文档库 最新最全的文档下载
当前位置:文档库 › PCB地线的干扰与抑制分析

PCB地线的干扰与抑制分析

PCB地线的干扰与抑制分析
PCB地线的干扰与抑制分析

摘要:在PCB设计中,尤其是在高频电路中,经常会遇到由于地线干扰而引起的一些不规律、不正常的现象。本文对地线产生干扰的原因进行分析,详细介绍了地线产生干扰的三种类型,并根据实际应用中的经验提出了解决措施。这些抗干扰方法在实际应用中取得了良好的效果,使一些系统在现场成功运行。

在单片机系统中,PCB(印制电路板)是用来支撑电路元件,并提供电路元件和器件之间电气连接的重要组件,PCB导线多为铜线,铜自身的物理特性也导致其在导电过程中必然存在一定的阻抗,导线中的电感成分会影响电压信号的传输,电阻成分则会影响电流信号的传输,在高频线路中电感的影响尤为严重,因此,在PCB设计中必须注意和消除地线阻抗所带来的影响。

1 产生干扰的原因

电阻与阻抗两个不同的概念。电阻指的是在直流状态下导线对电流呈现的阻抗,而阻抗指的是交流状态下导线对电流的阻抗,这个阻抗主要是由导线的电感引起的。由于地线总是存在阻抗,因此用万用表测量地线时,地线的电阻一般是mmΩ级。

以PCB上一段长10 cm、宽1.5 mm,厚度为50μm的导线为例,通过计算可得到其阻抗的大小。R=ρL/s(Ω),式中L为导线长度(m),s为导线截面积(mm2),ρ

为电阻率ρ=0.02,因此该导线电阻值约为0.026 Ω。

当一段导线与其他导线远离并且其长度远大于宽度时,导线的自感量为0.8 μH/m,那么10 cm长的导线的电感量是0.08μH。再由下面的公式求出导线感抗:XL=2πfL,下式中,f为导线通过信号的频率(Hz),L为单位长度导线的自感量(H)。所以分别计算出该导线在低频和高频下的感抗值:

在实际电路中,造成电磁干扰的信号往往是脉冲信号,脉冲信号包含丰富的高频成分,因此会在地线上产生较大的电压。通过以上的公式计算可以看出,在低频信号传输中导线电阻大于导线感抗,对于数字电路,电路的工作频率很高,在高频信号中导线感抗要远大于导线电阻。因此,地线阻抗对数字电路的影响是十分可观的。这就是电流流过小电阻时产生大压降,导致电路工作异常的原因。

2 地线干扰机理

2.1 地环路干扰

地环路干扰是一种较常见的干扰现象,常常发生在通过较长电缆连接并且相距较远的设备之间。地线造成电磁干扰的主要原因是地线存在阻抗,当电流流过地线时,会在地线上产生电压,这就是地线噪声。在这个电压的驱动下,会产生地线环路电流,形成地环路干扰。如图1所示是两个接地的电路。

由于两个设备的地电位不同,形成地电压,在这个电压的驱动下,“设备1一互联电缆一设备2一地”形成的环路之间有电流流动。由于电路的不平衡性,每根导线上的电流不同,因此会产生差模电压,对电路造成干扰。

由于地环路干扰是因地环路电流而导致的,因此有时会发现,当把一个设备的地线断开后,干扰现象消失,这是因为地线断开时切断了地环路。这种现象经常发生在低频干扰的场合,当干扰频率较高时,断开地线与否关系不大。

2.2 公共阻抗干扰

在数字电路中,由于信号的频率较高,地线往往呈现较大的阻抗。这时,当几个电路共用一段地线时,由于地线的阻抗,一个电路的地电位会受另一个电路工作电流的调制,这样一个电路中的信号会耦合进另一个电路,这种耦合称为公共阻抗耦合。

解决公共阻抗耦合的方法是减小公共地线部分的阻抗,或采用单点接地,彻底消除公共阻抗图2的例子说明了一种干扰现象。图2是一个有四个门电路组成的简单电路。假设门1的输出电平由高变为低,这时电路中的寄生电容(有时门2的输入端有滤波电容)会通过门1向地线放电,由于地线的阻抗,放电电流会在地线上产生尖峰电压,如果这时门3的输出是低电平,则这个尖峰电压就会传到门3的输出端,门4的输入端,如果这个尖峰电压的幅度超过门4的噪声门限,就会造成门4 的误动作。

2.3 地环路电磁耦合干扰

图1所示的“地线环路”将包围一定的面积,根据电磁感应定律,如果这个环路所包围的面积中有变化的磁场存在,就会在环路中产生感生电流,形成干扰。空间磁场的变化无处不在,于是包围的面积越大干扰就越严重。

3 解决地线干扰的方法

3.1 解决地环路干扰

解决地环路干扰的基本思路有3个:一个是减小地线的阻抗,从而减小干扰电压,但是这对第二种原因导致的地环路干扰没有效果。第二个方法是改变接地结构,将一个机箱的地线连接到另一个机箱上,通过另一个机箱接地,这就是单点接地的概念。第三个是增加地环路的阻抗,从而减小地环路电流。当阻抗无限大时,实际是将地环路切断,即消除了地环路。因此提出以下几种解决地环路干扰的方案。

1)将一侧的设备浮地

如果将一侧电路浮地,就切断了地环路,因此可以消除地环路电流。但有两个问题需要注意,一个是出于安全的考虑,不允许电路浮地。这时可以考虑将设备通过一个电感接地。这样对于50 Hz的交流电流设备接地阻抗很小,而对于频率较高的干扰信号,设备接地

阻抗较大,减小了地环路电流。但这样做只能减小高频干扰的地环路干扰。另一个问题是,尽管设备浮地,但设备与地之间还是有寄生电容,这个电容在频率较高时会提供较低的阻抗,因此并不能有效地减小高频地环路电流。

2)使用变压器

解决地环路干扰的最基本方法是切断地环路。用隔离变压器就起到这个作用,两个设备之间的信号传输通过磁场耦合进行,而避免了电气直接连接。这时地线上的干扰电压出现在变压器的初次级之间,而不是在电路的输入端。提高变压器高频隔离效果的一个办法是在变压器的初次级之间设置屏蔽层。但一定要注意隔离变压器屏蔽层的接地端必须在接受电路一端。否则,不仅不能改善高频隔离效果,还可能使高频耦合更加严重。因此,变压器要安装在信号接收设备的一侧。

变压器隔离的方法有一些缺点,不能传输直流,体积大,成本高。由于变压器的初次级之间有寄生电容,因此高频时的隔离效果不是很好。

3)使用光隔离元件

用光传输信号是解决地环路问题的理想方法。如图3所示,光耦器件的寄生电容为2 pF左右,因此能够在很高的频率起到隔离作用。如果使用光纤,则没有寄生电容的问题,能够获得十分完善的隔离效果。但是,用光纤会带来其它问题,如:需要更大的功率、需要更多的外围器件,光连接的线形和动态范围都达不到模拟信号的要求、光缆的安装和维护比较复杂等,使用时应注意。

4)使用共模扼流圈

地线电压实际是一种共模电压,在这个电压的驱动下,电缆中流过的电流是共模电流。在连接电缆上使用共模扼流圈相当于增加了地环路的阻抗,这样在一定的地线电压作用下,地环路电流会减小。但要注意控制共模扼流圈的寄生电容,否则对高频干扰的隔离效果很差。共模扼流圈的匝数越多,则寄生电容越大,高频隔离的效果越差。

5)平衡电路对地环路干扰的抑制

平衡电路的定义是两个导体及其所连接的电路相对于地线或其他参考物体具有相同的阻抗。

高频时平衡是很困难的,实际的电路会有很多寄生因素,如寄生电容、电感等。这些参数在频率较高时对电路阻抗发挥着较大作用。由于这些寄生参数的不确定性,电路的阻抗也是不确定的,因此很难保证两个导体的阻抗完全相同。因此,在高频时,电路平衡性往往较差,这意味着:平衡电路对频率较高的地环路电流干扰抑制效果较差。

