文档库 最新最全的文档下载
当前位置:文档库 › 毕达哥拉斯与勾股定理

毕达哥拉斯与勾股定理

毕达哥拉斯与勾股定理
毕达哥拉斯与勾股定理

毕达哥拉斯与勾股定理

我们在初二已经学习过勾股定理。在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理。这是由于,他们认为最早发现直角三角形具有“”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580~前500年)。

实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。但是,这一传说引起过许多数学史家的怀疑。比如说,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得证实。”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。这说明,勾股定理实际上早已进入了人类知识的宝库。

无论是古埃及人、古巴比伦人还是我们中国人谁最先发现了勾股定理,我们的先人在不同的时期、不同的地点发现的这同一性质,显然不仅仅是哪一个民族的私有财产而是我们全人类的共同财富。值得一提的是:在发现这一共同性质后的收获却是不完全相同的。下面以“毕达哥拉斯定理”和“勾股定理”

为例,做一简单介绍:

一、毕达哥拉期定理

毕达哥拉斯是一个古希腊人的名宇。生于公元前6世纪的毕达哥拉斯,早年曾游历埃及、巴比伦(另一种说法是到过印度)等地,后来移居意大利半岛南部的克罗托内,并在那里组织了一个集政治、宗教、数学于一体的秘密团体──毕达哥拉斯学派,这个学派非常重视数学,企图用数来解释一切。他们宣称,数是宇宙万物的本原,研究数学的目的并不在于实用,而是为了探索自然的奥秘。他们对数学看法的一个重大贡献是有意识地承认并强调;数学上的东西如数和图形是思维的抽象,同实际事物或实际形象是截然不同的。有些原始文明社会中的人(如埃及人和巴比伦人)也知道把数脱离实物来思考,但他们对这种思考的抽象性质所达到的自觉认识程度,与毕达哥拉斯学派相比,是有相当差距的。而且在希腊人之前,几何思想是离不开实物的。例如,埃及人认为,直线就是拉紧的绳或田地的一条边;而矩形则是田地的边界。这个学派还有一个特点,就是将算术和几何紧密联系起来。

正因为如此,毕达哥拉斯学派在他们的探索中,发现了既属于算术又属于几何的用三个整数表示直角三角形边长的公式:若2n+1,分别是两直角边,则斜边是(不过这法则并不能

把所有的整勾股数组表示出来)。也正是由于上述原因,这个学派通过对整勾股数的寻找和研究,发现了所谓的“不可通约量”──例如,等腰直角三角形斜边与一直角边之比即正方形对角线与其一边之比不能用整数之比表达。为此,他们把那些能用整数之比表达的比称做“可公度比”,意即相比两量可用公共

度量单位量尽,而把不能这样表达的比称做“不可公度比”。像我们今日写成:l的比便是不可公度比。至于与1不能公度的证明也是毕达哥拉斯学派给出的。这个证明指出:若设等腰直角三角形斜

边能与一直角边公度,那么,同一个数将既是奇数又是偶数。证明过程如下:设等腰直角三角形斜边与一直角边之比为α:β,并设这个比已表达成最小整数之比。根据毕达哥拉斯定理,有。由于为偶数即为偶数,所以α必然也是偶数,因为任一奇数的平方必是奇数(任一奇数可表示为2n+1,于是,这仍是一个奇数。但是α:β是既约的,因此,β必然不是偶数而是奇数,α既然是偶数,故可设α=2γ。于是。因此,,这里,是个偶数,于是β也是偶数,但是β同时又是个奇数,这就产生了矛盾。关于对毕达哥拉

斯定理的证明,现在人类保存下来的最早的文字资料是欧几里得(公元前300年左右)所著的《几何原本》第一卷中的命题47:“直角三角形斜边上的正方形等于两直角边上的两个正方形之和”。其证明是用面积来进行的。

如下图,可证

图1

△ABD ≌△FBC,

矩形BL=2△ABD,

正方形GB= 2△凸FBC。

于是矩形BL=正方形GB。

同样有矩形CL=正方形AK。

所以正方形GB+正方形AK=正方形BE。

毕达哥拉斯学派对勾股定理的研究及其收获由此可见一般。实际上,毕达哥拉斯学派关心得更多的是数学问题本身的研究;以毕达哥拉斯学派为代表的古希腊数学是以空间形式为主要研究对象,以逻辑上的演绎推理为主要的理论形式。而毕达哥拉斯定理的发现(关于可公度比与不可公度比的研究、讨论),实际上导致了无理数的发现,尽管毕达哥拉斯学派不愿意接受这样的数,并因此造成了数学史上所谓的第一次数学危机,但是毕达哥拉斯学派的探索仍然是功不可没的。

证明毕达哥拉斯定理

证明毕达哥拉斯定理 制作:有丘直方 毕达哥拉斯定理 222BC AC AB =+ 或者可以这么说: 直角三角形的一条直边的长度乘自己得到的积和另一条直边的长度乘自己得到的积相加的和等于斜边的长度乘自己得到的积——是不是很烦? 中国人称这条定理为“勾股定理”,他们把直角三角形的两条直边的长度分别叫做“勾”和“股”,斜边就叫“弦”。这就简单多了: 直角三角形中的勾乘自己得到的积和股乘自己得到的积相加的和等于弦乘自己得到的积。 甚至可以更简单,因为如果用“勾”、“股”和“弦”的话,就不用画图了。这又是因为“勾”、“股”和“弦”只在直角三角形中出现。 222弦股勾=+ 简单不?中国人就是聪明,因为勾股定理比毕达哥拉斯定理早发现好多年,而且更简单。 证明毕达哥拉斯定理 首先,我们画一幅图: 啊,真乱。让我们先把重要的部分先择出来。 我们现在需要证明图中用蓝色的线表示的HDEG JAHI ABCD □□□=+(因为ABCD □是2AD 、JAHI □是2AH 、HDEG □是2HD )。其中,用蓝色的粗线表示的形状就是我们图中最最重要的部分——直角三角形。图中用绿色的线表示的诸线段是辅助线,用绿色的虚线表示的线段都是很少时候才用到的辅助线。 根据定理,我们只要证明XDEF ABCD □□=且HXFG JAHI □□=就能证明HDEG JAHI ABCD □□□=+,因为HDEG HXFG XDEF □□□=+(这是肯定的)。

