文档库 最新最全的文档下载
当前位置:文档库 › 高考专题:平面向量中的三角形“四心”问题题型总结

高考专题:平面向量中的三角形“四心”问题题型总结

高考专题:平面向量中的三角形“四心”问题题型总结
高考专题:平面向量中的三角形“四心”问题题型总结

专题:平面向量中三角形“四心”问题题型总结

在三角形中,“四心”是一组特殊的点,它们的向量表达形式具有许多重要的性质,在近年高考试题中,总会出现一些新颖别致的问题,不仅考查了向量等知识点,而且培养了考生分析问题、解决问题的能力.现就“四心”作如下介绍:

1.“四心”的概念与性质

(1)重心:三角形三条中线的交点叫重心.它到三角形顶点距离与该点到对边中点距离之比为2∶1.在向量表达形式中,设点G 是△ABC 所在平面内的一点,则当点G 是△ABC 的

重心时,有GA +GB +GC =0或PG =13

(PA +PB +PC )(其中P 为平面内任意一点).反之,若GA +GB +GC =0,则点G 是△ABC 的重心.在向量的坐标表示中,若G ,A ,B ,C 分别是三角形的重心和三个顶点,且分别为G (x ,y ),A (x 1,y 1),B (x 2,y 2),C (x 3,

y 3),则有x =x 1+x 2+x 33,y =y 1+y 2+y 33

. (2)垂心:三角形三条高线的交点叫垂心.它与顶点的连线垂直于对边.在向量表达形

式中,若H 是△ABC 的垂心,则HA ·HB =HB ·HC =HC ·HA 或HA 2+BC 2=HB

2+CA 2=HC 2+AB 2.反之,若HA ·HB =HB ·HC =HC ·HA ,则H 是△ABC 的垂心.

(3)内心:三角形三条内角平分线的交点叫内心.内心就是三角形内切圆的圆心,它到

三角形三边的距离相等.在向量表达形式中,若点I 是△ABC 的内心,则有|BC |·IA +

|CA |·IB +|AB |·IC =0.反之,若|BC |·IA +|CA |·IB +|AB |·IC =0,则点I 是△ABC 的内心.

(4)外心:三角形三条边的中垂线的交点叫外心.外心就是三角形外接圆的圆心,它到

三角形的三个顶点的距离相等.在向量表达形式中,若点O 是△ABC 的外心,则(OA +

OB )·BA =(OB +OC )·CB =(OC +OA )·AC =0或|OA |=|OB |=|OC |.反

之,若|OA |=|OB |=|OC |,则点O 是△ABC 的外心.

2.关于“四心”的典型例题

[例1] 已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP =OA +λ(AB +AC ),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________心.

[解析] 由原等式,得OP -OA =λ(AB +AC ),即AP =λ(AB +AC ),根据

平行四边形法则,知AB +AC 是△ABC 的中线所对应向量的2倍,所以点P 的轨迹必过△

ABC 的重心.

[答案] 重

[点评] 探求动点轨迹经过某点,只要确定其轨迹与三角形中的哪些特殊线段所在直线重合,这可从已知等式出发,利用向量的线性运算法则进行运算得之.

[例2] 已知△ABC 内一点O 满足关系OA +2OB +3OC =0,试求S △BOC ∶S △COA ∶S △AOB

之值.

[解] 延长OB 至B

1,使BB 1=OB ,延长OC 至C 1,使CC 1=2OC ,

连接AB 1,AC 1,B 1C 1,如图所示,

则1OB =2OB ,1OC =3OC ,由条件,得OA +1OB +1

OC =0,所以点O 是△AB 1C 1的重心.从而S △B 1OC 1=S △C 1OA =S △AOB 1=13

S ,其中S 表示△AB 1C 1的面积,

所以S △COA =19S ,S △AOB =16S ,S △BOC =12S △B 1OC =12×13S △B 1OC 1=118

S . 于是S △BOC ∶S △COA ∶S △AOB =118∶19∶16

=1∶2∶3. [点评] 本题条件OA +2OB +3OC =0与三角形的重心性质GA +GB +GC =0

十分类似,因此我们通过添加辅助线,构造一个三角形,使点O 成为辅助三角形的重心,而三角形的重心与顶点的连线将三角形的面积三等分,从而可求三部分的面积比.