3.2 消除公共阻抗耦合

消除公共阻抗耦合的途径有两个,一个是减小公共地线部分的阻抗,这样公共地线上的电压也随之减小,从而控制公共阻抗耦合。另一个方法是通过适当的接地方式避免容易相互干扰的电路共用地线,一般要避免强电电路与弱电电路共用地线,数字电路与模拟电路共用地线等。并联接地的缺点是接地的导线过多。因此在实际中,没有必要所有电路都并联单点接地,对于相互干扰较少的电路,可以采用串联单点接地。例如,可以将电路按照强信号,弱信号,模拟信号,数字信号等分类,然后在同类电路内部用串联单点接地,如图4

所示,不同类型的电路采用并联单点接地,如图5所示。当信号频率低于1 MHz时可采用单点接地的方法,使其不形成回路。信号频率高于10 MHz时最好采用多点接地,尽量降低地线阻抗。电源线与地线应尽量靠近走线以减少所包围的环路面积,从而减少外界磁场对环路切割产生的电场干扰,同时也减少环路对外电磁辐射。

如前所述,减小地线阻抗的核心问题是减小地线的电感。可以使用扁平导体做地线,或用多条相距较远的并联导体作接地线。对于PCB,在双层板上布地线网格能够有效地减小地线阻抗,在多层板中可以专门用一层做地线来减小阻抗。

4 结论

抗干扰设计是单片机系统设计的重要环节,其设计的好坏往往决定整个系统的成败。关于接地,许多关于电磁兼容的专著中都有详细的论述,但是,最好的接地方式应该是通过试验来选定的,地线干扰也要通过试验来查找和排除。本文介绍了地线引起干扰的原因和解决方法,说明了地线设计中的一般方法和原则,只有在理论的指导下,经过大量的试验过程和经验积累才能更好地掌握接地系统的设计方法和干扰排除手段,从而更好的提高电路工作的可靠性。

1.地线的定义

什么是地线?大家在教科书上学的地线定义是:地线是作为电路电位基准点的等电位体。这个定义是不符合实际情况的。实际地线上的电位并不是恒定的。如果用仪表测量一下地线上各点之间的电位,会发现地线上各点的电位可能相差很大。正是这些电位差才造成了电路工作的异常。电路是一个等电位体的定义仅是人们对地线电位的期望。HENRY 给地线了一个更加符合实际的定义,他将地线定义为:信号流回源的低阻抗路径。这个定义中突出了地线中电流的流动。按照这个定义,很容易理解地线中电位差的产生原因。因为地线的阻抗总不会是零,当一个电流通过有限阻抗时,就会产生电压降。因此,我们应该将地线上的电位想象成象大海中的波浪一样,此起彼伏。

2.地线的阻抗

谈到地线的阻抗引起的地线上各点之间的电位差能够造成电路的误动作,许多人觉得不可思议:我们用欧姆表测量地线的电阻时,地线的电阻往往在毫欧姆级,电流流过这么小的电阻时怎么会产生这么大的电压降,导致电路工作的异常。要搞清这个问题,首先要区分开导线的电阻与阻抗两个不同的概念。电阻指的是在直流状态下导线对电流呈现的阻抗,而阻抗指的是交流状态下导线对电流的阻抗,这个阻抗主要是由导线的电感引起的。任何导线都有电感,当频率较高时,导线的阻抗远大于直流电阻,

表1 给出的数据说明了这个问题。在实际电路中,造成电磁干扰的信号往往是脉冲信号,脉冲信号包含丰富的高频成分,因此会在地线上产生较大的电压。对于数字电路而言,电路的工作频率是很高的,因此地线阻抗对数字电路的影响是十分可观的。

如果将10Hz时的阻抗近似认为是直流电阻,可以看出当频率达到10MHz 时,对于1米长导线,它的阻抗是直流电阻的1000 倍至10万倍。因此对于射频电流,当电流流过地线时,电压降是很大的。从表上还可以看出,增加导线的直径对于减小直流电阻是十分有效的,但对于减小交流阻抗的作用很有限。但在电磁兼容中,人们最关心的交流阻抗。为了减小交流阻抗,一个有效的办法是多根导线并联。当两根导线并联时,其总电感L为:

L = ( L1 M ) / 2

式中,L1 是单根导线的电感,M是两根导线之间的互感。从式中可以看出,当两根导线相距较远时,它们之间的互感很小,总电感相当于单根导线电感的一半。因此我们可以通过多条接地线来减小接地阻抗。但要注意的是,多根导线之间的距离不能过近。

3.地线干扰机理

3.1地环路干扰

由于地线阻抗的存在,当电流流过地线时,就会在地线上产生电压。当电流较大时,这个电压可以很大。例如附近有大功率用电器启动时,会在地线在中流过很强的电流。这个电流会在两个设备的连接电缆上产生电流。由于电路的不平衡性,每根导线上的电流不同,因此会产生差模电压,对电路造成影响。由于这种干扰是由电缆与地线构成的环路电流产生的,因此成为地环路干扰。地环路中的电流还可以由外界电磁场感应出来。

3.2公共阻抗干扰

当两个电路共用一段地线时,由于地线的阻抗,一个电路的地电位会受另一个电路工作电流的调制。这样一个电路中的信号会耦合进另一个电路,这种耦合称为公共阻抗耦合。

4.地线干扰对策

4.1地环路对策从地环路干扰的机理可知,只要减小地环路中的电流就能减小地环路干扰。如果能彻底消除地环路中的电流,则可以彻底解决地环路干扰的问题。因此我们提出以下几种解决地环路干扰的方案。

A. 将一端的设备浮地如果将一端电路浮地,就切断了地环路,因此可以消除地环路电流。但有两个问题需要注意,一个是出于安全的考虑,往往不允许电路浮地。这时可以考虑将设备通过一个电感接地。这样对于50Hz的交流电流设备接地阻抗很小,而对于频率较高的干扰信号,设备接地阻抗较大,减小了地环路电流。但这样做只能减小高频干扰的地环路干扰。另一个问题是,尽管设备浮地,但设备与地之间还是有寄生电容,这个电容在频率较高时会提供较低的阻抗,因此并不能有效地减小高频地环路电流。

B. 使用变压器实现设备之间的连接利用磁路将两个设备连接起来,可以切断地环路电流。但要注意,变压器初次级之间的寄生电容仍然能够为频率较高的地环路电流提供通路,因此变压器隔离的方法对高频地环路电流的抑制效果较差。提高变压器高频隔离效果的一个办法是在变压器的初次级之间设置屏蔽层。但一定要注意隔离变压器屏蔽层的接地端必须在接受电路一端。否则,不仅不能改善高频隔离效果,还可能使高频耦合更加严重。因此,变压器要安装在信号接收设备的一侧。经过良好屏蔽的变压器可以在1MHz以下的频率提供有效的隔离。

C. 使用光隔离器另一个切断地环路的方法是用光实现信号的传输。这可以说是解决地环路干扰问题的最理想方法。用光连

接有两种方法,一种是光耦器件,另一种是用光纤连接。光耦的寄生电容一般为2pf,能够在很高的频率提供良好的隔离。光纤几乎没有寄生电容,但安装、维护、成本等方面都不如光耦器件。