我们先不看JH 、ID 、AG 和HF ,这些线段暂时用不到。我们先证明XDEF ABCD □□=。 因为ABCD BCD □△21=且XDFE DEF □△2 1=,所以我们只要证明出BCD DEF △△=就可以推出XDEF ABCD □□=。这又是因为等号两边同时缩小2 1倍,这个等式还是成立。 现在,让我们先岔开一下,看看两个角——你会知道为什么我们要提到它们的。这两个角是:CDH ∠和ADE ∠。先看CDH ∠,它被AD 分成了两个角:CDA ∠和ADH ∠;再看ADE ∠,它被HD 分成了两个角:HDE ∠和ADH ∠。所以,?+=90∠∠ADH CDH (CDA ∠是直角,所以用?90代替)且?+=90∠∠ADH ADE (HDE ∠是直角,所以用?90代替)。看看这两条等式,你会发现其实ADE CDH ∠∠=!这很重要! 让我们再看看两个三角形——你会知道为什么我们要提到它们的。这两个三角形是:CDH △和ADE △。先看CDH △,它的两条蓝色的边的长度分别是AD 和HD (AD 其实是CD 的长度,因为他们标了全等标记,所以CD 可以用AD 表示);再看ADE △,它的两条蓝色的边的长度分别是AD 和HD (HD 其实是DE 的长度,因为他们标了全等标记,所以HD 可以用DE 表示)。比较一下CDH △和ADE △,它们有两条对应的邻边相等!因为当两个三角形中有两条对应的边相等且这两条边之间的夹角相等则这两个三角形全等,所以ADE CDH ≌△△(因为它们之间的夹角ADE CDH ∠∠=)。 我们接下来先看看CDH △与BCD △之间的关系。你发现了没?它们的面积是相等的!因为两个三角形,如果它们的底和高相等,那么它们的面积相等。如果它们的底的长度都是CD ,那么高的长度就都是BC (因为平行线之间的线段长度相等且CD BH ∥,CD BH ∥又是因为BH 和CD 都垂直于BC ) 。再看看ADE △与DEF △之间的关系。它们的面积也是相等的!因为它们的底和高相等。如果它们的底的长度都是DE ,那么高的长度就都是FE (因为平行线之间的线段长度相等且DE AF ∥,DE AF ∥又是因为AF 和DE 都垂直于FE )。 那么现在……ADE CDH △△=且BCD CDH △△=且DEF ADE △△=。通过这 三条等式我们就可以推出BCD DEF △△=!那么让它们都被2 1除,就能得到XDEF ABCD □□=了!

关于毕达哥拉斯定理证明的论文

关于毕达哥拉斯定理的证明 业:XXXXX 姓名:XX 指导老师:XX 摘要:对于几何原本中毕达哥拉斯定理的证明过程,欧几里得以定义,公设,公理的方式进行推理,现将所有涉及毕达哥拉斯定理的证明命题提出。 关键词:毕达哥拉斯定理,定义,公设,公理。 正文: 定义:1.点是没有大小的东西 2. 线只有长度而没有宽带 3. 一线的两端是点 4. 直线是它上面的点一样地平放着的线 5. 面只有长度和宽带 6. 面的边缘是线 7. 平面是它上面的线一样地平放着 8. 平面角是在一平面内但不在一条直线上的两条相交线相互的倾斜度 9. 当包含角的两条线都是直线时,这个角叫做直线角. 10. 当一条直线和另一条直线交成邻角彼此相等时,这些角每一个被叫做直角,而且称这一条直线垂直于另一条直线。 11. 大于直角的角称为钝角。 12 .小于直角的角称为锐角 13. 边界是物体的边缘 14. 图形是一个边界或者几个边界所围成的 15. 圆:由一条线包围着的平面图形,其内有一点与这条线上任何一个 点所连成的线段都相等。 16. 这个点(指定义15中提到的那个点)叫做圆心。 17. 圆的直径是任意一条经过圆心的直线在两个方向被圆截得的线段, 且把圆二等分。 18. 半圆是直径与被它切割的圆弧所围成的图形,半圆的圆心与原圆心相同。