[引申推广] 已知△ABC 内一点O 满足关系λ1OA +λ2OB +λ3OC =0,则S △BOC ∶S

△COA ∶S △AOB =λ1∶λ2∶λ3.

[例3] 求证:△ABC 的垂心H 、重心G 、外心O 三点共线,且|HG |=2|GO |.

[证明] 对于△ABC 的重心G ,易知OG =OA +OB +OC 2

, 对于△ABC 的垂心H ,设OH =m (OA +OB +OC ),则

AH =AO +m (OA +OB +OC )=(m -1) OA +m OB +m OC .

由AH ·BC =0,得[(m -1) OA +m OB +m OC ](OC -OB )=0,

(m -1) OA ·(OC -OB )+m (OC 2-OB 2)=0,

因为|OC |=|OB |,

所以(m -1) OA ·(OC -OB )=0.但OA 与BC 不一定垂直,所以只有当m =1时,

上式恒成立.所以OH =OA +OB +OC ,从而OG =13

OH ,得垂心H 、重心G 、外心O 三点共线,且|HG |=2|GO |.

[引申推广]

重心G 与垂心H 的关系:HG =13

(HA +HB +HC ). [点评] 这是著名的欧拉线,提示了三角形的“四心”之间的关系.我们选择恰当的基底向量来表示它们,当然最佳的向量是含顶点A 、B 、C 的向量.

[例4] 设A 1,A 2,A 3,A 4,A 5 是平面内给定的5个不同点,则使1MA +2MA +3MA +

4MA +5MA =0成立的点M 的个数为( )

A .0

B .1

C .5

D .10

[解析] 根据三角形中的“四心”知识,可知在△ABC 中满足MA +MB +MC =0的

点只有重心一点,利用类比的数学思想,可知满足本题条件的点也只有1个.

[答案] B

[点评] 本题以向量为载体,考查了类比与化归,归纳与猜想等数学思想.本题的详细

解答过程如下:对于空间两点A ,B 来说,满足MA +MB =0的点M 是线段AB 的中点;对

于空间三点A ,B ,C 来说,满足MA +MB +MC =0,可认为是先取AB 的中点G ,再连接

CG ,在CG 上取点M ,使MC =2MG ,则M 满足条件,且唯一;对于空间四点A ,B ,C ,D 来说,

满足MA +MB +MC +MD =0,可先取△ABC 的重心G ,再连接GD ,在GD 上取点M ,使

DM =3MG ,则M 满足条件,且唯一,不妨也称为重心G ;与此类似,对于空间五点A ,B ,C ,

D ,

E 来说,满足MA +MB +MC +MD +ME =0,可先取空间四边形ABCD 的重心G ,

再连接GE ,在GE 上取点M ,使EM =4MG ,则M 满足条件,且唯一.

解三角形题型总结

解三角形题型分类解析 类型一:正弦定理 1、计算问题: 例1、(2013?北京)在△ ABC 中,a=3, b=5 , sinA=2,贝U sinB= ________ 3 a + b + c = sin A sin B sin C 例2、已知.'ABC中,.A =60 , 例3、在锐角△ ABC中,内角A, B, C的对边分别为a, b, c,且2asinB= 7b. 求角A的大小; 2、三角形形状问题 例3、在ABC中,已知a,b,c分别为角A, B, C的对边, a cos A 1)试确定-ABC形状。 b cosB 2)若—=c°s B,试确定=ABC形状。b cos A 4 )在.ABC中,已知a2 ta nB=b2ta nA,试判断三角形的形状。 5)已知在-ABC中,bsinB=csinC,且sin2 A =sin2 B sin2 C ,试判断三角形的形状。 例4、(2016年上海)已知MBC的三边长分别为3,5,7,则该三角形的外接圆半径等于 __________ 类型二:余弦定理 1、判断三角形形状:锐角、直角、钝角 在厶ABC中, 若a2b2c2,则角C是直角; 若a2b2 ::: c2,则角C是钝角; 若a2b2c2,则角C是锐角. 例1、在厶ABC中,若a=9,bT0,c=12,则厶ABC的形状是______________ , 2、求角或者边 例2、(2016 年天津高考)在△ABC 中,若AB= 13 ,BC=3, Z C =120’ 则AC=. 例3、在△ ABC中,已知三边长a=3 , b=4 , c=—37 ,求三角形的最大内角.

