文档库 最新最全的文档下载
当前位置:文档库 › 水力压裂中就地生成支撑剂及高导流区域SPE-173328-MS

水力压裂中就地生成支撑剂及高导流区域SPE-173328-MS

水力压裂中就地生成支撑剂及高导流区域SPE-173328-MS
水力压裂中就地生成支撑剂及高导流区域SPE-173328-MS

SPE-173328-MS

In-Situ Formation of Proppant and Highly Permeable Blocks for Hydraulic Fracturing

Frank F.Chang,Saudi Aramco;Paul D.Berger and Christie H.Lee,Oil Chem Technologies

Copyright2015,Society of Petroleum Engineers

This paper was prepared for presentation at the SPE Hydraulic Fracturing Technology Conference held in The Woodlands,Texas,USA,3–5February2015. This paper was selected for presentation by an SPE program committee following review of information contained in an abstract submitted by the author(s).Contents of the paper have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s).The material does not necessarily reflect any position of the Society of Petroleum Engineers,its officers,or members.Electronic reproduction,distribution,or storage of any part of this paper without the written consent of the Society of Petroleum Engineers is prohibited.Permission to reproduce in print is restricted to an abstract of not more than300words;illustrations may not be copied.The abstract must contain conspicuous acknowledgment of SPE copyright.

Abstract

Proppants are used to keep hydraulic fractures open,allowing for reservoir fluids to flow back after external pressure is withdrawn.Proppants are carried by the hydraulic fracturing fluid containing multiple components such as polymers,breakers,or friction reducing agent.These proppant systems have certain disadvantages such as formation and fracture permeability damage due to the viscous gel residue,risk of early screen-out and reduced effective propped area due to proppant excessive leakoff or settling,and abrasion to the pumping equipment and tubular.

Acid fracturing is another fracturing technique.It is used in carbonate reservoirs,in which the acid etches the fracture faces to create conductive path.The drawbacks of acid fracturing include short acid etch length due to rapid acid-carbonate rock reaction rate and corrosion to the tubular.

The oil and gas industry has been relying on these hydraulic fracturing techniques to proliferate production from low permeability reservoirs,and has made significantly advancement in tools and chemicals used in the fracturing processes.However,the maximized production and recovery is still unattainable due to the reasons mentioned above.This paper discusses a novel chemical compositions and process to overcome the challenges encountered by the current fracturing techniques.The goal is to convert injected fracturing fluid into a highly permeable proppant pack in-situ.Since the fracturing fluid itself forms the proppant,it can penetrate the entire fracture length,height,and complex network, maximizing the effective fracture area and stimulated reservoir volume.The rendered particle size can be significantly larger than conventional proppants without the concern of screen-out.The in-situ formed proppants have strength sufficient to resist fracture closure stress.In addition,no polymer is required to suspend the proppant;therefore no gel residue will be left to damage fracture conductivity.

Though it is in its preliminary development stage,interesting and encouraging test results have been obtained.Formulations,photos,and mechanical properties of in-situ generated proppants will be pre-sented in this paper.

Introduction

Current hydraulic fracturing processes in sandstone and shale formations requires injecting solid propping agent(proppant)to keep the induced fractures conductive for hydrocarbon production.Injecting solid proppants present several challenges and disadvantages.(1)Solid proppant density is much higher than

that of the carrying fluid,therefore the proppants tend to settle to the bottom of the well or fractures.Fluids of high viscosity are often required and/or they need to be injected at very high rate.(2)In a complex fracture network such as those developed in brittle shale rocks,the solids may not effectively turn the corner(Sahai et al,2014)at the junction of the intersecting fractures.This limits the transported distance in the branch fractures,and is even likely to bridge off at these intersections leaving only the main planar fracture propped.The extensive network of induced fractures could close resulting in reduced deliver-ability of the fractured network.(3)The proppants must remain suspended while the fracture is being propagated and until the fracture is closed.Highly viscous gel is needed to accomplish such an objective. These polymer-based gels could leave residue to reduce the proppant pack conductivity and near fracture face permeability.Proppants of very light density have been developed to be able to allow using less viscous carrying fluids for efficiently transporting the proppants and minimize the gel damage(Rickards, et al.,2006).But the low density proppants naturally have lower strength to be used in deep and high stress reservoirs.(4)Proppants are abrasive to pumping equipment and tubulars being predominately silica, ceramic or other hard solids.