19. 直线形是由直线围成的.三边形是由三条直线围成的,四边形是由四条直线围成的,多边形是由四条以上直线围成的? 20. 在三边形中,三条边相等的,叫做等边三角形;只有两条边相等的,叫做等腰三角形;各边不等的,叫做不等边三角形? 21. 此外,在三边形中,有一个角是直角的,叫做直角三角形;有一个角是钝角的,叫做钝角三角形;各边不等的,叫做不等边三角形? 22. 在四边形中,四边相等且四个角是直角的,叫做正方形;角是直角,但四边不全相等的,叫做长方形;四边相等,但角不是直角的,叫做菱形;对角相等且对边相等,但边不全相等且角不是直角的,叫做斜方形;其余的四边形叫做不规则四边形? 23. 平行直线是在同一个平面内向两端无限延长不能相交的直线.0 公理:1.等于同量的彼此相等 2. 等量加等量,其和相等; 3. 等量减等量,其差相等 4. 彼此能重合的物体是全等的 5. 整体大于部分。 公设: 1.过两点能作且只能作一直线; 2. 线段(有限直线)可以无限地延长; 3. 以任一点为圆心,任意长为半径,可作一圆; 4. 凡是直角都相等; 5. 同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交。 作图证明: 1. 在一个已知有限直线上作一个等边三角形 设AB是已知直线 以A为圆心,以AB为距离画圆 以B为圆心,以AB为距离画圆 两圆交点C到A,B的来连线CA,CB ?/ AC=AB BC=BA ??? CA=CB=AB ???△ ABC是等边三角形

简述毕达哥拉斯定理的起源

几何学中,有着无数定理,毕达哥拉斯定理是其中最诱人的一个。毕达哥拉斯定理的历史最悠久、证明方法最多、应用最广泛,它是人类科学发现中的一条基本定理,对科技进步起了不可估量的作用。中世纪德国数学家、天文学家开普勒称赞说:“几何学中有两件瑰宝,一是毕达哥拉斯定理,一是黄金分割律。”在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。数学公式中常写作a2+b2=c2 “勾三股四弦五”是我们现在耳熟能详的“勾股定理”中的一个特例,它早在西汉的数学著作《周髀算经》中就已经出现,遗憾的是我们的祖先没有从这一特例中发现普遍意义,而拱手将这一定理的发现权及冠名权让给了古希腊著名数学家和哲学家毕达哥拉斯。他第一个用演绎法证明了直角三角形斜边平方等于两直角边平方之和。因而这条定理在西方以他的名字命名,被称为“毕达哥拉斯定理”。 大约在公元前572年,毕达哥拉斯出生在爱琴海的萨摩斯岛。自幼聪明好学,曾在名师门下学习几何学、自然科学和哲学,后来因对东方的向往,游历了巴比伦、印度和埃及,吸收了阿拉伯文明和印度文明,大约在公元前550年才返回希腊,创建了自己的学派。此后他一边从事教育,一边从事数学研究。 毕达哥拉斯定理是毕达哥拉斯一个最具代表的数学成就,关于这一定理的发现还有一个有趣的故事。相传,毕达哥拉斯应邀参加一次豪华聚会,不知道什么原因,大餐迟迟不上桌。善于观察和理解的毕达哥拉斯没有注意这些,而是被脚下规则、美丽的方形石砖所深深吸引,他不是在欣赏它们的美丽而是在思考它们和“数”之间的关系。于是,在大厅广之下,他蹲在地板上,拿了画笔在选定的一块石砖上以它的对角线为边画一个正方形,结果惊奇的的发现这个正方形的面积恰好等于两块砖的面积和。开始他以为这只是巧合,但当他爸两块砖拼成的矩形之对角线做另一个正方形时,这个正方形面积相当于5块砖的面积。这也就是说它等于以两股为边作正方形面积之和。后来,他又做了进一步演算,最终证明了“毕达哥拉斯定理”。 这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。历史上,印度、阿拉伯、日本、美国等许多国家和地区的数学家对毕达哥拉斯定理都有独到的研究。在探索定理证明的人海中,不但有数学家,还有物理学家、画家、政治家,甚至还有一位美国总统。美国第20届总统加菲尔德,在他当选总统的前5年还是一位议员。1876年,他在和其他议员一起做“思维体操”时,想出了一种证明毕达哥拉斯定理的方法,他的这一证法后来发表在《新英格兰教育月刊》上。总统证明毕达哥拉斯定理,成了数学史 上的一段佳话。 20世纪最伟大的科学家之一爱因斯坦,在中学时代对几何学 也是情有独钟。18岁的时候,爱因斯坦找到了毕达哥拉斯定理的 两种新证法。 勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。 我国是发现和研究勾股定理最古老的国家之一。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。

勾股定理的证明方法

初中数学综合实践活动课 一、实践活动主题:勾股定理的证明方法 二、实践活动背景: 1、背景说明:此内容为学生提供自主活动、自主探索的机会,有助于积累数学活动经验、培养创新意识,从而获取知识与技能. 2、课题的意义:勾股定理的数学教育价值绝不仅仅是公理体系中的一环,一般的几何定理教学环节包括:发现定理、证明定理和应用定理。而勾股定理承载了太多,它是一个引导学生与数学史上智者们对话的绝佳契机。通过勾股定理的学习能够了解知识背后的数学文化和数学史,体验数学美,感受数学的无穷魅力。而且,勾股定理的研究是我国古代杰出数学研究成果之一,为世界所瞩目,获得高度评价,在勾股定理的学习过程中感受到能够感受到民族自豪感,激发爱国热情。 3、课题介绍:本次实践活动所研究的勾股定理,是直角三角形的一条非常重要的性质,它也是几何学中重要的定理之一。勾股定理从边的角度进一步刻画了直角三角形的特征,通过对勾股定理的学习,学生将在原有的基础上对直角三角形有进一步的认识和理解。通过探索勾股定理的活动,体验由特殊到一般地探索数学问题的方法,尝试用数形结合来解决数学问题的思想。 三、实践活动目标: 1. 理解勾股定理的内容,知道勾股定理的五种重要证明方法,(赵爽弦图法、毕达哥拉斯证法、总统证法、青朱出入图法、欧几里得法)了解与勾股定理有关的一些数学史,体会数形结合. 2. 在勾股定理证明方法的赏析过程中感受数学文化,拓展思维,培养数学兴趣,感受数学美. 3. 在对勾股定理的独立自学、小组合作、展示交流过程中,逐步提高综合实践能力. 四、实践活动时间 五、学生特征分析 勾股定理的证明方法很多,本节课采用的是面积证法。首先由于前面没有系统学习面积证法,这种证明方法学生感到很陌生,尤其是觉得推理根据不明确不像证明,没有教师的启发引领,学生不容易独立想到。