例4、在厶ABC中,已知a=7,b=3,c=5,求最大的角和sinC? 3、余弦公式直接应用 例5、:在也ABC中,若a2=b2+c2+bc ,求角A 例6、:(2013重庆理20)在厶ABC中,内角A B, C的对边分别是a,b,c, 且a2+ b2+、、2 ab= c2. (1)求C 例7、设厶ABC的内角A , B , C所对的边分别为 a , b , c .若(a- c)(a ? b ? c) =ab , 则角C二例8 (2016年北京高考) 在ABC中,a2c^b^ . 2ac (1)求/ B的大小; (2 )求、、.2 cosA - cosC 的最大值. 类型三:正弦、余弦定理基本应用 例1.【2015高考广东,理11】设ABC的内角A , B , C的对边分别为a , b , c ,若a = <::'3 , 1 n sin B = —,C = 一,则b =. 2 6 例 2. (a c) J=1,贝q B等于。 ac 例3.【2015高考天津,理13】在厶ABC中,内角A,B,C所对的边分别为a,b,c,已知 MBC 的面积为3、'15 , b—c =2,cos A =-1,则a 的值为. 4 1 例 4.在厶ABC中,sin(C-A)=1 , sinB= ,求sinA=。 3 例5.【2015高考北京,理12】在厶ABC 中, c=6,则sin2A = sin C

平面向量常见题型与解题方法归纳学生版

平面向量常见题型与解题方法归纳 (1) 常见题型分类 题型一:向量的有关概念与运算 例1:已知a是以点A(3,-1)为起点,且与向量b = (-3,4)平行的单位向量,则向量a的终点坐标是. 例2:已知| a |=1,| b |=1,a与b的夹角为60°, x =2a-b,y=3b-a,则x与y的夹角的余弦是多少 题型二:向量共线与垂直条件的考查 r r r r 例1(1),a b r r为非零向量。“a b⊥r r”是“函数()()() f x xa b xb a =+?-

为一次函数”的 A 充分而不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件 (2)已知O ,N ,P 在ABC ?所在平面内,且 ,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA ?=?=?,则点O ,N ,P 依次是ABC ?的 A.重心 外心 垂心 B.重心 外心 内心 C.外心 重心 垂心 D.外心 重心 内心 例2.已知平面向量a =(3,-1),b =(21, 2 3).(1) 若存在实数k 和t ,便得x =a +(t 2-3)b , y =-k a +t b ,且x ⊥y ,试求函数的关系式k =f(t);(2) 根据(1)的结论,确定k =f(t)的单调区间. 例3: 已知平面向量a ?=(3,-1),b ?=(2 1,23),若存在不为零的实数k 和角α,使向量c ?=a ?+(sin α -3)b ?, d ?=-k a ?+(sin α)b ?,且c ?⊥d ?,试求实数k 的

取值范围. 例4:已知向量)1,2(),2,1(-==b a ,若正数k 和t 使得向量 b t a k y b t a x 1)1(2 +-=++=与垂直,求k 的最小值. 题型三:向量的坐标运算与三角函数的考查 向量与三角函数结合,题目新颖而又精巧,既符合在知识的“交汇处”构题,又加强了对双基的考查. 例7.设函数f (x )=a · b ,其中向量a =(2cos x , 1), b =(cos x ,3sin2x ), x ∈R.(1)若f(x )=1-3且x ∈[-

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

高中解三角形题型大汇总

解三角形题型总结 题型一:正选定理的应用 1. ABC ?的三内角A 、B 、C 的对边边长分别为a b c 、、,若,2a A B ==, 则cos _____B = B. C. D. 2. 如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 3. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-,则 =A cos _________________。 4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b A . B . C D 5.ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A . 33sin 34+??? ? ?+πB B . 36sin 34+??? ??+πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 6. 在ABC ?中,已知3,1,60===?ABC S b A o ,则=++++C B A c b a sin sin sin 7.设ABC ?的内角,,A B C 的对边分别为,,a b c ,且35 cos ,cos ,3,513 A B b = ==则c =______