D. 使用共模扼流圈在连接电缆上使用共模扼流圈相当于增加了地环路的阻抗,这样在一定的地线电压作用下,地环路电流会减小。但要注意控制共模扼流圈的寄生电容,否则对高频干扰的隔离效果很差。共模扼流圈的匝数越多,则寄生电容越大,高频隔离的效果越差。

4.2消除公共阻抗耦合

消除公共阻抗耦合的途径有两个,一个是减小公共地线部分的阻抗,这样公共地线上的电压也随之减小,从而控制公共阻抗耦合。另一个方法是通过适当的接地方式避免容易相互干扰的电路共用地线,一般要避免强电电路和弱电电路共用地线,数字电路和模拟电路共用地线。如前所述,减小地线阻抗的核心问题是减小地线的电感。这包括使用扁平导体做地线,用多条相距较远的并联导体作接地线。对于印刷线路板,在双层板上布地线网格能够有效地减小地线阻抗,在多层板中专门用一层做地线虽然具有很小的阻抗,但这会增加线路板的成本。通过适当接地方式避免公共阻抗的接地方法是并联单点接地,如图4 所示。并联接地的缺点是接地的导线过多。因此在实际中,没有必要所有电路

都并联单点接地,对于相互干扰较少的电路,可以采用串联单点接地。例如,可以将电路按照强信号,弱信号,模拟信号,数字信号等分类,然后在同类电路内部用串联单点接地,不同类型的电路采用并联单点接地。

5.小结

地线造成电磁干扰的主要原因是地线存在阻抗,当电流流过地线时,会在地线上产生电压,这就是地线噪声。在这个电压的驱动下,会产生地线环路电流,形成地环路干扰。当两个电路共用一段地线时,会形成公共阻抗耦合。解决地环路干扰的方法有切断地环路,增加地环路的阻抗,使用平衡电路等。解决公共阻抗耦合的方法是减小公共地线部分的阻抗,或采用并联单点接地,彻底消除公共阻抗。

地线干扰对策

地线干扰对策 4.1地环路对策从地环路干扰的机理可知,只要减小地环路中的电流就能减小地环路干扰。如果能彻底消除地环路中的电流,则可以彻底解决地环路干扰的问题。因此我们提出以下几种解决地环路干扰的方案。 A. 将一端的设备浮地如果将一端电路浮地,就切断了地环路,因此可以消除地环路电流。但有两个问题需要注意,一个是出于安全的考虑,往往不允许电路浮地。这时可以考虑将设备通过一个电感接地。这样对于50Hz的交流电流设备接地阻抗很小,而对于频率较高的干扰信号,设备接地阻抗较大,减小了地环路电流。但这样做只能减小高频干扰的地环路干扰。另一个问题是,尽管设备浮地,但设备与地之间还是有寄生电容,这个电容在频率较高时会提供较低的阻抗,因此并不能有效地减小高频地环路电流。 B. 使用变压器实现设备之间的连接利用磁路将两个设备连接起来,可以切断地环路电流。但要注意,变压器初次级之间的寄生电容仍然能够为频率较高的地环路电流提供通路,因此变压器隔离的方法对高频地环路电流的抑制效果较差。提高变压器高频隔离效果的一个办法是在变压器的初次级之间设置屏蔽层。但一定要注意隔离变压器屏蔽层的接地端必须在接受电路一端。否则,不仅不能改善高频隔离效果,还可能使高频耦合更加严重。因此,变压器要安装在信号接收设备的一侧。经过良好屏蔽的变压器可以在1MHz以下的频率提供有效的隔离。 C. 使用光隔离器另一个切断地环路的方法是用光实现信号的传输。这可以说是解决地环路干扰问题的最理想方法。用光连接有两种方法,一种是光耦器件,另一种是用光纤连接。光耦的寄生电容一般为2pf,能够在很高的频率提供良好的隔离。光纤几乎没有寄生电容,但安装、维护、成本等方面都不如光耦器件。 D. 使用共模扼流圈在连接电缆上使用共模扼流圈相当于增加了地环路的阻抗,这样在一定的地线电压作用下,地环路电流会减小。但要注意控制共模扼流圈的寄生电容,否则对高频干扰的隔离效果很差。共模扼流圈的匝数越多,则寄生电容越大,高频隔离的效果越差。4.2消除公共阻抗耦合 消除公共阻抗耦合的途径有两个,一个是减小公共地线部分的阻抗,这样公共地线上的电压也随之减小,从而控制公共阻抗耦合。另一个方法是通过适当的接地方式避免容易相互干扰的电路共用地线,一般要避免强电电路和弱电电路共用地线,数字电路和模拟电路共用地线。如前所述,减小地线阻抗的核心问题是减小地线的电感。这包括使用扁平导体做地线,用多条相距较远的并联导体作接地线。对于印刷线路板,在双层板上布地线网格能够有效地减小地线阻抗,在多层板中专门用一层做地线虽然具有很小的阻抗,但这会增加线路板的成本。通过适当接地方式避免公共阻抗的接地方法是并联单点接地,如图 4 所示。并联接地的缺点是接地的导线过多。因此在实际中,没有必要所有电路都并联单点接地,对于相互干扰较少的电路,可以采用串联单点接地。例如,可以将电路按照强信号,弱信号,模拟信号,数字信号等分类,然后在同类电路内部用串联单点接地,不同类型的电路采用并联单点接地。5.小结 地线造成电磁干扰的主要原因是地线存在阻抗,当电流流过地线时,会在地线上产生电压,这就是地线噪声。在这个电压的驱动下,会产生地线环路电流,形成地环路干扰。当两个电路共用一段地线时,会形成公共阻抗耦合。解决地环路干扰的方法有切断地环路,增加地环路的阻抗,使用平衡电路等。解决公共阻抗耦合的方法是减小公共地线部分的阻抗,或采用并联单点接地,彻底消除公共阻抗.

电路板怎样进行抗干扰设计

电路板怎样进行抗干扰设计? 抗干扰设计的基本任务是系统或装置既不因外界电磁干扰影响而误动作或丧失功能,也不向外界发送过大的噪声干扰,以免影响其他系统或装置正常工作。因此提高系统的抗干扰能力也是该系统设计的一个重要环节。 系统抗干扰设计 抗干扰问题是现代电路设计中一个很重要的环节,它直接反映了整个系统的性能和工作的可靠性。在飞轮储能系统的电力电子控制中,由于其高压和低压控制信号同时并存,而且功率晶体管的瞬时开关也产生很大的电磁干扰,因此提高系统的抗干扰能力也是该系统设计的一个重要环节。 形成干扰的主要原因有如下几点: 1)干扰源,是指产生干扰的元件、设备或信号,用数字语言描述是指du/dt、di/dt大的地方。干扰按其来源可分为外部干扰和内部干扰:外部干扰是指那些与仪表的结构无关,由使用条件和外界环境因素决定的干扰,如雷电、交流供电、电机等;内部干扰是由仪表结构布局及生产工艺决定的,如多点接地造成的电位差引起的干扰、寄生振荡引起的干扰、尖峰或振铃噪声引起的干扰等。 2)敏感器件,指容易被干扰的对象,如微控制器、存贮器、A/D转换、弱信号处理电路等。 3)传播路径,是干扰从干扰源到敏感器件传播的媒介,典型的干扰传播路径是通过导线的传导、电磁感应、静电感应和空间的辐射。 抗干扰设计的基本任务是系统或装置既不因外界电磁干扰影响而误动作或丧失功能,也不向外界发送过大的噪声干扰,以免影响其他系统或装置正常工作。 其设计一般遵循下列三个原则: 抑制噪声源,直接消除干扰产生的原因; 切断电磁干扰的传播途径,或者提高传递途径对电磁干扰的衰减作用,以消除噪声源和受扰设备之间的噪声耦合; 加强受扰设备抵抗电磁干扰的能力,降低噪声敏感度。 目前,对系统的采用的抗干扰技术主要有硬件抗干扰技术和软件抗干扰技术。 1)硬件抗干扰技术的设计。飞轮储能系统的逆变电路高达20kHz的载波信号决定了它会产生噪声,这样系统中电力电子装置所产生的噪声和谐波问题就成为主要的干扰,它们会对设备和附近的仪表产生影响,影响的程度与其控制系统和设备的抗干扰能力、接线环境、安装距离及接地方法等因素有关。 转换器产生的PWM信号是以高速通断DC电压来控制输出电压波形的。急剧的上升或下降的输出电压波包含许多高频分量,这些高频分量就是产生噪声的根源。虽然噪声和谐波都对电子设备运行产生不良影响,但是两者还是有区别的:谐波通常是指50次以下的高频分量,频率为2~3kHz;而噪声却为10kHz甚至更高

