主研发能力。在国家“三纵三横”总体布局中(如附图所示),驱动电机及其控制系统被列为“三横”中的共性技术之一。 附图国家“十五”电动汽车重大专项布局示意 2 电动汽车用驱动电机系统的特点及分类 电动汽车对驱动电机系统的要求至少包括: (1)基速以下输出大转矩,以适应车辆的启动、加速、负荷爬坡、频繁起停等复杂工况; (2)基速以上为恒功率运行,以适应最高车速、超车等要求; (3)全转速运行范围内的效率最优化,以提高车辆的续驶里程; (4)结构坚固、体积小、重量轻、良好的环境适应性和高可靠性; (5)低成本及大批量生产能力。 电动汽车最早采用了直流电机系统,特点是成本低、控制简单,但重量大,需要定期维护。随电力电子技术、自动控制技术、计算机控制技术的发展,包括异步电机及永磁电机在内的交流电机系统体现出比直流电机系统更加优越的性能,目前已逐步取代了直流电机控制系统。特别是借助于设计方法、开发工具及永磁材料的不断进步,用于驱动的永磁同步电动机得到了飞速发展。 电动汽车中常用的交流电机主要有异步、永磁、开关磁阻三大类型,其特点如表1所示。

分析电动汽车驱动电机发展现状

摘要:近年来,环境和能源问题正引起人们的高度重视,因此研发节约能源、少污染甚至无 污染的绿色汽车已成为全球的热点。驱动电机作为纯的核心零部件,其性能直接关系到的动 力性和能源转化效率,同时还需要满足汽车结构尺寸的限制及复杂工况下的运行条件。本文 重点对驱动电机进行介绍,并对驱动电机目前的发展现状进行分析。 0引言 纯指仅由电能驱动的,我国2012年发布的《节能与产业发展规划(2012-2020年)》中所 指的纯为符合国家“双80”标准的。纯电动主要包括动力电池及电池管理技术、驱动电机及其 控制技术、整车控制技术等。受限于电池技术的发展,目前面临的最大问题主要为续航里程 及成本问题,在电池能量密度低这一“瓶颈”问题没有取得重大突破之前,提高驱动电机系统 的效率显得尤为重要。 1电动汽车驱动特点分析 驱动电机作为纯的核心零部件,其性能直接关系到的动力性和能源转化效率,同时还需要 满足汽车结构尺寸的限制及复杂工况下的运行条件。因此,除了要求驱动电机效率高、重量轻、尺寸小、功率密度大、扭矩密度大、可靠性高以及成本低以外,还必须能够满足汽车的 频繁启动、停车、爬坡、急加速、急减速和倒车等复杂工况要求。这就要求驱动电机还需要 具备宽广的调速范围和较大的过载能力,以满足低速时高启动扭矩和爬坡能力,高速巡航时 恒功率输出能力。同时为进一步提高的续驶里程,还要求驱动电机具有能量回收功能,即在 车辆减速或者制动时将车辆的部分动能回收,转化为电能存储到动力电池中。 综合上述要求及特点,目前比较常见的可作为驱动的电机主要有四种:直流有刷电机、交 流异步感应电机、开关磁阻电机、永磁同步电机。 1.1直流有刷电机 直流有刷电机因控制简单、生产技术成熟在发展早期得到了广泛的采用。但因其结构上存 在电刷和换向器而限制了电机的转速和过载能力,同时其运转时会产生火花,可靠性较差, 需要经常维护保养,目前在驱动系统中已经被淘汰。 1.2交流异步感应电机 交流异步感应电机与直流电机相比,效率高、功率大、结构简单,无电刷和换向器,可靠 性高、便于维护。但与永磁电机相比,其存在损耗大、功率密度低、发热量大、功率因数低 等缺陷,在中的应用也逐渐被永磁电机所取代。 1.3开关磁阻电机 开关磁阻电机是近年来新研发的一种电机,具有结构简单、运行效率高、易于散热、耐高 温以及维护方便等显著特点,能够较好地满足的需求。但其扭矩脉动严重,电机运行噪声大,与永磁同步电机相比效率和功率密度均偏低,限制了其在中的应用。 1.4永磁同步电机 永磁同步电机采用永磁体直接励磁,具有体积小、无励磁损耗、效率和功率密度高、功率 因数高、转矩脉动小、振动和噪声小、可靠性高以及维护成本低等优点,已经逐渐取代其他 类型的电机作为的首选。但永磁材料在高温、振动以及过流的条件下,会产生不可逆的退磁 现象,这会降低永磁电机的性能。因此还需通过技术、工艺等方面的研究来提升永磁同步电 机的性能水平。

相关文档
相关文档 最新文档