平面向量部分常见的考试题型

平面向量部分常见的题型练习 类型(一):向量的夹角问题 1.平面向量, 4==且满足2.=,则与的夹角为 2.已知非零向量, (2-⊥=,则与的夹角为 类型(二):向量共线问题 1. 已知平面向量),(x 32=,平面向量),,(182--=b 若a ∥b ,则实数x 2. 设向量),(,(3212==若向量b a +λ与向量)74(--=,共线,则=λ 3.已知向量) ,(,(x 211==若24-+与平行,则实数x 的值是( ) A .-2 B .0 C .1 D .2 类型(三): 向量的垂直问题 1.已知向量b a b x a ⊥==且),()6,3(,1,则实数x 的值为 2 .已知向量=--==b b a n b n a 与),若,(),,(211 3.已知=(1,2),=(-3,2)若k +2与2-4垂直,求实数k 的值 4. 42==,且b a 与的夹角为 3 π ,若的值垂直,求与k b a k b a k 22-+。 类型(四)投影问题 1. ,45==,与的夹角3 2π θ=,则向量在向量上的投影为 2. 在Rt △ABC 中,===∠AC C .,4,2 则π 类型(四)求向量的模的问题 1. 已知零向量====b a a ,则),(2510.,12 2. 已知向量, ====221 3. 已知向量a )3,1(= ,=+-=)0,2( 4. 设向量, 1== 及34=- ,求3+的值 类型(五)平面向量基本定理的应用问题 1.若=(1,1),=(1,-1),=(-1,-2),则等于 ( ) (A) 2321+- (B)2321-- (C)b a 2123- (D)b a 2 123+-

解三角形题型总结原创

解三角形题型总结 ABC ?中的常见结论和定理: 一、 内角和定理及诱导公式: 1.因为A B C π++=, 所以sin()sin ,cos()cos , tan()tan A B C A B C A B C +=+=-+=-; sin()sin ,cos()cos ,tan()tan A C B A C B A C B +=+=-+=-; sin()sin ,cos()cos ,tan()tan B C A B C A B C A +=+=-+=- 因为,22A B C π++= 所以sin cos 22A B C +=,cos sin 22 A B C +=,………… 2.大边对大角 3.在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC; (2)A 、B 、C 成等差数列的充要条件是B=60°; (3)△ABC 是正三角形的充要条件是A 、B 、C 成等差数列且a 、b 、c 成等比数列.

四、面积公式: (1)12a S ah = (2)1()2 S r a b c =++(其中r 为三角形内切圆半径) (3)111sin sin sin 222 S ab C bc A ac B === 五、 常见三角形的基本类型及解法: (1)已知两角和一边(如已知,,A B 边c ) 解法:根据内角和求出角)(B A C +-=π; 根据正弦定理 R C c B b A a 2sin sin sin ===求出其余两边,a b (2)已知两边和夹角(如已知C b a ,,) 解法:根据余弦定理2 2 2 2cos c a b ab C =+-求出边c ; 根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据内角和定理求角)(C A B +-=π. (3)已知三边(如:c b a ,,) 解法:根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据余弦定理的变形ac b c a B 2cos 2 22-+=求角B ; 根据内角和定理求角)(B A C +-=π (4)已知两边和其中一边对角(如:A b a ,,)(注意讨论解的情况) 解法1:若只求第三边,用余弦定理:222 2cos c a b ab C =+-; 解法2:若不是只求第三边,先用正弦定理R C c B b A a 2sin sin sin ===求B (可能出现一解,两解或无解的情况,见题型一); 再根据内角和定理求角)(B A C +-=π;. 先看一道例题: 例:在ABC ?中,已知0 30,32,6===B c b ,求角C 。(答案:045=C 或0135)