传感器电路的噪声及其抗干扰技术研究

传感器电路的噪声及其抗干扰技术研究 作者:刘竹琴,白泽生延安大学物理与电子信息学院 尽量消除或抑制电子电路的干扰是电路设计和应用始终需要解决的问题。传感器电路通常用来测量微弱的信号,具有很高的灵敏度,如果不能解决好各类干扰的影响,将给电路及其测量带来较大误差,甚至会因干扰信号淹没正常测量信号而使电路不能正常工作。在此,研究了传感器电路设计时的内部噪声和外部干扰,并得出采取合理有效的抗干扰措施,能确保电路正常工作,提高电路的可靠性、稳定性和准确性。 传感器电路通常用来测量微弱的信号,具有很高的灵敏度,但也很容易接收到外界或内部一些无规则的噪声或干扰信号,如果这些噪声和干扰的大小可以与有用信号相比较,那么在传感器电路的输出端有用信号将有可能被淹没,或由于有用信号分量和噪声干扰分量难以分辨,则必将妨碍对有用信号的测量。所以在传感器电路的设计中,往往抗干扰设计是传感器电路设计是否成功的关键。

1 传感器电路的内部噪声 1.1 高频热噪声 高频热噪声是由于导电体内部电子的无规则运动产生的。温度越高,电子运动就越激烈。导体内部电子的无规则运动会在其内部形成很多微小的电流波动,因其是无序运动,故它的平均总电流为零,但当它作为一个元件(或作为电路的一部分)被接入放大电路后,其内部的电流就会被放大成为噪声源,特别是对工作在高频频段内的电路高频热噪声影响尤甚。 通常在工频内,电路的热噪声与通频带成正比,通频带越宽,电路热噪声的影响就越大。在 通频带△f内,电路热噪声电压的有效值:。以一个1 kΩ的电阻为例,如果电路的通频带为1 MHz,则呈现在电阻两端的开路电压噪声有效值为4μV(设温度为室温T=290 K)。看起来噪声的电动势并不大,但假设将其接入一个增益为106倍的放大电路时,其输出噪声可达4 V,这时对电路的干扰就很大了。 1.2 低频噪声 低频噪声主要是由于内部的导电微粒不连续造成的。特别是碳膜电阻,其碳质材料内部存在许多微小颗粒,颗粒之间是不连续的,在电流流过时,会使电阻的导电率发生变化引起电流的变化,产生类似接触不良的闪爆电弧。另外,晶体管也可能产生相似的爆裂噪声和闪烁噪声,其产生机理与电阻中微粒的不连续性相近,也与晶体管的掺杂程度有关。 1.3 半导体器件产生的散粒噪声 由于半导体PN结两端势垒区电压的变化引起累积在此区域的电荷数量改变,从而显现出电容效应。当外加正向电压升高时,N区的电子和P区的空穴向耗尽区运动,相当于对电容充电。当正向电压减小时,它又使电子和空穴远离耗尽区,相当于电容放电。当外加反向电

射频电路板抗干扰设计

射频电路板抗干扰设计摘要:为保证电路性能,在进行射频电路印制电路板( PCB)设计时应考虑电磁兼容性,这对于减小系统电磁信息辐射具有重要的意义。文中重点讨论按元器件的布局与布线原则来最大限度地实现电路的性能指标,达到抗干扰的设计目的。通过几个实验测试事例,分析了影响印制板抗干扰性能的几个不同因素,说明了印制板制作过程中应采取的实际的解决办法。 引言随着通信技术的发展,无线射频电路技术运用越来越广,其中的射频电路的性能指标直接影响整个产品的质量,射频电路印制电路板( PCB)的抗干扰设计对于减小系统电磁信息辐射具有重要的意义。射频电路PCB的密度越来越高, PCB设计的好坏对抗干扰能力影响很大,同一电路,不同的PCB设计结构,其性能指标会相差很大。电磁干扰信号如果处理不当,可能造成整个电路系统的无法正常工作,因此如何防止和抑制电磁干扰,提高电磁兼容性,就成为设计射频电路PCB时的一个非常重要的课题。 电磁兼容性EMC是指电子系统在规定的电磁环境中按照设计要求能正常工作的能力。电子系统所受的电磁干扰不仅来自电场和磁场的辐射,也有线路公共阻抗、导线间耦合和电路结构的影响。在研制设计电路时,希望设计的印制电路板尽可能不易受外界干扰的影响,而且也尽可能小地干扰影响别的电子系统。 设计印制板首要的任务是对电路进行分析,确定关键电路。这就是要识别哪些电路是干扰源,哪些电路是敏感电路,弄清干扰源可能通过什么路径干扰敏感电路。射频电路工作频率高,干扰源主要是通过电磁辐射来干扰敏感电路,因此射频电路PCB板抗干扰设计的目的是减小PCB板的电磁辐射和PCB 板上电路之间的串扰。 1 射频电路板设计 1. 1 元器件的布局 由于SMT一般采用红外炉热流焊来实现元器件的焊接,因而元器件的布局影响到焊点的质量,进而影响到产品的成品率。而对于射频电路PCB设计而言, 电磁兼容性要求每个电路模块尽量不产生电磁辐射,并且具有一定的抗电磁干扰能力,因此元器件的布局也影响到电路本身的干扰及抗干扰能力,直接关系到所设计电路的性能。故在进行射频电路PCB 设计时除了要考虑普通PCB设计时的布局外,主要还须考虑如何减小射频电路中各部分之间的相互干扰、如何减小电路本身对其他电路的干扰以及电路本身的抗干扰能力。 根据经验,射频电路效果的好坏不仅取决于射频电路板本身的性能指标,很大部分还取决于与CPU处理板间的相互影响,因此在进行PCB设计时,合理布局显得尤为重要。布局的总原则是元器件应尽可能同一方向排列,通过选择PCB进入熔锡系统的方向来减少甚至避免焊接不良的现象;根据经验元器件间最少要有

抗干扰设计原则

> 抗干扰设计原则 1.电源线的设计 (1)选择合适的电源 (2)尽量加宽电源线 (3)保证电源线、底线走向和数据传输方向一致 (4)使用抗干扰元器件 (5)电源入口添加去耦电容(10~100uf) 2.[ 3.地线的设计 (1)模拟地和数字地分开 (2)尽量采用单点接地 (3)尽量加宽地线 (4)将敏感电路连接到稳定的接地参考源 (5)对pcb板进行分区设计,把高带宽的噪声电路与低频电路分开 (6)尽量减少接地环路(所有器件接地后回电源地形成的通路叫“地线环路”)的面积 3.. 4.元器件的配置 (1)不要有过长的平行信号线 (2)保证pcb的时钟发生器、晶振和cpu的时钟输入端尽量靠近,同时远离其他低频器件(3)元器件应围绕核心器件进行配置,尽量减少引线长度 (4)对pcb板进行分区布局 (5)考虑pcb板在机箱中的位置和方向 (6)缩短高频元器件之间的引线 4.】 5.去耦电容的配置 (1)每10个集成电路要增加一片充放电电容(10uf) (2)引线式电容用于低频,贴片式电容用于高频 (3)每个集成芯片要布置一个的陶瓷电容 (4)对抗噪声能力弱,关断时电源变化大的器件要加高频去耦电容 (5)电容之间不要共用过孔 (6)去耦电容引线不能太长 5.— 6.降低噪声和电磁干扰原则 (1)尽量采用45°折线而不是90°折线(尽量减少高频信号对外的发射与耦合) (2)用串联电阻的方法来降低电路信号边沿的跳变速率 (3)石英晶振外壳要接地 (4)闲置不用的们电路不要悬空 (5)时钟垂直于IO线时干扰小 (6)尽量让时钟周围电动势趋于零

