文档库 最新最全的文档下载
当前位置:文档库 › 中科大概率统计课件--4-4协方差和相关系数.

中科大概率统计课件--4-4协方差和相关系数.

中科大概率统计课件--4-4协方差和相关系数.
中科大概率统计课件--4-4协方差和相关系数.

Excel数据分析相关系数与协方差

Excel数据分析相关系数与协方差 化学合成实验中经常需要考察压力随温度的变化情况。某次实验在两个不同的反应器中进行同一条件下实验得到两组温度与压力相关数据,试分析它们与温度的关联关系,并对在不同反应器内进行同一条件下反应的可靠性给出依据。 相关系数是描述两个测量值变量之间的离散程度的指标。用于判断两个测量值变量的变化是否相关,即,一个变量的较大值是否与另一个变量的较大值相关联(正相关);或者一个变量的较小值是否与另一个变量的较大值相关联(负相关);还是两个变量中的值互不关联(相关系数近似于零)。设(X,Y)为二元随机变量,那么: 为随机变量X与Y的相关系数。p是度量随机变量X与Y之间线性相关密切程度的数字特征。 注:本功能需要使用Excel扩展功能,如果您的Excel尚未安装数据分析,请依次选择“工具”-“加载宏”,在安装光盘中加载“分析数据库”。加载成功后,可以在“工具”下拉菜单中看到“数据分析”选项。 操作步骤 1. 打开原始数据表格,制作本实例的原始数据需要满足两组或两组以上的数据,结果将给出其中任意两项的相关系数。 2. 选择“工具”-“数据分析”-“描述统计”后,出现属性设置框,依次选择:

输入区域:选择数据区域,注意需要满足至少两组数据。如果有数据标志,注意同时勾选下方“标志位于第一行”; 分组方式:指示输入区域中的数据是按行还是按列考虑,请根据原数据格式选择; 输出区域可以选择本表、新工作表组或是新工作簿; 3.点击“确定”即可看到生成的报表。 可以看到,在相应区域生成了一个3×3的矩阵,数据项目的交叉处就是其相关系数。显然,数据与本身是完全相关的,相关系数在对角线上显示为1;两组数据间在矩阵上有两个位置,它们是相同的,故右上侧重复部分不显示数据。左下侧相应位置分别是温度与压力A、B和两组压力数据间的相关系数。

方差与协方差理解

§2 方差、协方差与相关系数 方差 例1 比较甲乙两人的射击技术,已知两人每次击中环数分布为: ξ:7 8901 0601...?? ??? η:67891001 02040201.....?? ???. 问哪一个技术较好 首先看两人平均击中环数,此时8E E ξη==,从均值来看无法分辩孰优孰劣. 但从直观上看,甲基本上稳定在8环左右,而乙却一会儿击中10环,一会儿击中6环,较不稳定.因此从直观上可以讲甲的射击技术较好. 上例说明:对一随机变量,除考虑它的平均取值外,还要考虑它取值的离散程度. 称ξ-E ξ为随机变量ξ对于均值E ξ的离差(deviation),它是一随机变量. 为了给出一个描述离散程度的数值,考虑用()E E ξξ-,但由于 ()E E ξξ-=E E ξξ-=0对一切随机变量均成立,即ξ的离差正负相消,因此 用()E E ξξ-是不恰当的. 我们改用()2 E E ξξ-描述取值ξ的离散程度,这 就是方差. 定义 1 若()2 E E ξξ-存在,为有限值,就称它是随机变量ξ的方差(variance),记作Var ξ, Var ξ=()2E E ξξ- (1) 但Var ξ的量纲与ξξ的标准差(standard deviation). 方差是随机变量函数()2 E ξξ-的数学期望,由§1的(5)式,即可写出方差的计算公式

Var ξ=2()d ()x E F x ξ ξ+∞ -∞-?=22()(),,()()d .i i i x E P x x E p x x ξξξξ+∞ -∞?-=???-?∑?离散型,连续型 (2) 进一步,注意到 ()2 E E ξξ-= ()222E E E ξξξξ??-+??=()22E E ξξ- 即有 Var ξ=()2 2 E E ξξ-. (3) 许多情况,用(3)式计算方差较方便些. 例1(续) 计算例1中的方差Var ξ与Var η. 解 利用(3)式 2 E ξ= ∑=i i i x P x ) (2 ξ=72×+82×+92×=, Var ξ= ()2 2E E ξξ-=82=. 同理, Var η= ()2 2 E E ηη-= = > Var ξ, 所以η取值较ξ分散. 这说明甲的射击技术较好. 例2 试计算泊松分布P(λ)的方差. 解 2 2 01 ! (1)!k k k k E k e k e k k λ λ λλξ∞ ∞ --====-∑∑ 1 1(1) (1)! (1)!k k k k k e e k k λ λ λλ∞ ∞ --===-+--∑∑ 2 ! ! j j j j j e e j j λ λ λλλ λ∞ ∞ --===+∑∑ 2 λλ=+ 所以Var ξ=22 λλλλ+-=. 例3 设ξ服从[ a, b ]上的均匀分布U [a, b],求Var ξ.