In addition to the technical challenges,various environmental issues have been in fervent debate.For example,in the hydraulic fracturing for shale gas in the Marcellus Shale,each well requires an average of400tanker trucks to carry water and supplies to and from the fracturing site.It takes4.1to12million gallons of water to complete each fracturing job(King2010).The water is mixed with sand and chemicals to create fracturing fluid.Approximately40,000gallons of chemicals are used per frac job.A simple calculation finds that500,000active gas wells in the United States x8million gallons of water per frac job x18stages that a well can be fracked gives72trillion gallons of water.The source of water,the leak off of the frac water into the reservoir and the treatment of flowed back water has become a serious issue with economic and environmental concerns.

The preferred fracturing technique for carbonate reservoirs is acid fracturing.Acid is injected to unevenly dissolve the fracture faces.Once the fracture closes,the differential etching pattern on the fracture faces becomes flow channels for the producing fluids.The reaction rate between acid and carbonate rock is very high under the high reservoir temperature condition.This high reaction rate causes the acid to be rapidly consumed as it is penetrating down into the leading edge of the fracture;therefore it is unable to continue to dissolve more rock deep into the reservoir to create long conductive channels. Though acid corrosion inhibitor is added in the injected fluid to protect the equipment and tubular, corrosion could still occur,especially when the down hole temperature is high.Corrosion not only compromises the integrity of the well,but potential scaling can be a concern during the production life of the well(Tammar,et al,2014).

Depending on the treatment design and objectives,hydraulic fracturing fluid generally contains water, polymer,crosslinker,fluid loss additives,flow back additives,surfactants,clay stabilizers,proppant,and gel breaker.The polymer is used to provide viscosity and keep the proppants suspended until they have reached their desired location in the fracture.The breakers are used to reduce the polymer viscosity, allowing the liquid portion of the fracturing fluid to be returned to the surface when the external pressure is removed and the overburden pressure partially closes the fracture.The proppants remain in the fracture and form permeability channels to increase the oil or gas production.This paper introduces a new idea in effectively propping the fractures.It is currently under R&D conducted jointly by Saudi Aramco and Oil Chem Technologies.The goal is to develop a fracturing and propping method to address all the drawbacks of the conventional fracturing fluids and chemicals to achieve maximum potential of hydraulic fracturing treatments.The objective is to generate proppants in-situ by converting fracturing fluid to discrete solid particles.

The new fracturing fluid is solids free and contains chemical precursors that will set into spherical particle beads deep within the reservoir to serve as proppants which keep the flow channels open and allow oil and gas to be easily transported into the well.The in-situ formed propping agent can be

significantly larger than conventional proppants without having to worry about screening out.The larger proppant also create much high fracture conductivity.The size of the spherical beads is a function of the precursors and their residence time within the fracture.Longer pumping time and longer set time will result in smaller spherical beads which can support the https://www.wendangku.net/doc/9615389822.html,rger spherical beads will form and remain in the main fracture and near the wellbore.Most of the precursors present in the injected fracturing fluid will be consumed while setting into the beads and therefore there is very little of fluid to flow back.This can significantly reduce the time for the onset of production.

Another feature of this in-situ proppant process is that it can be formulated into a fluid system that is basically water free by choosing an organic solvent such as crude oil,alcohols,esters,or fatty acids for main components to be mixed in.Within the formation clay swelling and fines migration issues can be minimized.In regions that fresh water availability is limited,such as offshore,the fluid can be made up with seawater or high salinity water to relieve the burden on the environment and transportation logistics.

There have been attempts to generate in-situ formed propping mechanism in the oil and gas industry.Malone et al.(1968)disclosed a method of fracturing and propping a subterranean formation using a liquid hardenable carrier composition containing dispersed removable material.A porous medium forms when the carrier composition hardens,and removable material is removed.The disadvantage of such technique is the counter balance of the strength vs.conductivity.Low porosity medium has to be created to ensure sufficient strength to support against the close stress.The strength reduces significantly when the removable portion of the materials is large in fraction to achieve high conductivity.