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

平面向量部分常见的考试题型总结

平面向量部分常见的题型练习 类型(一):向量的夹角问题 1?平面向量a,b,满足a =1,b =4且满足a.b = 2,则a与b的夹角为 _________ 2?已知非零向量a,b满足a = b,b丄(b—2a),则a与b的夹角为___________ 3?已知平面向量a,b满足(a -b).(2a - b) —4且*2,” 以且,则a与b的夹角为_________________ 4?设非零向量a、b、c满足| a |=| b |=| c |,a ■ b = c,则:::a, b = ____ 5?已知a =2」b| =3, a +b = J7,求a与b的夹角。 6?若非零向量a,b满足a = b ,(2a+b).b=0,则a与b的夹角为____________ 类型(二):向量共线问题 1. 已知平面向量a =(2,3x),平面向量b =( 一2,18),若a // b,则实数x ____________ 2. 设向量a = (2,1),b = (2,3)若向量,a - b与向量c = (- 4, - 7)共线,则,- 3?已知向量a (1,1),b (2, x)若a b与4b - 2a平行,则实数x的值是( ) A. -2 B. 0 C. 1 D. 2 4已知向量OA =(k,12),0B =(4,5),OC =(-k,10),且A, B, C三点共线, 则k = ___ 5. 已知A (1,3), B (—2,—3), C (x,7),设AB =a , BC = b 且a // b,则x 的值为() (A) 0 (B) 3 (C) 15 (D) 18 6. 已知a= (1, 2), b= (-3 —2)若k a+2b与2a-4b共线,求实数k的值; 7. 已知a —c是同一平面内的两个向量,其中 a = (1 —2)若|^ = 2. 5,且a // c,求c的坐标 —I- 8. n为何值时,向量a ( n ,1)与b = (4, n)共线且方向相同? 9. 已知a = 3,b = (1,2),且a // b,求a的坐标。 10. 已知向量a (2, -1),b ( -1, m),c =(-1,2),若(a b)// c,则m= ________________ 11. 已知a,b不共线,c =ka ? b,d =a -b,如果c // d,那么k= _________ ,c与d的方向关系

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 解三角形有用的结论

平面向量典型题型大全

平面向量 题型1.基本概念判断正误: 例2 (1)化简:①AB BC CD ++=u u u r u u u r u u u r ___;②AB AD DC --=u u u r u u u r u u u r ____;③()()AB CD AC BD ---=u u u r u u u r u u u r u u u r _____ (2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===u u u r r u u u r r u u u r r ,则||a b c ++r r r =_____ (3)若O 是ABC V 所在平面内一点,且满足2OB OC OB OC OA -=+-u u u r u u u r u u u r u u u r u u u r ,则ABC V 的形状为_ 9.与向量a =(12,5)平行的单位向量为 ( ) A .125,1313??- ??? B .12 5,1313??-- ??? C .125125,,13131313????-- ? ?????或 D .125125,,13131313???? -- ? ????? 或 10.如图,D 、E 、F 分别是?ABC 边AB 、BC 、CA 上的 中点,则下列等式中成立的有_________: ①+-=u u u r u u u r u u u r FD DA AF 0 ②+-=u u u r u u u r u u u r FD DE EF 0 ③+-=u u u r u u u r u u u r DE DA BE 0 ④+-=u u u r u u u r u u u r AD BE AF 0 11.设P 是△ABC 所在平面内的一点,2BC BA BP +=u u u r u u u r u u u r ,则( ) A.0PA PB +=u u u r u u u r r B.0PC PA +=u u u r u u u r r C.0PB PC +=u u u r u u u r r D.0PA PB PC ++=u u u r u u u r u u u r r 12.已知点(3,1)A ,(0,0)B ,(3,0)C .设BAC ∠的平分线AE 与BC 相交于E ,那么有BC CE λ=u u u r u u u r ,其中λ等于 ( ) A.2 B. 1 2 C.-3 D.-13 13.设向量a=(1, -3),b=(-2,4),c =(-1,-2),若表示向量4a ,4b -2c ,2(a -c ),d 的有向线段首尾相接能构成四边形, 则向量d 为 ( ) A.(2,6) B.(-2,6) C.(2,-6) D.(-2,-6) 14.如图2,两块斜边长相等的直角三角板拼在一起,若AD xAB yAC =+u u u r u u u r u u u r ,则 x = ,y = . 图2 15、已知O 是ABC △所在平面内一点D 为BC 边中点且20OA OB OC ++=u u u r u u u r u u u r r 那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 题型3平面向量基本定理 F E C B A