勾股定理毕达哥拉斯定理及各种证明方法

勾股定理(毕达哥拉斯定理) 勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理是余弦定理的一个特例。勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。“勾三股四弦五”是勾股定理最基本的公式。勾股数组方程a 2+b 2=c 2的正整数组(a ,b ,c )。(3,4,5)就是勾股数。也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a 2+b 2=c 2,即直角三角形两直角边的平方和等于斜边的平方。 勾股定理 命题1如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么 。 勾股定理的逆定理 命题2如果三角形的三边长a ,b ,c 满足 ,那么这个三角形是直角三角形。 【证法1】(赵爽证明) 以a 、b 为直角边(b>a ),以c 为斜边作四个全等的直角三角形,则每 个直角三角形的面积等于2 1ab.把这四个直角三角形拼成如图所示形状. ∵RtΔDAH≌RtΔABE,∴∠HDA=∠EAB. ∵∠HAD+∠HAD=90o,∴∠EAB+∠HAD=90o, ∴ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵EF=FG=GH=HE=b―a,∠HEF=90o. ∴EFGH 是一个边长为b―a 的正方形,它的面积等于. ∴ ∴. 【证法2】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a+b ,所以面积相等. 即,整理得. 【证法3】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于.把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵RtΔEAD≌RtΔCBE,∴∠ADE=∠BEC. ∵∠AED+∠ADE=90o,∴∠AED+∠BEC=90o.∴∠DEC=180o―90o=90o. ∴ΔDEC 是一个等腰直角三角形,它的面积等于 .又∵∠DAE=90o,∠EBC=90o,∴AD∥BC.∴ ABCD 是一个直角梯形,它的面积等于

毕达哥拉斯

毕达哥拉斯 毕达哥拉斯 毕达哥拉斯(Pythagoras,572 BC?—497 BC?)古希腊数学家、哲学家。无论是解说外在物质世界,还是描写内在精神世界,都不能没有数学!最早悟出万事万物背后都有数的法则在起作用的,是生活在2500年前的毕达哥拉斯。毕达哥拉斯出生在爱琴海中的萨摩斯岛(今希腊东部小岛),自幼聪明好学,曾在名师门下学习几何学、自然科学和哲学。以后因为向往东方的智慧,经过万水千山来到巴比伦、印度和埃及(有争议),吸收了阿拉伯文明和印度文明(公元前480年)。 数的艺术 毕达哥拉斯学派认为“1”是数的第一原则,万物之母,也是智慧;“2”是对立和否定的原则,是意见;“3”是万物的形体和形式;“4”是正义,是宇宙创造者的象征;“5”是奇数和偶数,雄性与雌性和结合,也是婚姻;“6”是神的生命,是灵魂;“7”是机会;“8”是和谐,也是爱情和友谊;“9”是理性和强大;“10”包容了一切数目,是完满和美好。 毕达哥拉斯的黄金分割:(a:b=:a) 毕达哥拉斯学派认为由太阳、月亮、星辰的轨道和地球的距离之比,分别等于三种主要的和音,即八音度、五音度、四音度。 毕达哥拉斯学派认为从数量上看,夏天是热占优势,冬天是冷占优势,春天是干占优势,秋天是湿占优势,最美好的季节则是冷、热、干、湿等元素在数量上和谐的均衡分布。 毕达哥拉斯学派从数学的角度,即数量上的矛盾关系列举出有限与无限、一与多、奇数与偶数、正方与长方、善与恶、明与暗、直与曲、左与右、阳与阴、动与静等十对对立的范畴,其中有限与无限、一与多的对立是最基本的对立,并称世界上一切事物均还原为这十对对立。 成长经历 公元前580年,毕达哥拉斯出生在米里都附近的萨摩斯岛(今希腊东部的小岛)——爱奥尼亚群岛的主要岛屿城市之一,此时群岛正处于极盛时期,在经济、文化等各方面都远远领先于希腊本土的各个城邦。 毕达哥拉斯的父亲是一个富商,九岁时被父亲送到提尔,在闪族叙利亚学者那里学习,在这里他接触了东方的宗教和文化。以后他又多次随父亲作商务旅行到小亚细亚。公元前551年,毕达哥拉斯来到米利都、得洛斯等地,拜访了数学家、天文学家、泰勒斯、阿那克西曼德和菲尔库德斯,并成为了他们的学生。在此之前,他已经在萨摩斯的诗人克莱非洛斯那里学习了诗歌和音乐。 公元前550年,30岁的毕达哥拉斯因宣传理性神学,穿东方人服装,蓄上头发从而引起当地人的反感,从此萨摩斯人一直对毕达哥拉斯有成见,认为他标新立异,鼓吹邪说。毕达哥拉斯被迫于公元前535年离家前往埃及,途中他在腓尼基各沿海城市停留,学习当地神话和宗教,并在提尔一神庙中静修。 抵达埃及后,国王阿马西斯推荐他入神庙学习。从公元前535年到公元前525年这十年中,

2017中考数学考前突击:毕达哥拉斯定理

2017中考数学考前突击:毕达哥拉斯定理 2017中考数学考前突击:平面几何的六十个定理1、勾股定理(毕达哥拉斯定理) 2、射影定理(欧几里得定理) 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 6、三角形各边的垂直一平分线交于一点。 7、三角形的三条高线交于一点 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四