The new process described in this paper to form in-situ generated proppants involves the mixing of two separate precursor formulations to form a liquid.This liquid has viscosity of approximately 40cp.The viscosity can be adjusted by mixing the precursors in different base fluids,brine,seawater,oil,or

other Figure 1—The process of the formation of solid beads with time at 150°F.The photos on the left shows a homogeneous liquid containing the precursors of the settable solid.The middle photos shows the onset of the solid forming when the fluid was set for 30minutes at temperature after mixing.The photos on the right shows the growth of the beads after setting stagnant for 60minutes.

organic liquid.The density of the liquid mixture is also a function of the base fluid.This viscous liquid serves as the fracturing fluid as well as proppants once it enters the fracture and becomes static.The extent of mixing of the formulation and its residence time as it propagates through the fracture results in the formation of spherical beads.The wettability of the beads could also be varied from water wet,oil wet or partially oil/water wet by the selection of the proper surfactant to enhance the oil or gas production.The diameter and the hardness of the beads can be controlled by the reaction time between solid-forming precursors.According to the formation properties,the fracturing treatment could be designed as such that small diameter beads are formed in the tip of fracture or in narrow fracture and progressively larger diameter beads are formed at the tail of fracture near wellbore.A viscous pad can be pumped ahead of the in-situ proppant fluid if necessary to create fracture geometry and to provide leakoff control.Once placed in the fracture,the liquid mixture in the fracture reacts internally before fracture closes to convert into spherical solid beads,which are mechanically strong enough to keep the fracture open.Once set,the proppant pack is highly conductive for flow of the reservoir fluid to be produced through such high porosity media.Fig.1shows an example of the in-situ proppant formation process with time at 150°F.In general,the beads can be formed in less than 15minutes to more than 8hours after the two precursors are mixed.

The physical chemistry of the bead forming process leads to good sphericity of the beads.The good sphericity and large particle size help render highly uniform packing in the fracture to allow for the greatest fracture

conductivity.

Figure 2—Beads formed at 150°F after 30minutes.

Fig.2shows the formulations after 30minutes at 150°F.This gives the reader an idea of the volume of beads and the volume of liquid remaining after the in-situ reaction occurs for several formulations.

Fig.3shows the sphericity of the in-situ formed proppant beads.Fig.4shows the sizes of beads produced through this process.The spherical beads are strong enough to withstand overburden pressure and prop open fractures formed during hydraulic fracturing and acidizing.

Experimental Results and Discussions

The efforts have been focus on formulating the chemistry of the bead generation.Once the chemistry was successfully developed,a thorough testing program was planned to evaluate the mechanical property,conductivity,and durability of the proppant pack at various temperature and pressure

conditions.

Figure 3—The sphericity of the in-situ generated proppant

beads.

Figure 4—The produced sizes of solid beads under in-situ temperature of 150°F.

Figure5—Schematic diagram of the load cell to study the mechanical behavior and strength of the proppant pack.

Figure6—Comparison of the mechanical behavior among two in-situ proppant formulations and conventional high strength bauxite proppant(HSP) and intermediate strength proppant(ISP)packs.The stress vs.strain curve shows that the in-situ proppants increases its stiffness as the load increases,but it remain elastic without crushing.Conventional brittle HSP shows minor reduction in stiffness due to grain crushing.

Formation damage potential by the chemical and filtrate is also to be characterized.Thus far only preliminary mechanical property testing has started.Very encouraging results have been observed.

Mechanical property test is conducted by using a hydraulic press to apply load on a 1?diameter by 1?thick proppant pack at ambient temperature.The stress is slowly applied to the cylindrical pack at a constant displacement speed (0.5mm/min)until the stress reaches 14000psi.The stress vs.strain curve is constructed to analyze the mechanical behavior and strength of the packed material.Fig.5illustrates the load cell assembly with the proppant pack.

The load piston is set to continuously move down at a constant speed of 0.5mm/min while the resulted load due to the proppant pack resisting the change in thickness is measured by the transducer on the hydraulic frame of an Instron Model 3369Dual Column Compression https://www.wendangku.net/doc/9615389822.html,parison between the in-situ proppant and conventional proppants,including 16/30intermediate strength proppants (ISP),

16/20Figure 7—The particles in the in-situ proppant-1pack rebounded to nearly the same shape as the stress is released from the maximum load of 14000psi.No crushing nor fines can be

observed.

Figure 8—Photos showing the grains of 20/40high strength bauxite proppant (HSP)before (left)and after (right)being loaded to 14000psi.Very minor grain crushing can be observed.

resin coated proppants (RCP),20/40light weight ceramic proppants (LWCP),and high strength bauxite proppants (HSP),are made.