(7)IO驱动电路尽量靠近pcb的边缘 (8)- (9)任何信号不要形成回路 (10)对高频板,电容的分布电感不能忽略,电感的分布电容也不能忽略 (11)通常功率线、交流线尽量在和信号线不同的板子上 6.其他设计原则 (1)CMOS的未使用引脚要通过电阻接地或电源 (2)用RC电路来吸收继电器等原件的放电电流 (3)总线上加10k左右上拉电阻有助于抗干扰 (4)采用全译码有更好的抗干扰性 (5)~ (6)元器件不用引脚通过10k电阻接电源 (7)总线尽量短,尽量保持一样长度 (8)两层之间的布线尽量垂直 (9)发热元器件避开敏感元件 (10)正面横向走线,反面纵向走线,只要空间允许,走线越粗越好(仅限地线和电源线)(11)要有良好的地层线,应当尽量从正面走线,反面用作地层线 (12)保持足够的距离,如滤波器的输入输出、光耦的输入输出、交流电源线和弱信号线等(13)长线加低通滤波器。走线尽量短截,不得已走的长线应当在合理的位置插入C、RC、或LC低通滤波器。 (14)> (15)除了地线,能用细线的不要用粗线。 7.布线宽度和电流 一般宽度不宜小于(8mil) 在高密度高精度的pcb上,间距和线宽一般(12mil) 当铜箔的厚度在50um左右时,导线宽度1~(60mil) = 2A 公共地一般80mil,对于有微处理器的应用更要注意 8.} 9.电源线尽量短,走直线,最好走树形,不要走环形 9.布局 10.首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。 在确定PCB尺寸后.再确定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。 在确定特殊元件的位置时要遵守以下原则: (1)尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。 (2)某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。

噪声与接地对音频系统的影响

噪声与接地对音频系统的影响 【摘要】噪声对音频系统指标影响很大,接地的重要性越来越受广大技术人员的关注。本文对噪声来源、接地系统分类以及抑制系统噪声的措施进行了简单介绍。 【关键词】星地信号地线保护接地屏蔽接地噪声抑制 在音频系统中,接地是抑制噪声和防止干扰、保证设备电磁兼容性、提高可靠性的重要技术措施。正确的接地即能抑制干扰的影响,又能抑制设备向外发射干扰;反之,错误的接地反而会引入严重的干扰,甚至使设备无法正常工作。 看来噪声与接地问题就像是一对形影不离的双胞胎,以下就接地对音频系统的影响进行分析探讨。 一. 噪声来源 作为音频系统的噪声来源主要可分为下面几大类: 第一类是系统设备本身的固有噪声。目前广播播控设备的单机技术指标都很高,有很低的本机噪声指标。但是当多台设备级连时,噪声就会积累增加。实践应用中,有些低档次的民用音响设备会因为内部电源滤波不好,使得设备本身的交流噪声很大,在音响系统中有时会形成很严重的噪声。 第二类是外部的电磁辐射干扰引起的噪声。如手机、对讲机等通讯设备的高频电磁波辐射干扰、周围环境的空调、汽车点火、电焊等电脉冲辐射、演播厅灯光控制采用可控硅整流设备所产生的辐射,都会通过音频传输线直接混入传输信号中形成噪声、或穿过屏蔽不良的机器设备的外壳干扰机内电路产生干扰噪声。 第三类是电源干扰噪声。音响设备的外部干扰,除电磁辐射方式外,电源部分引入干扰噪声将是另一个产生噪声的主要原因。由于各种照明设备、动力设备、控制设备共同接入,形成了一个十分严重的干扰源。如接在同一电网中的灯光调控设备、空调、马达等设备会在电源线路上产生尖峰脉冲、浪涌电路,不同频率的纹波电压,通过电源线路窜入音响设备的供电电源,总会有一部分干扰噪声无法通过音响设备的电源电路有效的滤除,将必然会在设备内部形成噪声。尤其是同一电网中的电磁兼容性不达要求的大功率设备,是干扰音响设备的主要原因。 第四类是接地回路噪声。在音响系统中,必须要求整个系统有良好的接地,接地电阻要求小于4欧姆。否则,在音响系统中设备由于各种辐射和电磁感应产生的感应电荷将不能够流入大地,从而形成噪声电压叠加在音频信号中。 如果在不同设备的地线之间由于接地电阻的不同而存在地电位差,或者在系统的内部接地存在回路时,则会引起接地噪声。两个不同的音响系统互连时,也有可能产生噪声,噪声是由两个系统的地线直接相连造成的。 二. 接地系统 系统接地的原意指与真正的大地连接以提供雷击放电的通路,例如避雷针的一端埋入大地,后来成为对电气设备和电力设施提供漏电保护的放电通路的技术措施。 声频系统的“地”,是零信号参考点,也叫做接地点。在声频系统中,这个点必须是单一的,不允许有第二个点或第三个点出现。因此,系统所有设备的接地点必须汇总接到一个“点”上,这个点也叫做“星地”。“星地”的接地电阻愈小愈好,一般须低于2欧。“星地”应该用一条足够粗的多股铜线接到大地上去,这就是信号地线。 1.接地系统的任务 广播中心的接地系统包括声频(工艺)接地、高频接地、计算机系统接地、电话接地、电力接地和防

抗干扰的接地处理及屏蔽处理

抗干扰的接地处理及屏蔽处理 抗干扰接地处理的主要内容:(1)避开地环电流的干扰;(2)降低公共地线阻抗的耦合干扰。 “一点接地”有效地避开了地环电流;而在“一点接地”前提下,并联接地则是降低公共地线阻抗的耦合干扰的有效措施;它们是工业控制系统采用的最基本的接地方法。 工业控制系统接地的含义不一定就是接大地。例如直流接地只是定义电路或系统的基准电位。它可以悬浮,但要求与大地严格绝缘。通常,其绝缘电阻要达到50 MΩ以上。直流地悬浮隔离了交流地网的干扰,经济简便,工程中经常使用。直流地悬浮的缺点是机器容易带静电,如果该静电电位过高,会损坏器件,击伤操作人员等等;而且,如果这时直流地与大地的绝缘电阻减小,可能会产生很多原先没有想到的干扰。直流地接大地,按照国家标准,要埋设一个不大于4Ω的独立接地体。但无论直流地悬浮或者接大地,直流地与大地之间的电位都存在着间接或者直接的关系。工业控制机所操作的各种输入输出信号之间接地是否合理,不只是形成相互耦合干扰的问题,有时还危及计算机系统的安全。在实际的工业控制系统中,各种通道的信号频率大多在1MHz内,属于低频范围。因此,谈谈低频范围的接地。 1. 串联接地 在串联接地方式中,各电路各有一个电流i1、i2、i3等流向接地点。由于地线存在电阻,因此,每个串联接点的电位不再是零,于是各个电路间相互发生干扰。尤其是强信号电路将严重干扰弱信号电路。如果必须要这样使用,应当尽力减小公共地线的阻抗,使其能达到系统的抗干扰容限要求。串联的次序是:最怕干扰的电路的地应最接近公共地,而最不怕干扰的电路的地可以稍远离公共地。 2. 并联接地 并联接地方式:在工业控制机中的模拟通道和数字通道采用并联接地。并联接地中各个电路的地电位只与其自身的地线阻抗和地电流有关,互相之间不会造成耦合干扰。因此,有效地克服了公共地线阻抗的耦合干扰问题,工业控制机应当尽量采用并联接地方式。值得注意的是,虽然采用了并联接地方式,但是地线仍然要粗一些,以使各个电路部件之间的地电位差尽量减小。这样,当各个部件之间有信号传送时,地线环流干扰将减小。 工业现场的干扰来源是多渠道的,针对不同的项目和不同的现场,应该有不同的处理方法。屏蔽和接地是由工控系统开发者操作的一项技术内容。能否正确设计和利用它们,不仅关系到系统安全稳定地运行、良好地抑制干扰,而且是工控项目开发者是否成熟的重要标志。 工控系统的屏蔽处理 工业现场动力线路密布,设备启停运转繁忙,因此存在严重的电场和磁场干扰。而工业控制系统又有几十乃至几百个甚至更多的输入输出通道分布在其中,导线之间形成相互耦合是通道干扰的主要原因之一。它们主要表现为电容性耦合、电感性耦合、电磁场辐射三种形式。在工业控制系统中,由前两种耦合造成的干扰是主要的,第三种是次要的。它们对电路主要造成共模形式的干扰。