高考中《解三角形》题型归纳

1 《解三角形》题型归纳 【题型归纳】 题型一正弦定理、余弦定理的直接应用 例1ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin 2B A C +=. (1)求cos B (2)若6a c +=,ABC ?面积为2,求b . 【答案】(1)15 cos 17B =(2)2b =. 【解析】由题设及A B C π++=得2sin 8sin 2B B =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15 cos 17B =. (2)由15cos 17B =得8sin 17B =,故1 4 sin 217ABC S ac B ac ?==. 又2ABC S ?=,则17 2ac =. 由余弦定理及6a c +=得22222cos ()2(1cos ) b a c ac B a c ac B =+-=+-+17 15 362(14217=-??+=. 所以2b =. 【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出 例2ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =.【答案】π3【解析】1 π 2sin cos sin cos sin cos sin()sin cos 23B B A C C A A C B B B =+=+=?=?= .

2【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。 【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。 例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23 π,则S △ABC =________.【答案】34 【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B =π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34 .【易错点】大边对大角,应注意角的取值范围 【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。题型二利用正弦定理、余弦定理判定三角形的形状 例1在ABC ?中,角,,A B C 的对边分别为,,a b c ,且,,A B C 成等差数列 (1)若2b c ==,求ABC ?的面积 (2)若sin ,sin ,sin A B C 成等比数列,试判断ABC ?的形状 【答案】(1)32(2)等边三角形 【解析】(1)由A ,B ,C 成等差数列,有2B =A +C (1) 因为A ,B ,C 为△ABC 的内角,所以A +B +C =π.(2) 得B =3π, b 2=a 2+ c 2-2accosB (3)所以3 cos 44)32(22πa a -+=解得4=a 或2-=a (舍去)所以323 sin 2421sin 21=??==?πB ac s ABC (2)由a ,b ,c 成等比数列,有b 2=ac (4) 由余弦定理及(3),可得b 2=a 2+c 2-2accosB =a 2+c 2-ac 再由(4),得a 2+c 2-ac =ac ,即(a -c )2=0。因此a =c 从而A =C (5) 由(2)(3)(5),得A =B = C =3 π

【高中数学】解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。(1)三边之间的关系:a 2+b 2=c 2。(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。(1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面 【高中数学】

必修五解三角形题型归纳

一. 构成三角形个数问题 1在ABC中,已知a x,b 2,B 45°,如果三角形有两解,则x的取值范围是( ) A. 2 x 2 2 B. x 2,2 C . 2 x 2 D. 0x2 2 ?如果满足ABC 60 , AC 12 , BC k的厶ABC恰有一个,那么k的取值范围是 3.在ABC中,根据下列条件解三角形,其中有两个解的是() A* CJ =S J =J = 45=B. a = 60 ;b -= 81; B = = 60°+J C” a —7 > b —5j八眇 D ?。二14 , b - 20, "4亍二. 求边长问题 4.在ABC 中,角A, B,C所对边a,b,c,若a 3,C1200,ABC的面积S 15血4 则c() A. 5 B .6 C . V39D7 5.在△ ABC 中,a1,B 450,S ABC 2,则b = 三. 求夹角冋题 6.在ABC中,ABC -,AB4V2, BC 3,则sin BAC( ) v'10V103^10<5 A. 10 B5 C . 10D5

7 .在厶ABC 中,角A , B , C 所对的边分别a,b,C,S 为表示△ ABC 的面积,若 1 2 2 2 bcosA csinC, S (b c a ),则/ B=( 4 B . 60° C . 45° D . 30° 四. 求面积问题 &已知△ ABC 中,内角A , B, C 所对的边长分别为 a,b,c .若 a ZbcosAB -, c 1 ,则 △ ABC 的面积等于 ( ) g 6 4 2 9.锐角 ABC 中,角A 、B 、C 的对边分别是a 、b 、 1 c ,已知 cos2C - 4 ([)求 sinC 的值; (□)当 a 2, 2si nA si nC 时,求 b 的长及 ABC 的面积. 10?如图,在四边形 ABCD 中,AB 3,BC 7.3,CD 14, BD 7, BAD 120 a cosB A. 90° (1 )求AD 边的长; (2)求ABC 的面积.