概率论与数理统计:协方差和相关系数

协方差和相关系数 对二维随机变量),(Y X ,我们除了讨论X 与Y 的期望和方差之外,还 需讨论X 与Y 之间相互关系的数字特征,本节主要讨论这方面的数字特征。 § 协方差和相关系数 协方差的定义与性质 定义 设(,)X Y 是二维随机变量.若{[()][()]}E X E X Y E Y --存在,则称它为随 机变量 X 与Y 的协方差,记为Cov(,)X Y ,即 Cov(,){[()][()]}X Y E X E X Y E Y =--. 常用下面的式子计算协方差 Cov(,){[()][()]}X Y E X E X Y E Y =--()()()E XY E X E Y =-. 注:(1)X 与Y 的协方差),(Y X Cov 实质上是二维随机变量X 与Y 的函数 )]([()]([(Y E Y X E X -?-的期望,它是一个常数。 (2)当),(Y X 为二维离散型随机变量时,其分布律为 }{),2,1,,2,1(,, =====j i y Y x X P P j i ij ,则 ij i i j i P Y E y X E x Y X Cov )]()][([),(1 1 --= ∑∑∞=∞ =; (3)当),(Y X 为二维连续型随机变量时,),(y x f 为),(Y X 的联合概率密度函数,则dxdy y x f Y E y X E x Y X Cov ),())(())((),(--= ?? +∞∞-+∞ ∞ -。 (4)利用期望的性质可得到协方差有下列计算公式: )()()(),(Y E X E XY E Y X Cov -= 证明: ) ()()( )()()()()()()( )] ()()()([ )] ())(([(),(Y E X E XY E Y E X E Y E X E Y E X E XY E Y E X E Y XE Y X E XY E Y E Y X E X E Y X Cov -=+--=+--=--= 此公式是计算协方差的重要公式,特别地取Y X =时,有

相关系数与协方差的关系

探究协方差与相关系数 罗燕 摘要:协方差),(Y X Cov 是描述二维随机变量两个分量间相互关联程度的一个特征数,如果将协方差相应标准化变量就得到相关系数),(Y X Corr 。从而可以引进相关系数),(Y X Corr 去刻画二维随机变量两个分量间相互关联程度。且事实表明,相关系数明显被广泛应用。本文的目的在于从协方差与相关系数的关系的角度去探讨协方差与相关系数的优缺点,并具体介绍协方差和相关系数这两个描述二维随机变量间相关性的特征数。 关键字:协方差),(Y X Cov 相关系数),(Y X Corr 相互关联程度 1 协方差、相关系数的定义及性质 设(X ,Y )是一个二维随机变量,若E{ [ X-E(X) ] [ Y -E(Y) ] }存在,则称此数学期望为X 与Y 的协方差,并记为Cov(X,Y)=E{ [ X-E(X) ] [ Y -E(Y) ] },特别有Cov(X,X)=)(X Var 。 从协方差的定义可以看出,它是X 的偏差“X-E(X) ”与Y 的偏差“Y -E(Y)”的乘积的数学期望。由于偏差可正可负,故协方差也可正可负,也可为零,其具体表现如下: ·当Cov(X,Y)>0时,称X 与Y 正相关,这时两个偏差 [ X-E(X) ] 与[ Y -E(Y) ] 同时增加或同时减少,由于E(X)与E(Y)都是常数,故等价于X 与Y 同时增加或同时减少,这就是正相关的含义。 ·当Cov(X,Y)<0时,称X 与Y 负相关,这时X 增加而Y 减少,或Y 增加而X 减少,这就是负相关的含义。 ·当Cov(X,Y)=0时,称X 与Y 不相关。 也就是说,协方差就是用来描述二维随机变量X 与Y 相互关联程度的一个特征数。协方差Cov(X,Y)是有量纲的量,譬如X 表示人的身高,单位是米(m ),Y 表示人的体重,单位是公斤(k g ),则Cov(X,Y)带有量纲(m ·kg )。为了消除量纲的影响,对协方差除以相同量纲的量,就得到一个新的概念—相关系数,它的定义如下: 设(X ,Y )是一个二维随机变量,且)(X Var >0,)(Y Var >0.则称 ),(Y X C o r r =)()() ,(Y Var X Var Y X Cov =y x Y X Cov σσ),( 为X 与Y 的(线性)相关系数。 利用施瓦茨不等式我们不难得到-1≤),(Y X Corr ≤1.也就是说相关系数是介于-1到1之间的,并且可以对它作以下几点说明: ·若),(Y X Corr =0,则称X 与Y 不相关。不相关是指X 与Y 没有线性关系,但也有可能有其他关系,比如平方关系、立方关系等。 ·若),(Y X Corr =1,则称X 与Y 完全正相关;若),(Y X Corr =-1,则称X 与Y 完全,负相关。