抗干扰措施

抗干扰技术 在电路设计当中,抗干扰占有一个特别重要的地位。在一切的电子技术当中,都是重点。(或许你会说你是玩单片机的,感觉没这方面的必要,其实是因为数字电路就两种信号,一个高电平,一个低电平,本身就有一定的抗干扰性能,而模拟信号是连续的,容易被干扰,这也是现在的产品都数字化的原因之一,但是玩单片机的就不玩模拟信号?加点抗干扰技术以防万一也没错吧!)举个例子来说,如果要放大一个微弱的信号,当电源不是很好,有较大的纹波,经常4.5V到6V之间跳,工频信号又很强,你的电路有没有什么防护措施,你想想,当这个信号到最后,还是你想要的信号吗?打个比方,如果唐僧身边没有那么多能干的徒弟,菩萨,神仙,他到得了西天吗?那些妖精就是干扰源,徒弟什么的就是抗干扰措施,当然唐僧自身也有一定的抗干扰能力。这就是我们要讲的抗干扰技术。(请各位懒人直接跳到最后的总结) 理论上来说,抗干扰分为3个方面:1、干扰源。2、传输途径。3、敏感原件。也就是我们需要下功夫的地方。按照优先考虑的顺序,也是如上的1、2、3。你要是能把干扰抑制在源头,扼杀在摇篮里,那就不用其他的措施了。但是干扰源来自四面八方,说不定自己后院还起火(比如运放的自激振荡),所以3个方面都是需要加强的。 一般来说,电源的干扰时最普遍的,所以电源做得好就是一切的基础,尽量降低电源的纹波系数,电容可以滤去交流信号,因此在一些用运放的地方电源和地端可以并联10uF、1uF、0.1uF的电容,以滤去不同频率的波。小电容通低频,大电容通高频,但注意电解电容不要正负极接反了,那样也会产生噪声。再就是布线时,电源线和地线要尽量粗点(减小导线的电阻),避免90°折线;模拟电路和数字电路用不同的电源,;数字电路与模拟电路避免使用公共地线;最多模拟地与数字地仅有一点相连,信号连接时,可用光电隔离,防止互相干扰。接地线越短越好,避免地线形成环路。 在传输途径上下功夫,各模块之间连接线尽量短,远离干扰;高频信号传输可使用同轴电缆或多芯屏蔽电缆,对可能的干扰源输出线进行滤波,产生噪声的导线与地线绞合,信号地线、其它可能造成干扰的电路的地线分开,敏感电路加屏蔽罩(屏蔽罩是要接地才有用的),把干扰源围闭在屏蔽罩内也是允许的。隔离也是常用的,隔离分变压器隔离,继电器隔离,光电隔离,光电隔离比较常用。 有的继承电路 而加强自身的抗干扰性能,大部分是靠原件本省的性质和所用的材料等等,我们自己难以决定。 总而言之,想要抗干扰,可采取以下措施: 1、提高电源的稳定性,减小纹波。各个模块的电源可以和地之间用不同的电容 相连。 2、在信号线容易受到干扰的地方,使用滤波电路。 3、各级模块相连的信号线尽量短,也可以用同轴电缆相连。 4、使用屏蔽盒屏蔽各个模块,或者干扰源。 5、模拟电路与数字电路使用不同的电源,信号之间使用光电隔离。 6、布线时,避免地线成环状,接线尽量短,但避免交叉、飞线。各种模块布局 时分开,模拟电路与数字电路分开。电源线与地线要尽量粗一点。原件排列

屏蔽与接地

屏蔽技术 1屏蔽的定义 屏蔽可通过各种屏蔽体来吸收或反射电磁场骚扰的侵入, 达到阻断骚扰传播的目的; 或者屏蔽体可将骚扰源的电磁辐射能量限制在其内部, 以防止其干扰其它设备。(对两个空间区域之间进行金属的隔离, 以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。) 1. 一种是主动屏蔽, 防止电磁场外泄; 2. 一种是被动屏蔽, 防止某一区域受骚扰的影响。 屏蔽就是具体讲, 就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来, 防止干扰电磁场向外扩散; 用屏蔽体将接收电路、设备或系统包围起来, 防止它们受到外界电磁场的影响。因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗) 、反射能量(电磁波在屏蔽体上的界面反射) 和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波) 的作用, 所以屏蔽体具有减弱干扰的功能。 2.屏蔽的分类 屏蔽可分为电场屏蔽、电磁屏蔽和磁屏蔽三类。电场屏蔽又包括静电场屏蔽和交变 电场屏蔽; 磁场屏蔽又包括静磁屏蔽和交变磁场屏蔽。 1. 静电屏蔽常用于防止静电耦合和骚扰, 即电容性骚扰; 2. 电磁屏蔽主要用于防止高频电磁场的骚扰和影响; 3. 磁屏蔽主要用于防止低频磁感应, 即电感性骚扰。 2.1静电场屏蔽和交变电场屏蔽 用来防止静电耦合产生的感应。屏蔽壳体采用高导电率材料并良好接地,以隔断两个电路之间的分布电容偶合,达到屏蔽作用。静电屏蔽的屏蔽壳体必须接地。 以屏蔽导线为例,说明静电屏蔽的原理。静电感应是通过静电电容构成的,因此,静电屏蔽是以隔断两个电路之间的分布电容。静电感应,既两条线路位于地线之上时,若相对于地线对导体1 加有V1的电压,则导体2 也将产生与V1成比例的电V2。由于导体之间必然存在静电电容,若 设电容为C10、C12 和C20,则电压V1 就被C12 和C20 分为两部分,该被分开的电压就为V2,可用下式加以计算; 导体1 和2 之间加入接地板便可构成静电屏蔽。这样,在接地板与导体1、导体2之间就产生了静电电容C`10 和C`20。等效电路,增加了对地静电电容,消除了导体1、2 之间直接偶合的静电电容。按示2.1,由于C12=0,故与V 1 无关,V2=0。这就是静电屏蔽的原理。

抗干扰措施

抗干扰措施的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。 1、抑制干扰源 抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。 抑制干扰源的常用措施如下: (1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。 (2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K到几十K,电容选0.01uF),减小电火花影响。 (3)给电机加滤波电路,注意电容、电感引线要尽量短。 (4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。 (5)布线时避免90度折线,减少高频噪声发射。 (6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。 2、切断干扰传播路径的常用措施 (1)充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就解决了一大半。许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。 (2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。 (3)注意晶振布线。晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。此措施可解决许多疑难问题。 (4)电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源(如电机,继电器)与敏感元件(如单片机)远离。 (5)用地线把数字区与模拟区隔离,数字地与模拟地要分离,最后在一点接于电源地。A/D、D/A芯片布线也以此为原则,厂家分配A/D、D/A芯片引脚排列时已考虑此要求。(6)单片机和大功率器件的地线要单独接地,以减小相互干扰。大功率器件尽可能放在电路板边缘。 (7)在单片机I/O口,电源线,电路板连接线等关键地方使用抗干扰元件如磁珠、磁环、电源滤波器,屏蔽罩,可显著提高电路的抗干扰性能。