边形的九点圆。 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD 精心整理,仅供学习参考。

毕达哥拉斯

毕达哥拉斯 最早把数的概念提到突出地位的是毕达哥拉斯学派、他们特别重视数学,企图用数来解释一切、宣称数是宇宙万物的本原,研究数学的目的并不在于使用而是为了探究自然的奥秘、他们从五个苹果、五个手指等事物中抽象出了五那个数、这在今天看来是特别平常的事,但在当时的哲学和有用数学界,这确实是一个巨大的进步、在有用数学方面,它使得算术成为可能、在哲学方面,那个发明促使人们相信数是构成实物世界的基础、毕达哥拉斯定理——勾股定理 毕达哥拉斯本人以发明勾股定理(西方称毕达哥拉斯定理)著称于世、这定理早已为巴比伦人和中国人所知(在中国古代大约是战国时期西汉的数学 著作《周髀算经》中记录着商高同周公的一段对话、商高说:“…故折矩,勾广三,股修四,经隅五、”商高那段话的意思确实是说:当直角三角形的两条直角边分别为3〔短边〕和4〔长边〕时,径隅〔确实是弦〕那么为5、以后人们就简单地把那个事实说成“勾三股四弦五”、这确实是中国闻名的勾股定理.),只是最早的证明大概可归功于毕达哥拉斯、他是用演绎法证明了直角三角形斜边平方等于两直角边平方之和,即毕达哥拉斯定理(勾股定理)、 整数的变化 毕达哥拉斯和他的学派在数学上有特别多创造,尤其对整数的变化规律感兴趣、例如,把(除其本身以外)全部因数之和等于本身的数称为完全数(如6,28,496等),而将本身大于其因数之和的数称为盈数;将小于其因数之和的数称为亏数、 几何的其他贡献 在几何学方面,毕达哥拉斯学派证明了“三角形内角之和等于两个直角”的论断;研究了黄金分割;发明了正五角形和相似多边形的作法;还证明了正多面体只有五种——正四面体、正六面体、正八面体、正十二面体和正二十面体、

关于毕达哥拉斯定理证明的论文

关于毕达哥拉斯定理的证明 专业:××××× 姓名:×× 指导老师:×× 摘要:对于几何原本中毕达哥拉斯定理的证明过程,欧几里得以定义,公设,公理的方式进行推理,现将所有涉及毕达哥拉斯定理的证明命题提出。 关键词:毕达哥拉斯定理,定义,公设,公理。 正文: 定义:1. 点是没有大小的东西 2.线只有长度而没有宽带 3.一线的两端是点 4.直线是它上面的点一样地平放着的线 5.面只有长度和宽带 6.面的边缘是线 7.平面是它上面的线一样地平放着8. 平面角是在一平面内但不在一条 直线上的两条相交线相互的倾斜度. 9. 当包含角的两条线都是直线时,这个角叫做直线角. 10. 当一条直线和另一条直线交成邻角彼此相等时,这些角每一个被叫做直角,而且称这一条直线垂直于另一条直线。 11. 大于直角的角称为钝角。 12. 小于直角的角称为锐角 13. 边界是物体的边缘 14. 图形是一个边界或者几个边界所围成的 15. 圆:由一条线包围着的平面图形,其内有一点与这条线上任何一个点所连成的线段都相等。 16. 这个点(指定义15中提到的那个点)叫做圆心。 17. 圆的直径是任意一条经过圆心的直线在两个方向被圆截得的线段,且把圆二等分。 18.半圆是直径与被它切割的圆弧所围成的图形,半圆的圆心与原圆心相同。

19.直线形是由直线围成的.三边形是由三条直线围成的,四边形是由四条直线围成的,多边形是由四条以上直线围成的. 20.在三边形中,三条边相等的,叫做等边三角形;只有两条边相等的,叫做等腰三角形;各边不等的,叫做不等边三角形. 21.此外,在三边形中,有一个角是直角的,叫做直角三角形;有一个角是钝角的,叫做钝角三角形;各边不等的,叫做不等边三角形. 22.在四边形中,四边相等且四个角是直角的,叫做正方形;角是直角,但四边不全相等的,叫做长方形;四边相等,但角不是直角的,叫做菱形;对角相等且对边相等,但边不全相等且角不是直角的,叫做斜方形;其余的四边形叫做不规则四边形. 23.平行直线是在同一个平面内向两端无限延长不能相交的直线.0 公理:1.等于同量的彼此相等 2.等量加等量,其和相等; 3.等量减等量,其差相等 4.彼此能重合的物体是全等的 5.整体大于部分。 公设: 1.过两点能作且只能作一直线; 2.线段(有限直线)可以无限地延长; 3.以任一点为圆心,任意长为半径,可作一圆; 4.凡是直角都相等; 5.同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交。 作图证明: 1.在一个已知有限直线上作一个等边三角形 设AB是已知直线 以A为圆心,以AB为距离画圆 以B为圆心,以AB为距离画圆 两圆交点C到A,B的来连线CA,CB ∵AC=AB BC=BA ∴CA=CB=AB ∴△ABC是等边三角形

勾股定理(毕达哥拉斯定理)及各种证明方法

勾股定理(毕达哥拉斯定理) 勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理是余弦定理的一个特例。勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。“勾三股四弦五”是勾股定理最基本的公式。勾股数组方程a 2 + b 2= c 2的正整数组(a ,b ,c )。(3,4,5)就是勾股数。也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a 2+b 2=c 2 ,即直角三角形两直角边的平方和等于斜边的平方。 勾股定理 命题1 如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么。 勾股定理的逆定理 命题2 如果三角形的三边长a ,b ,c 满足,那么这个三角形是直角三角形。 【证法1】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于 2 1 ab. 把这四个直角三角形拼成如图所示形状. ∵ Rt ΔDAH ≌ Rt ΔABE,∴ ∠HDA = ∠EAB. ∵ ∠HAD + ∠HAD = 90o,∴ ∠EAB + ∠HAD = 90o, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a ,∠HEF = 90o. ∴ EFGH 是一个边长为b―a 的正方形,它的面积等于 . ∴ ∴ . 【证法2】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即, 整理得 .