高中数学-平面向量及常见题型

高中数学-平面向量及常见题型 向量知识点 ☆零向量:长度为o 的向量,记为0 ,其方向是任意的, 0与任意向量平行 ☆单位向量:模为1个单位长度的向量 向量a 0为单位向量 I a 0 I = 1 ☆平行向量(共线向量) :方向相同或相反的非零向量 平行向量也称为共线向量 uuu uuu uuu ☆向量加法AB BC = AC 向量加法有“三角形法则”与“平行四边形法则”: uuu LUUT uuur uuu uuu uuu AB BC CD L PQ QR AR ,但这时必须“首尾相连”. ☆实数与向量的积: ①实数入与向量a 的积是一个向量,记作入a ,它的长度与方向规定如下: (】)a a ; (n )当 0时,入a 的方向与a 的方向相同;当 0时,入a 的方向与a 的方向相反;当 0时,a 0, 方向是任意的 ☆两个向量共线定理: 向量b 与非零向量a 共线 有且只有一个实数 ,使得b = a ☆平面向量的基本定理: 如果e i ,e 2是一个平面内的两个不共线向量,那么对这一平面内的任一向量 a ,有且只有一对实数 i , 2使: a i0 2e 2,其中不共线的向量 e n e 2叫做表示这一平面内所有向量的一组基底 ☆平面向量的坐标运算: uun ⑵若 A X i , 2i , B X 2, 22 ,则 AB X 2 X i ,y 2 y ⑶若 a =(x,y ),贝u a =( x, y) ☆向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和性质 ra 若 r b y2 r b ra 则 y2 X y2 % X2 X r b ra x i y 2 X 2 y i r X>, y 2,则 a//b r b y1 ra 若 o 2 y 卷 ^1 X ra 则 y2 X2, r b y2 ra 若 5)

《解三角形》常见题型总结

《解三角形》常见题型总结 1、1正弦定理和余弦定理 1、1、1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形例1 在ABC中,已知 A:B:C=1:2:3,求a :b :c、 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。解: 【解题策略】 要牢记正弦定理极其变形形式,要做到灵活应用。例2在ABC 中,已知c=+,C=30,求a+b的取值范围。 【点拨】 此题可先运用正弦定理将a+b表示为某个角的三角函数,然后再求解。解:∵C=30,c=+,∴由正弦定理得:∴ a=2(+)sinA,b=2(+)sinB=2(+)sin(150-A)、 ∴a+b=2(+)[sinA+sin(150-A)]=2(+)2sin75cos(75-A)= cos(75-A)① 当75-A=0,即A=75时,a+b取得最大值=8+4;② ∵A=180-(C+B)=150-B,∴A<150,∴0<A<150,∴-75<75-A<75, ∴cos75<cos(75-A)≤1,∴> cos75==+、综合①②可得a+b的

取值范围为(+,8+4>考察点2:利用正弦定理判断三角形形状例3在△ABC中,tanB=tanA,判断三角形ABC的形状。 【点拨】 通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC的形状。解:由正弦定理变式a=2RsinA,b=2RsinB得:,即,,、∴为等腰三角形或直角三角形。 【解题策略】 “在△ABC中,由得∠A=∠B”是常犯的错误,应认真体会上述解答过程中“∠A=∠B或∠A+∠B=”的导出过程。例4在△ABC 中,如果,并且B为锐角,试判断此三角形的形状。 【点拨】 通过正弦定理把边的形式转化为角的形式,利用两角差的正弦公式来判断△ABC的形状。解:、又∵B为锐角,∴B= 45、由由正弦定理,得,∵代入上式得:考察点3:利用正弦定理证明三角恒等式例5在△ABC中,求证、 【点拨】 观察等式的特点,有边有角要把边角统一,为此利用正弦定理将转化为、证明:由正弦定理的变式得:同理 【解题策略】 在三角形中,解决含边角关系的问题时,常运用正弦定理进行边角互化,然后利用三角知识去解决,要注意体会其中的转化