最新射频电路板抗干扰设计

射频电路板抗干扰设 计

射频电路板抗干扰设计摘要:为保证电路性能,在进行射频电路印制电路板( PCB)设计时应考虑电磁兼容性,这对于减小系统电磁信息辐射具有重要的意义。文中重点讨论按元器件的布局与布线原则来最大限度地实现电路的性能指标,达到抗干扰的设计目的。通过几个实验测试事例,分析了影响印制板抗干扰性能的几个不同因素,说明了印制板制作过程中应采取的实际的解决办法。 引言随着通信技术的发展,无线射频电路技术运用越来越广,其中的射频电路的性能指标直接影响整个产品的质量,射频电路印制电路板( PCB)的抗干扰设计对于减小系统电磁信息辐射具有重要的意义。射频电路PCB的密度越来越高, PCB设计的好坏对抗干扰能力影响很大,同一电路,不同的PCB设计结构,其性能指标会相差很大。电磁干扰信号如果处理不当,可能造成整个电路系统的无法正常工作,因此如何防止和抑制电磁干扰,提高电磁兼容性,就成为设计射频电路PCB时的一个非常重要的课题。 电磁兼容性EMC是指电子系统在规定的电磁环境中按照设计要求能正常工作的能力。电子系统所受的电磁干扰不仅来自电场和磁场的辐射,也有线路公共阻抗、导线间耦合和电路结构的影响。在研制设计电路时,希望设计的印制电路板尽可能不易受外界干扰的影响,而且也尽可能小地干扰影响别的电子系统。 设计印制板首要的任务是对电路进行分析,确定关键电路。这就是要识别哪些电路是干扰源,哪些电路是敏感电路,弄清干扰源可能通过什么路径干扰敏感电路。射频电路工作频率高,干扰源主要是通过电磁辐射来干扰敏感电路,因此射频电路PCB板抗干扰设计的目的是减小PCB板的电磁辐射和PCB 板上电路之间的串扰。 1 射频电路板设计 1. 1 元器件的布局 由于SMT一般采用红外炉热流焊来实现元器件的焊接,因而元器件的布局影响到焊点的质量,进而影响到产品的成品率。而对于射频电路PCB设计而言, 电磁兼容性要求每个电路模块尽量不产生电磁辐射,并且具有一定的抗电磁干扰能力,因此元器件的布局也影响到电路本身的干扰及抗干扰能力,直接关系到所设计电路的性能。故在进行射频电路PCB 设计时除了要考虑普通PCB设计时的布局外,主要还须考虑如何减小射频电路中各部分之间的相互干扰、如何减小电路本身对其他电路的干扰以及电路本身的抗干扰能力。 根据经验,射频电路效果的好坏不仅取决于射频电路板本身的性能指标,很大部分还取决于与CPU处理板间的相互影响,因此在进行PCB设计时,合理布局显得尤为重要。布局的总原则是元器件应尽可能同一方向排列,通过选择PCB进入熔锡系统的方向来减少甚至避免焊接不良的现象;根据经验元器件间最少要有

噪声干扰PCB布线与微小信号的放大

电路中干扰、噪声的应对与微弱信号的测量 摘要:微弱信号常常被混杂在大量的噪音中。噪声的来源多种多样,有来自电路之间的,有电子元器件本身所具有的,也有来自外部环境的。这其中,又分为了好多不同种类,比如电子元器件的噪声,有低频时的1/f噪声,有高频的热噪声等等。本文中分别对其进行介绍。为了消除这些噪声,从而获得正确的信号,就需要对电路采取一些措施。在PCB布局布线时,就有好多细节非常值得我们注意。当然,元器件的选择也是很有讲究的。当然,仅仅对噪声干扰进行抑制并不足以达到检测微弱信号的目的,为此,在设计检测微弱信号的电路时,又有很多重要的方法和注意点值得参考。只有做好这些,才能从噪声中得到可靠、稳定的信号。关键词:噪声;PCB布线;微弱信号检测 一、电路中的干扰与噪声 噪声是电路中相对于信号而言的一些干扰、无用的信号噪声干扰的产生原因有许多,如雷击、周边负载设备的开关机、发电机、无线电通讯等。在对微弱信号处理时,噪声的影响非常重要,必须对其采取措施,否则有用信号将淹没其中,而无法被检测到。具体到噪声来源、噪声特点等方面,噪声有许许多多的类别,下面分别简要对其进行介绍。 1.1低频噪声 低频噪声主要是由于内部的导电微粒不连续造成的。特别是碳膜电阻,其碳质材料内部存在许多微小颗粒,颗粒之间是不连续的,在电流流过时,会使电阻的导电率发生变化引起电流的变化,产生类似接触不良的闪爆电弧。另外,晶体管也可能产生相似的爆裂噪声和闪烁噪声,其产生机理与电阻中微粒的不连续性相近,也与晶体管的掺杂程度有关。 1.2半导体器件产生的散粒噪声 由于半导体PN结两端势垒区电压的变化引起累积在此区域的电荷数量改变,从而显现出电容效应。当外加正向电压升高时,N区的和P区的空穴向耗尽区运动,相当于对电容充电。当正向电压减小时,它又使电子和空穴远离耗尽区,相当于电容放电。当外加反向电压时,耗尽区的变化相反。当电流流经势垒区时,这种变化会引起流过势垒区的电流产生微小波动,从而产生电流噪声。其产生噪声的大小与温度、频带宽度△f成正比。 1.3高频热噪声 高频热噪声是由于导电体内部电子的无规则运动产生的。温度越高,电子运动就越激烈。导体内部电子的无规则运动会在其内部形成很多微小的电流波动,因其是无序运动,故它的

PCB板地线与接地技术

PCB板地线与接地技术 PCB,自问世以来一直处于发展之中,尤其是20世纪80年代家电发展、90年代信息产业的崛起,大大推进了PCB设计技术、制造工艺与PCB工业的发展。 地线与接地是PCB板设计中的一个重要方面,其实现方式与PCB板上的功能电路、器件、高密化、高速化有关。高速化还必须考虑高频谐波(常取10倍频),时钟信号上升边沿速率。地线与接地设计在PCB 三个发展阶段中,在解决EMC方面积累了丰富经验的重要措施之一。 之一。通孔插装技术(THT) 用PCB阶段,或用于以DIP器件为代表的PCB阶段。40到80年代。主要特点:镀(导)通孔起到电气互连和支撑器件引腿的双重作用。提高密度主要靠减少线宽/间距。 之二。表面安装技术(SMT)用PCB阶段,或用于QFP和走向BGA器件为代表的PCB阶段。90年代到90年代中后期,PCB专业企业相继完成THT用PCB走向SMT用PCB的技术改造。主要特点:镀(导)通孔只起到电气互连作用。提高密度主要靠减少镀(导)通孔直径尺寸和采用埋盲孔结构。 之三。芯片级封装(CSP)用PCB阶段,或用于SCM/BGA与MCM/BGA 为代表的MCM-L及其母板PCB阶段。主要的典型产品是新一代的积层式多层板(BUM)。主要特点:从线宽/间距(<0.1mm)、孔径(Φ<0.1mm)到介质厚度(<0.1mm)等全方位地进一步减少尺寸,使PCB达到更高的互连密度,以满足CSP的要求。BUM于90年代出现,目前已步入生