协方差和相关系数

二维随机变量的期望与方差 对于二维随机变量,如果存在,则 称为二维随机变量的数学期望。 1 、当( X ,Y ) 为二维离散型随机变量时 2 、当( X ,Y ) 为二维连续型随机变量时 例题 2.39 设,求。与一维随机变量函数的期望一样,可求出二维随机变量函数的期望。 对二维离散型随机变量( X ,Y ) ,其函数的期望为 对二维连续型随机变量( X ,Y ) ,其函数的期望为

例题 2.40 设,求 2.41 设( X ,Y ) 服从区域A 上的均匀分布,其中A 为x 轴、y 轴及直线 围成的三角形区域,如图2-10 所示。求函数的数学期望。 随机变量的数学期望和方差的三个重要性质: 1 、 推广: 2 、设X 与Y 相互独立,则 推广:设相互独立,则 3 、设X 与Y 相互独立,则 推广:设相互独立,则 仅对性质 3 就连续型随机变量加以证明 证明3

由于X 与Y 相互独立,所以与相互独立,利用性质 2 、知道 从而有, 可以证明:相互独立的随机变量其各自的函数间,仍然相互独立。 例题 2.42 某学校流行某种传染病,患者约占,为此学校决定对全校1000 名师生进 行抽血化验。现有两个方案:①逐个化验;②按四个人一组分组,并把四个人抽到的血混合在一起化验,若发现有问题再对四个人逐个化验。问那种方案好? 2.10.2 协方差与相关系数 分析协方差与相关系数反映随机变量各分量间的关系;结合上面性质 3 的证明,可以得到以下结论: 若X 与Y 相互独立,则 可以用来刻划X 与Y 之间的某种关系。 定义设( X ,Y ) 为二维随机变量,若 存在,则称它为随机变量X 与Y 的协方差,记作或,即 特别地 故方差,是协方差的特例。计算协方差通常采用如下公式:

03 第三节 协方差及相关系数

第三节 协方差及相关系数 对多维随机变量, 随机变量的数学期望和方差只反映了各自的平均值与偏离程度,并没能反映随机变量之间的关系. 本节将要讨论的协方差是反映随机变量之间依赖关系的一个数字特征. 内容分布图示 ★ 引言 ★ 协方差的定义 ★ 协方差的性质 ★ 例1 ★ 例2 ★ 相关系数的定义 ★ 相关系数的性质 ★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 矩的概念 ★ 协方差矩阵 ★ n 维正态分布的概率密度 ★ n 维正态分布的几个重要性质 ★ 例7 ★ 内容小结 ★ 课堂练习 ★ 习题4-3 内容要点: 一、 协方差的定义 定义 设),(Y X 为二维随机向量,若 )]}()][({[Y E Y X E X E -- 存在, 则称其为随机变量X 和Y 的协方差, 记为),(Y X Cov ,即 )]}.()][({[),cov(Y E Y X E X E Y X --= 按定义, 若),(Y X 为离散型随机向量,其概率分布为 ),2,1,(},{ ====j i p y Y x X P ij j i 则 ∑--=j i j i Y E y X E x E Y X ,)]}.()][({[),cov( 若),(Y X 为连续型随机向量, 其概率分布为),,(y x f 则 ? ? +∞∞-+∞∞ ---=dxdy y x f Y E y X E x E Y X ),()]}()][({[),cov(. 此外, 利用数学期望的性质, 易将协方差的计算化简. ). ()()()()()()()()()()]} ()][({[),cov(Y E X E XY E Y E X E X E Y E Y E X E XY E Y E Y X E X E Y X -=+--=--= 特别地, 当X 与Y 独立时, 有 .0),cov(=Y X 二、协方差的性质 1. 协方差的基本性质 );(),cov()1(X D X X = );,cov(),cov()2(X Y Y X = ),cov(),cov()3(Y X ab bY aX =,其中b a ,是常数;