费尔马大定理及其证明

费尔马大定理及其证明 近代数学如参天大树,已是分支众多,枝繁叶茂。在这棵苍劲的大树上悬挂着不胜其数的数学难题。其中最耀眼夺目的是四色地图问题、费尔马大定理和哥德巴赫猜想。它们被称为近代三大数学难题。 300多年以来,费尔马大定理使世界上许多著名数学家殚精竭虑,有的甚至耗尽了毕生精力。费尔马大定理神秘的面纱终于在1995年揭开,被43岁的英国数学家维尔斯一举证明。这被认为是“20世纪最重大的数学成就”。 费尔马大定理的由来 故事涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费尔马。丢番图活动于公元250年前后。 1637年,30来岁的费尔马在读丢番图的名著《算术》的法文译本时,他在书中关于不定方程 x^2+ y^2 =z^2 的全部正整数解这页的空白处用拉丁文写道:“任何一个数的立方,不能分成两个数的立方之和;任何一个数的四次方,不能分成两个数的四次方之和,一般来说,不可能将一个高于二次的幂分成两个同次的幂之和。我已发现了这个断语的美妙证法,可惜这里的空白地方太小,写不下。” 费尔马去世后,人们在整理他的遗物时发现了这段写在书眉上的话。1670年,他的儿子发表了费尔马的这一部分页端笔记,大家才知道这一问题。后来,人们就把这一论断称为费尔马大定理。用数学语言来表达就是:形如x^n+y^n=z^n的方程,当n大于2时没有正整数解。 费尔马是一位业余数学爱好者,被誉为“业余数学家之王”。1601年,他出生在法国南部图卢兹附近一位皮革商人的家庭。童年时期是在家里受的教育。长大以后,父亲送他在大学学法律,毕业后当了一名律师。从1648年起,担任图卢兹市议会议员。

勾股定理(毕达哥拉斯定理)及各种证明方法

勾股定理(毕达哥拉斯定理) 是一个,是人类早期发现并证明的重要数学定理之一,用思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。是的一个特例。约有400种证明方法,是数学定理中证明方法最多的之一。“”是勾股定理最基本的公式。勾股数组方程a 2+b 2=c 2的正整数组(a ,b ,c )。(3,4,5)就是。也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a 2+b 2=c 2,即直角三角形两直角边的平方和等于斜边的平方。 勾股定理 命题1如果的两条直角边长分别为a ,b ,斜边长为c ,那么 。 勾股定理的逆定理 命题2如果的三边长a ,b ,c 满足 ,那么这个三角形是直角三角形。 【证法1】(赵爽证明) 以a 、b 为直角边(b>a ),以c 为斜边作四个全等的直角三角形,则每 个直角三角形的面积等于2 1ab.把这四个直角三角形拼成如图所示形状. ∵RtΔDAH≌RtΔABE,∴∠HDA=∠EAB. ∵∠HAD+∠HAD=90o,∴∠EAB+∠HAD=90o, ∴ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵EF=FG=GH=HE=b―a,∠HEF=90o. ∴EFGH 是一个边长为b―a 的正方形,它的面积等于. ∴ ∴. 【证法2】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a+b ,所以面积相等. 即,整理得. 【证法3】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于.把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵RtΔEAD≌RtΔCBE,∴∠ADE=∠BEC. ∵∠AED+∠ADE=90o,∴∠AED+∠BEC=90o.∴∠DEC=180o―90o=90o. ∴ΔDEC 是一个等腰直角三角形,它的面积等于 .又∵∠DAE=90o,∠EBC=90o,∴AD∥BC.∴ ABCD 是一个直角梯形,它的面积等于 ∴.∴.

勾股定理(毕达哥拉斯定理)及各种证明方法

勾股定理(毕达哥拉斯定理)及 各种证明方法 勾股定理(毕达哥拉斯定理) 勾股定理是一个初等几何定理,是人类早期 发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理是余弦定理的一个特例。勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。“勾三股四弦五”是勾股定理最基本的公式。勾股数组方程a2 + b2= c 2的正整数组(a, b, c)。(3,4,5)就是勾股数。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2,即直角三角形两直角边的平方和

等于斜边的平方。 勾股定理 命题1如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么”+b— 勾股定理的逆定理 命题2如果三角形的三边长a,b,c满足 = 3,那么这个三角形是直角三角形。

【证法1】(赵爽证明) 全等的直角三角形,则每个直角三角形的面积等 V Rt △ DAH 今 Rt △ ABE, A ZHDA = ZEAB ? ??? ZHAD + ZHAD = 90°, :. ZEAB + ZHAD = 【证法2】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边 长分别为a 、b,斜边长为c,再做三个边长分别 以a 、b 为直角边(b>a ), 以c 为斜边作四个 于冲 把这四个直角三角形拼成如图所示形状 . 90°,