产阶段。 几个有关术语: 接地通用术语,量身定制。词前必须加修饰语。示例(英国术语),是在建筑的接入线中,安全接地线对地的连接。 接地方法 所选择的一种满足特定要求的引导电流的最佳方法。 接地环路 包括一个作为接地电位元件(面、引线、导线)的电路,返回电流可以通过这个元件(面、引线、导线)返回。一个电路中至少有一个接地环路。 地环路包括一些导电元件(如平板、走线及导线) 的电路,假定其具有地电位,有回流穿过。一个电路至少有一个地环路。尽管所设计的地环路是可以接受的,但不希望有的信号在环路中引起电流,可能导致系统不正常工作。 接地引线的设置从PCB到金属结构做固体接地连接,以便提供系统级的接地参考,无论系统使用的哪种接地方法都需要它。 单点接地 许多电路的参考点都汇总于一个单独的位置,以允许不同点间通信的方式,所有信号因此将参考同一位置的电位。注意:在PCB上,两点间距离应保持λ/20以内。例如,设噪声频率为1GHz, λ=30cm, λ/20为1.5cm。距离应保持≤1.5cm。如果考虑PCB材质ε= 2.3, λ/20距离为(λ/20)/ε=1.5/1.5=1cm 多点接地使不同电路具有同一公共的等位体或参考的一种方法。可以在所要求的许多位置通过任何可能的方式进行连接。 参考在两个电路之间进行电气连接,以使两个电路的0V参考电压相等。

电子设备地线干扰及其抑制

电子设备地线干扰及其抑制 为构成电信号的通路、防止设备外壳带电而造成人身不安全,一般电子设备的机架、外壳、插件、插箱、底板等都与地相连。连接这些“地”的导体称为地线,地线设置的不好,会影响设备的电磁兼容性设计,造成地线干扰,主要表现为:地阻抗干扰和地环路的干扰。 5.4.1 地阻抗干扰和抑制 由于地线自身有阻抗,电路工作时,各种频率的电流都可能流经地线某些段而产生电压降,这种电压降会使得电路中各部分对地电压变化而产生干扰。如图所示,U1为干扰电路1中的干扰源电压,U2为受干扰电路2中的信号电压,Z g为两电路公共地阻抗。 根据电路1和电路2两个回路可写出下列方程:

图 公共地阻抗引起的干扰 g g g L i Z I I U Z I I R R I U )()()(21211111+=+++= 由于仅讨论电路1对电路2的干扰,2I 在公共阻抗g Z 上的作用不予考虑,(5.11)可简化为 g g g L i Z I U Z R R I U 11111) (=++= 得g L i g g Z R R U Z U ++=111 一般 g L i Z R R >>+11,忽略g Z 则 1 11 L i g g R R U Z U += g U 在电路2负载2L R 上所形成的噪声电压n U 为 n U =g L i L U R R R 2 22 + 将式(5—13)代入式(5—14)可得 n U =))((22111 2L i L i L g R R R R U R Z ++ 可见,电路2负载2L R 上的噪声电压n U 与干扰电压1U 、公共地线阻抗g Z 及负载2L R 成正比。

PCB的电磁兼容性设计

PCB的电磁兼容性设计 印制电路板(PCB)是电子产品中电路元件和器件的支撑件.它提供电路元件和器件之间的电气连接。随着电于技术的飞速发展,PGB的密度越来越高。PCB设计的好坏对抗干扰能力影响很大.因此,在进行PCB设计时.必须遵守PCB设计的一般原则,并应符合抗干扰设计的要求。要使电子电路获得最佳性能,元器件的布且及导线的布设是很重要的。为了设计质量好、造价低的PCB.应遵循以下一般原则: 布局 首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。在确定PCB尺寸后.再确定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。重量超过15g的元器件、应当用支架加以固定,然后焊接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏元件应远离发热元件。 对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。应留出印制板定位孔及固定支架所占用的位置。根据电路的功能单元.对电路的全部元器件进行布局时,要符合以下原则: 按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。 以每个功能电路的核心元件为中心,围绕它来进行布局。元器件应均匀、整齐、紧凑地排列在PCB上.尽量减少和缩短各元器件之间的引线和连接。在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观.而且装焊容易.易于批量生产。位于电路板边缘的元器件,离电路板边缘一般不小于2mm。电路板的最佳形状为矩形。长宽比为3:2成4:3。电路板面尺寸大于200x150mm时.应考虑电路板所受的机械强度。 布线 布线的原则如下: 输入输出端用的导线应尽量避免相邻平行。最好加线间地线,以免发生反馈藕合。印制摄导线的最小宽度主要由导线与绝缘基扳间的粘附强度和流过它们的电流值决定。当铜箔厚度为 0.05mm、宽度为1 ~ 15mm 时.通过2A的电流,温度不会高于3℃,因此.导线宽度为 1.5mm可满足要求。对于集成电路,尤其是数字电路,通常选0.02~0.3mm导线宽度。当然,只要允许,还是尽可能用宽线.尤其是电源线和地线。导线的最小间距主要由最坏情况下的线间绝缘电阻和击穿电压决定。对于集成电路,尤其是数字电路,只要工艺允许,可使间距小至5~8mm。印制导线拐弯处一般取圆弧形,而直角或夹角在高频电路中会影响电气性能。此外,尽量避免使用大面积铜箔,否则.长时间受热时,易发生胀和脱落现?。必须用大面积铜箔时,最好用栅格状.这样有利于排除铜箔与基板间粘合剂受热产生的挥发性气体。印刷线路板的布线要注意以下问题:专用零伏线,电源线的走线宽度≥1mm;电源线和地线尽可能靠近,整块印刷板上的电源与地要呈“井”字形分布,以便使分布线电流达到均衡;要为模拟电路专门提供一根零伏线;为减少线间串扰,必要时可增加印刷线条间距离,在意;

高频电路中电源噪声分析及其干扰消除对策

高频电路中电源噪声分析及其干扰消除对策 一、电源噪声的分析 电源噪声是指由电源自身产生或受扰感应的噪声。其干扰表现在以下几个方面: 1)电源本身所固有的阻抗所导致的分布噪声。高频电路中,电源噪声对高频信 号影响较大。因此,首先需要有低噪声的电源。干净的地和干净的电源是同样重要的。电源特性如图1所示。 从图1可以看出,理想情况下的电源是没有阻抗的,因此其不存在噪声。但 是,实际情况下的电源是具有一定阻抗的,并且阻抗是分布在整个电源上的,因 此,噪声也会叠加在电源上。所以应该尽可能减小电源的阻抗,最好有专门的电源 层和接地层。在高频电路设计中,电源以层的形式设计一般比以总线的形式设计要好,这样回路总可以沿着阻抗最小的路径走。此外,电源板还得为PCB上所有产生 和接受的信号提供一个信号回路,这样可以最小化信号回路,从而减小噪声。 2)共模场干扰。指的是电源与接地之间的噪声,它是因为某个电源由被干扰电 路形成的环路和公共参考面上引起的共模电压而造成的干扰,其值要视电场和磁场 的相对的强弱来定。如图2。

在该通道上,Ic的下降会在串联的电流回路中引起共模电压,影响接收部分。如果磁场占主要地位,在串联地回路中产生的共模电压的值是: 式(1)中的ΔB为磁感应强度的变化量,Wb/m2;S为面积,m2。 如果是电磁场,已知它的电场值时,其感应电压为 式(2)一般适用于L=150/F以下,F为电磁波频率MHz。 如果超过这个限制的话,最大感应电压的计算可简化为: 3)差模场干扰。指电源与输入输出电源线间的干扰。在实际PCB设计中,笔者 发现其在电源噪声中所占的比重很小,因此这里可以不作讨论。 4)线间干扰。指电源线间的干扰。在两个不同的并联电路之间存在着互电容C 和互感M1-2时,如果干扰源电路中有电压VC和电流IC,则被干扰电路中将出现: a. 通过容性阻抗耦合的电压为 式(4)中RV是被干扰电路近端电阻和远端电阻的并联值。 b.通过感性耦合的串联电阻 如果干扰源中有共模噪声,则线间干扰一般表现为共模和差模两种形式。 5)电源线耦合。是指交流或直流电源线受到电磁干扰后,电源线又将这些干扰 传输到其他设备的现象。这是电源噪声间接地对高频电路的干扰。需要说明的是:

相关文档
相关文档 最新文档