协方差矩阵和相关矩阵

一、协方差矩阵 变量说明: 设为一组随机变量,这些随机变量构成随机向量,每个随机变量有m个样本,则有样本矩阵 (1) 其中对应着每个随机向量X的样本向量,对应着第i个随机单变量的所有样本值构成的向量。 单随机变量间的协方差: 随机变量之间的协方差可以表示为 (2) 根据已知的样本值可以得到协方差的估计值如下: (3) 可以进一步地简化为: (4) 协方差矩阵:

(5)其中,从而得到了协方差矩阵表达式。 如果所有样本的均值为一个零向量,则式(5)可以表达成: (6) 补充说明: 1、协方差矩阵中的每一个元素是表示的随机向量X的不同分量之间的协方差,而不是不同样本之间的协方差,如元素C ij就是反映的随机变量X i, X j的协方差。

2、协方差是反映的变量之间的二阶统计特性,如果随机向量的不同分量之间的相关性很小,则所得的协方差矩阵几乎是一个对角矩阵。对于一些特殊的应用场合,为了使随机向量的长度较小,可以采用主成分分析的方法,使变换之后的变量的协方差矩阵完全是一个对角矩阵,之后就可以舍弃一些能量较小的分量了(对角线上的元素反映的是方差,也就是交流能量)。特别是在模式识别领域,当模式向量的维数过高时会影响识别系统的泛化性能,经常需要做这样的处理。 3、必须注意的是,这里所得到的式(5)和式(6)给出的只是随机向量协方差矩阵真实值的一个估计(即由所测的样本的值来表示的,随着样本取值的不同会发生变化),故而所得的协方差矩阵是依赖于采样样本的,并且样本的数目越多,样本在总体中的覆盖面越广,则所得的协方差矩阵越可靠。 4、如同协方差和相关系数的关系一样,我们有时为了能够更直观地知道随机向量的不同分量之间的相关性究竟有多大,还会引入相关系数矩阵。 二、相关矩阵 相关系数: 著名统计学家卡尔·皮尔逊设计了统计指标——相关系数。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。 依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。 相关系数用r表示,它的基本公式(formula)为: 相关系数的值介于–1与+1之间,即–1≤r≤+1。其性质如下:

方差协方差和相关系数

§2 方差、协方差与相关系数 一、方差 二、协方差 三、相关系数 四、矩 一、方差 例1 例1 比较甲乙两人的射击技术,已知两人每次击中环数ξ分 布为 ξ: 789010601...?? ??? η:67 891001 02040201.....?? ???. 问哪一个技术较好? 首先看两人平均击中环数,此时8E E ξη==,从均值来看无法分辩孰优孰劣. 但从直观上看,甲基本上稳定在8环左右,而乙却一会儿击中10环,一会儿击中6环,较不稳定.因此从直观上可以讲甲的射击技术较好. 上例说明:对一随机变量,除考虑它的平均取值外,还要考虑它取值的离散程度. 称ξ-E ξ为随机变量ξ对于均值E ξ的离差(deviation),它是一随机变量. 为了给出一个描述离散程度的数值,考虑用()E E ξξ-,但由于 ()E E ξξ-=E E ξξ-=0对一切随机变量均成立,即ξ的离差正负相消,因此用 ()E E ξξ-是不恰当的. 我们改用()2 E E ξξ-描述取值ξ的离散程度,这就是方差. 定义1 若 () 2 E E ξξ-存在,为有限值,就称它是随机变量ξ的方差 (variance),记作Var ξ, Var ξ=()2 E E ξξ- (1) 但Var ξ的量纲与ξ ξ的标准差