为a、b、c的正方形,把它们像上图那样拼 成两个正方形?从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即,整理得宀F八 【证法3】(1876年美国总统Garfield 证明)以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于 >.把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上? ??? Rt △ EAD也Rt △ CBE,「? / ADE = / BEC. ??? / AED + / ADE = 90o,二 / AED + / BEC = 90o.二 / DEC = 180c—90o= 90o. ??? △ DEC是一个等腰直角三角形,它的面积等于

毕达哥拉斯定理的证明

毕达哥拉斯定理的证明 侯昕彤南京大学匡亚明学院 摘要: 欧几里德的毕达哥拉斯定理证明。包括其中涉及的4条定义,5条公设,4条公理,25个命题证明,以及主证明(欧几里德《几何原本》第一卷命题47)。 关键词:毕达哥拉斯定理几何原本欧几里德 毕达哥拉斯定理:一个直角三角形斜边的平方,等于其两个直角边的平方和。 欲证明该定理,首先给出下列定义,公设以及公理: ●定义: 【定义1】当一条直线和另一条直横的直线交成的邻角彼此相等时,这些角的每一个被叫做直角。 【定义2】圆是由一条线包围成的平面图形,其内有一点与这条线上的点连接成的所有线段都相等。 【定义3】在四边形中,四边相等且四个角是直角的,叫做正方形。 【定义4】平行直线是在同一平面内的直线,向两个方向无限延长,在不论那个方向它们都不相交。 ●公设: 【共设1】由任意一点到另外任意一点可以画直线. 【共设2】一条有限直线可以继续延长. 【共设3】以任意点为心及任意的距离可以画圆。 【共设4】凡直角都彼此相等。 【共设5】同平面内一条直线和另外两条直线相交,若在某一侧的两个内角的和小于二自角的和,则这二直线经无限延长后在这一侧相交 ●公理: 【公理1】等于同量的量彼此相等。 【公理2】等量加等量,其和仍相等。

【公理3】等量碱等量,其差仍相等。 【公理4】彼此能重合的物体是全等的。 根据给出的上述定义,公设,公理,进行下列命题的证明。证明段落中出现的【】表示该段证明所用的论据。 ●【命题1】命题:在一个已知有限直线上作一appear个等边三角形。 命题1 设AB是已知有限直线。 那么,要求在线段AB上作一个等边三角形。 以A为中心,且以AB为距离画圆【共设3】 再以B为心,且以BA为直为距离画圆ACE;【共设3】 由两圆的交点C到A,B连线CA,CB .【共设1】 因为,点A是圆CDB的圆心,AC等于BA。【定义2】 又点B是圆CAE的圆心,BC等于BA,【定义2】但是,已经证明CA等于AB;所以线段CA,CB都等于AB。 而且等于同量的量彼此相等,【公理1】. 三条线段CA , AB,BC彼此相等. 所以三角形ABC是等边的,即在已知有限直线AB上作出了这个三角形. 这就是所要求作的. ●【命题2】命题:由一个已知点(作为端点)作一线段等于已知线段

第二节 毕达哥拉斯学派

第二节毕达哥拉斯学派 1、生平事迹 我们是通过毕达哥拉斯定理来最初了解这位哲学家的,虽然埃及人在丈量土地的过程中已经发现了直角三角形的三个边之间的关系,但是以理论的形式来表达的却是毕达哥拉斯,毕达哥拉斯定理就是我们所说的勾股弦定理。毕达哥拉斯出身于爱奥尼亚的萨默斯岛,据说早年曾就学于泰勒斯和阿那克西曼德。鼎盛年约在公元前531年。 黑格尔说:“由于他的天才和他的生活方式,以及他教导给学生们的生活方式,是很特异的,所以人们才把他当成一个不做正当事情的人,一个魔术师,一个与一种道门里的鬼神来往的人。” 据说毕达哥拉斯是一个很爱美的人,并且仪表庄严,既令人喜爱,同时又令人敬畏。毕达哥拉斯曾经建立了一个带有宗教色彩的学术团体。志愿加入的人,要通过文化方面的测验,并且要受服从的训练。在这个团体里,过着的是一种完全符合规律的生活,穿的衣服、食品、工作、睡眠和起床都有规定,每一个钟点都有相应的工作。他们有一种很有定规的日常生活秩序。他们进行音乐和体育数学等方面的训练,共同吃饭,蜂蜜和面包是他们的主食,水是主要的饮料,他们禁止吃肉和豆子。毕达哥拉斯的社团,不仅是志愿的僧团,讲学与教育的机构,而且有长期持续的团体生活,由于这种独立的团体同希腊的政治公共生活和宗教生活没有联系,所以不能在希腊人的生活中长期存在。在希腊,自由是国家生活的原则,毕达哥拉斯所建立的团体是带有东方式的等级式的团体,因而为希腊人所不容。毕达哥拉斯的死因是不明的,据说为政敌所杀。 在中国古代也有一位哲学家建立宗教团体来传播自己的学说。墨子所建立的墨家学派,就是一个带有宗教色彩的禁欲主义团体,其成员成为墨者,多半来自从事生产劳作的社会下层,生活刻苦简朴。墨子死后,他的门人推选了一个人为首领,称为“钜子”,继续领导墨家活动。《寻秦记》里曾经提到“钜子令”。 2、理论学说 毕达哥拉斯学派提出万物的本原是数。“数是一切事物的本质,整个有规定的宇宙的组织,就是数以及数的关系的和谐系统”。 黑格尔认为这句话说的大胆地惊人,为什么这样说,因为“它把一般观念认为存在或真实的一切,都一下打到了,把感性的实体取消了,把它造成了思想的实体"。 与以前的哲学家相比,毕达哥拉斯学派不再用感性的具体事物作为万物的本质和根源,而是把非感性的东西-数以及数目之间的关系说成本体和真实的存在。 作为一切数之根本的“1”是第一本原,“1”是点,从“1”派生出其他的数和万物,具体的过程是:点(1)产生线(2)产生面(3)产生体(4),体(4)构成水、火、土、气等四种元素,这四种元素以不同的方式相互结合和转化,从而产生出世界的万事万物。 万物都是由数构成的,所以数不但是构成万物的基本元素,而且还是决定事物性质的抽象原则,最基本的原则就是从奇数与偶数的对立中引伸出来的十对基本的对立范畴。即:有定形和无定形、奇数与偶数、一与多、右与左、阴与阳、静与动、直与曲、明与暗、善与恶、正方与长方,每一对范畴的前一项都优于后一项。他们用这些对立范畴来说明事物的性质和价值。