解三角形常见题型归纳

解三角形常见题型归纳 正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。 题型之一:求解斜三角形中的基本元素 指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题. 1. 在ABC ?中,AB=3,AC=2,BC=10,则AB AC ?=u u u r u u u r ( ) A .23- B .32- C .32 D .2 3 【答案】D 2.(1)在?ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形; (2)在?ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。 3.(1)在?ABC 中,已知=a c 060=B ,求b 及A ; (2)在?ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 4(2005年全国高考江苏卷) ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A .33sin 34+??? ? ? + πB B .36sin 34+??? ? ? +πB C .33sin 6+??? ? ? + πB D .36sin 6+??? ? ? +πB 分析:由正弦定理,求出b 及c ,或整体求出b +c ,则周长为3+b +c 而得到结果.选(D). 5 (2005年全国高考湖北卷) 在ΔABC 中,已知6 6 cos ,364== B AB ,A C 边上的中线B D =5,求sin A 的值. 分析:本题关键是利用余弦定理,求出AC 及BC ,再由正弦定理,即得sin A . 解:设E 为BC 的中点,连接DE ,则DE //AB ,且3 6221== AB DE ,设BE =x 在ΔBDE 中利用余弦定理可得:BED ED BE ED BE BD cos 22 2 2 ?-+=, x x 6636223852??++ =,解得1=x ,3 7 -=x (舍去) 故BC =2,从而3 28 cos 2222= ?-+=B BC AB BC AB AC ,即3212=AC 又630sin =B ,

平面向量部分常见考试题型总结

平面向量部分常见得题型练习类型(一):向量得夹角问题 1、平面向量,满足且满足,则得夹角为 2、已知非零向量满足,则得夹角为 3、已知平面向量满足且,则得夹角为 4、设非零向量、、满足,则 5、已知 6、若非零向量满足则得夹角为 类型(二):向量共线问题 1.已知平面向量,平面向量若∥,则实数 2.设向量若向量与向量共线,则 3、已知向量若平行,则实数得值就是( ) A.-2??B.0 ?C.1?D.2 _____ ) 10 , ( ), 5 4( ), 12 , ( .4 = - = = = k C B A k k 则 三点共线, , , ,且 , 已知向量 5.已知,设,且∥,则x得值为() (A)0 (B)3 (C)15(D) 18 6.已知=(1,2),=(-3,2)若k+2与2-4共线,求实数k得值; 7.已知,就是同一平面内得两个向量,其中=(1,2)若,且∥,求得坐标 8、n为何值时,向量与共线且方向相同? 9、已知∥,求得坐标。 10、已知向量,若()∥,则m= 11、已知不共线,,如果∥,那么k=,与得方向关系就是 12、已知向量∥,则 类型(三): 向量得垂直问题 1.已知向量,则实数得值为 2.已知向量 3.已知=(1,2),=(-3,2)若k+2与2-4垂直,求实数k得值 4.已知,且得夹角为,若。 5、已知求当为何值时,垂直? 6、已知单位向量 7、已知求与垂直得单位向量得坐标。

8、 已知向量的值为垂直,则实数与且向量),(λλb a b a b a 2)0,1(,23-+-=-= 9、 10、 ∥, 类型(四)投影问题 1. 已知,得夹角,则向量在向量上得投影为 2. 在△中, 3.关于且,有下列几种说法: ① ; ② ;③ ④在方向上得投影等于在 方向上得投影 ;⑤;⑥ 其中正确得个数就是 ( ) (A)4个 (B)3个 (C)2个 (D)1个 类型(四)求向量得模得问题 1. 已知零向量 2. 已知向量满足 3. 已知向量, 4.已知向量得最大值为 5、 设点M 就是线段B C得中点,点A 在直线BC 外, (A) 8 (B ) 4 (C) 2 (D ) 1 6、 设向量,满足及,求得值 7、 已知向量满足求 8、 设向量,满足 类型(五)平面向量基本定理得应用问题 1.若=(1,1),=(1,-1),=(-1,-2),则等于 ( ) (A) (B) (C) (D) 2、已知b a c c b a μλμλ+=-===的值,使和),求,(),,(),,(011101 3、设就是平面向量得一组基底,则当时, 4、下列各组向量中,可以作为基底得就是( ) (A ) (B) (C) (D) 5、 (A) (B) (C) (D) d c d c m R m m +⊥∈-=+===平行与若为何值时)当( ) 与,)2?(,1623,23.6π 类型(六)平面向量与三角函数结合题

相关文档
相关文档 最新文档