(standard deviation). 方差是随机变量函数()2 E ξξ-的数学期望,由§1的(5)式,即可写出方差的 计算公式 Var ξ=2()d ()x E F x ξ ξ+∞-∞-?=22()(),, ()()d .i i i x E P x x E p x x ξξξξ+∞ -∞?-=???-?∑?离散型,连续型 (2) 进一步,注意到 ()2 E E ξξ-=()222E E E ξξξξ??-+??=()22E E ξξ- 即有 Var ξ=()2 2E E ξξ-. (3) 许多情况,用(3)式计算方差较方便些. 例1(续) 计算例1中的方差Var ξ与Var η. 解 利用(3)式 2 E ξ= ∑=i i i x P x ) (2 ξ=72×0.1+82×0.8+92 ×0.1=64.2, Var ξ=()2 2E E ξξ-=64.2--82=0.2. 同理, Var η=()2 2E E ηη-= 65.2-64 = 1.2 > Var ξ, 所以η取值较ξ分散. 这说 明甲的射击技术较好. 例2 试计算泊松分布P(λ)的方差. 解 2 2 01 ! (1)!k k k k E k e k e k k λ λ λλξ∞ ∞ --====-∑∑ 1 1(1) (1)!(1)!k k k k k e e k k λ λ λλ∞ ∞ --===-+--∑∑ 2 ! ! j j j j j e e j j λ λ λλλ λ∞ ∞ --===+∑∑ 2 λλ=+ 所以Var ξ=22 λλλλ+-=. 例3 设ξ服从[ a, b ]上的均匀分布U [a, b],求Var ξ.

第十二章 相关与回归分析练习题

第十二章相关与回归分析 一、填空 1.如果两变量的相关系数为0,说明这两变量之间_____________。 2.相关关系按方向不同,可分为__________和__________。 3.相关关系按相关变量的多少,分为______和复相关。4.在数量上表现为现象依存关系的两个变量,通常称为自变量和因变量。自变量是作为(变化根据)的变量,因变量是随(自变量)的变化而发生相应变化的变量。 5.对于表现为因果关系的相关关系来说,自变量一般都是确定性变量,因变量则一般是(随机性)变量。 6.变量间的相关程度,可以用不知Y与X有关系时预测Y的全部误差E1,减去知道Y与X有关系时预测Y的联系误差E2,再将其化为比例来度量,这就是(削减误差比例)。 7.依据数理统计原理,在样本容量较大的情况下,可以作出以下两个假定:(1)实际观察值Y围绕每个估计值 c Y是服 从();(2)分布中围绕每个可能的 c Y值的()是相同的。 7.已知:工资(元)倚劳动生产率(千元)的回归方程为 x y c 80 10+ =,因此,当劳动生产率每增长1千元,工资就平 均增加80 元。 8.根据资料,分析现象之间是否存在相关关系,其表现形式或类型如何,并对具有相关关系的现象之间数量变化的议案关系进行测定,即建立一个相关的数学表达式,称为(回归方程),并据以进行估计和预测。这种分析方法,通常又称为(回归分析)。 ; 9.积差系数r是(协方差)与X和Y的标准差的乘积之比。 二、单项选择 1.欲以图形显示两变量X和Y的关系,最好创建(D )。A 直方图 B 圆形图 C 柱形图 D 散点图2.在相关分析中,对两个变量的要求是(A )。 A 都是随机变量 B 都不是随机变量 C 其中一个是随机变量,一个是常数 D 都是常数 3. 相关关系的种类按其涉及变量多少可分为( )。 A. 正相关和负相关 B. 单相关和复相关 C. 线性相关和非线性相关 D. 不相关、不完全相关、完全相关4.关于相关系数,下面不正确的描述是(B )。 A当0≤ ≤r1时,表示两变量不完全相关;B当r=0时,表示两变量间无相关; C两变量之间的相关关系是单相关;D如果自变量增长引起因变量的相应增长,就形成正相关关系。 : 5. 当变量X按一定数量变化时,变量Y也随之近似地以固定的数量发生变化,这说明X与Y之间存在( )。 A. 正相关关系 B. 负相关关系 C. 直线相关关系 D. 曲线相关关系 6.当x按一定数额增加时,y也近似地按一定数额随之增加,那么可以说x与y之间存在(A )关系。 A 直线正相关 B 直线负相关 C 曲线正相关 D 曲线负相关 7.评价直线相关关系的密切程度,当r在~之间时,表示( C )。 A 无相关 B 低度相关 C 中等相关 D 高度相关 8.两变量的相关系数为,说明( ) A.两变量不相关 B.两变量负相关 C.两变量不完全相关 D.两变量完全正相关 9.两变量的线性相关系数为0,表明两变量之间(D )。 A 完全相关 B 无关系 C 不完全相关 D 不存在线性相关 】 10.兄弟两人的身高之间的关系是( )A.函数关系 B.因果关系 C.互为因果关系 D.共变关系 11.身高和体重之间的关系是(C )。A 函数关系 B 无关系 C 共变关系 D 严格的依存关系12.下列关系中,属于正相关关系得是(A )。 A 身高与体重 B 产品与单位成本 C 正常商品的价格和需求量 D 商品的零售额和流通费率

相关文档
相关文档 最新文档