人物简介 数学史上的里程碑——毕达哥拉斯

人物简介: 数学史上的里程碑——毕达哥拉斯 毕达哥拉斯(Pythagoras,约公元前560~前480年),古希腊数学家,在天文学、哲学及音乐理论方面也有很深造诣。 毕达哥拉斯出生于爱琴海上的萨摩斯岛。早年多方游历,曾到达埃及、巴比伦等地,师从许多数学家学习数学、天文学知识。回到家乡后,毕达哥拉斯开始招收弟子,聚众讲学。大约在公元前520年,毕达哥拉斯不满于当政者的暴政,离开家乡,迁往意大利南部的一个小岛,并在那里定居下来。当时同他在一起的只有他的母亲和惟一的一名门徒。在小岛上安顿下之后,毕达哥拉斯重新开始广收门徒,逐渐创立了著名的毕达哥拉斯学院。那是一个融宗教、政治、学术研究于一体的秘密组织,许多群众包括妇女和上层人士也积极参加活动,在当时形成一种空前的学术氛围,为毕达哥拉斯学派在各个领域的学术研究创造了良好的外部环境。 毕达哥拉斯学派的信徒一部分是普通听众,他们只是听讲教义,而没有资格接受高深的知识;另一部分成员则是在经过长期的训练和严格考核后成为属于毕达哥拉斯学派的真正弟子。他们要发誓坚持学派的信仰,严守学派的秘密。毕达哥拉斯学派在这一点上很像普通的宗教组织,但与它们不同的是他们将数学纳入他们的教义之中,认为世界上的一切事物都是由数来构成的,上帝用数来统治世界。“万物皆数”的思想根深蒂固,这也为毕达哥拉斯学派能在数学研究上取得一系列重要成果提供了思想上的条件。 毕达哥拉斯学派对数作了许多深入的研究,比如他们认识到数与音乐的关系、数与几何图形的关系、数与天体运行的关系等等,并把学员的课程分为四个部分:算术——研究数的绝对理论;音乐——研究数的应用;几何——研究静止的量;天文——研究运动的量,合称为“四道”。 尽管毕达哥拉斯学派赋予数以神秘的色彩,他们在数的研究方面还是做出了许多卓越的贡献。例如完全数(如果一个数等于除它本身以外的全部因子的和,那么这样的数就称为完全数)的发现,他们发现6和28是完全数,因为6=1+2+3;28=1+2+4+7+14。由毕达哥拉斯学派开创的完全数的研究,至今仍是数论领域的重要课题。 毕达哥拉斯还发现了另一类特殊的数——亲和数,他发现284这个数除它本身以外的所有因子之和等于220,而220除了它本身以外的所有因子的和恰好等于284,即: 220=1+2+4+71+142, 284=1+2+4+5+10+22+44+55+110 毕达哥拉斯将它们称为亲和数,并把它们作为友谊的象征。 毕达哥拉斯定理的发现和证明是毕达哥拉斯学派最重要的数学成就之一,在我国一般称之为勾股定理。我们知道最初的几何学兴起于生产生活实际需要,比如土地丈量等活动。勾股定理作为几何学中的一个重要内容,也是源于测量土地等活动。事实上,人们在1945年通过研究美索不达米亚出土的泥版书,发现早

勾股定理在西方被称为毕达哥拉斯定理

,勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯(Pythagoras,公元前572?~公元前497?)于公元前550年首先发现的。中国最早的一部数学著作——《周髀算经》里有关勾股定理的记载,比毕达哥拉斯要早了五百多年。在稍后一点的《九章算术》一书中(约在公元50至100年间)勾股定理得到了更加规范的一般性表达。 中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明(右图)。赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且有发展,只是具体图形的分合移补略有不同而已。例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。 在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀。”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。1881年,伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。 拼出的图被称为“青朱出入图”。刘徽在他的?九章算术注?中给出了注解,大意是:三角形ABC为直角三角形,以勾a为边的正方形为朱方,以股b为边的正方形为青方。以盈补虚,将朱方、青方并成弦方。依其面积关系有a2+b2=c2由于朱方、青方各有一部分在弦方内,那一部分就不动了。我们还可以拼成多种“青朱出入图”。 老师这里还有一种证明方法“达芬奇验证”其验证过程是这样的。 我想,同学们在收集资料和整理交流的过程中可能会有很多感受,咱们来共同分享一下。 他说通过同学们的分享和老师的指导,他学到了多种用拼图验证勾股定理的方法。 他说通过了解勾股定理的历史,是他进一步了解祖国传统文化的历史悠久和深后的文化底蕴。 他说他懂得有时候要做好一件事,只靠自己的力量可能不行,合理分工、齐心协力十分

相关文档
相关文档 最新文档