Fig.6shows the stress vs.strain curve for the mechanical behavior comparison between the in-situ proppants,intermediate strength proppant (ISP),and high strength bauxite proppant (HSP)packs.Two chemical formulations of the in-situ proppants are tested.Both in-situ proppants show highly flexible and elastic characteristics in the low stress regime.They behave like a deformable proppant described by Brannon et al (2008)and Fulton et al.(2011).However,as the stress increases,the proppant packs become much stiffer while remaining highly elastic.Loading the proppant packs to 14000psi does not result in any crushing.The grain shapes remain nearly the same as indicated by the photo in Fig.7for In-situ proppant-1.The conventional brittle HSP shows high stiffness throughout the loading process,however the stress-strain curve shows very minor elastic modulus reduction when loaded above 10000psi.And ISP pack starts to deviate from the linear elasticity at 8000psi.,These are the stresses at which the onset of grain crushing is initiated.Fig.8shows a few crushed grains after the HSP is loaded to 14000psi,whereas Fig.9shows significant amount of fines is generated when the ISP is loaded to 14000

psi.

Figure 9—Photos showing the grains of 16/30intermediate strength proppant (ISP)before (left)and after (right)being loaded to 14000psi.Significant grain crushing and fines generation can be

observed.

Figure 10—Photos showing the grains of 16/20resin coated proppant (RCP)before (left)and after (right)being loaded to 14000psi.Significant grain crushing and fines generation can be observed.

Figure11—Photos showing the grains of20/40light weight ceramic proppant(RCP)before(left)and after(right)being loaded to14000psi. Significant grain crushing and fines generation can be observed.

Figure12—Variation in bead size with time

The bulk density of the in-situ proppant pack is approximately0.68,and the grain apparent density is 1.05.The porosity of the initial proppant pack is approximately35%.It is obvious that there is a thickness reduction experienced by the in-situ proppant pack under14000psi stress.The stress-strain curves for the two in-situ proppants show reduction of pack thickness by30%(in-situ proppant-2)and50%(in-situ proppant-2).These stains translate to losses of porosity by the same levels.It is of course a concern how conductivity will be impacted under the high closure stress.Since the proppant diameter is significantly larger than the conventional proppants,the initial conductivity will be significant higher than the conventional proppants.Along with the zero fines generation,therefore the conductivity is expected still be sufficient.Nonetheless,conductivity testing will have to be performed to properly quantify the impact of closure stress on the deformable in-situ proppants.Subsequent papers in the near future will report such measurements,

Figure12shows the distribution of bead size that can be obtained as the hydraulic fluid containing the bead precursors propagate through the fracture.The longer the distance traveled before the fluid becomes undisturbed,the larger the beads formed,thus beads at the beginning of the fracture are smaller than those nearer the wellbore.

Conclusions

A non-solids containing hydraulic fluid containing proppant precursors has been developed with many advantages over conventional formulations and processes.

1.Minimal abrasion on the pumping equipment is experienced since no solids are present in the

injection fluid as compared to conventional proppant laden fracturing fluid.

2.The hydraulic fluid can more effectively penetrate deeply into the formation through complex

fracture network,form in-situ proppants to allow entire induced fractures to contribute to oil and gas production.

3.The in-situ formed spherical beads can be significant larger to than conventional proppants.This

allow enhancement of fracture conductivity.

4.In carbonate reservoirs,the in-situ proppants can effectively overcome the short etching pattern

suffered during acid fracturing for rapid acid spending rate;they also eliminate the concern of corrosion caused by large volume of acid injection.

5.The set material exhibits elastic mechanical behavior under loads so proppant flow back can be

effectively controlled.

6.The stiffness of the in-situ set proppants increases as the closure stress increases.They remain

elastic therefore no crushing is experienced as by the conventional brittle proppants to generate fines.This unique characteristic is believed to help sustain the fracture over longer duration. Acknowledgement

The authors would like to acknowledge Dr.Susanta Mohapatra for his work on characterizing the hundreds of formulations produced during the progress of this project.

References

Al-Tammar,J.I.,Bonis,M.,Choi,H.J.,and Al-Salim,Y.:“Saudi Aramco Downhole Corrosion/ Scaling Operational Experience and Challenges in HP/HT Gas Condensate Producers,”Paper SPE 169618,presented at the SPE International Oilfield Corrosion Conference and Exhibition,Ab-erdeen,United Kingdom,12–13May2014.

Brannon,H.D,Rickards,A.R.,Stephenson,J.S.,and Maharidge,R.I.:“Method of Stimulating Oil and Gas Wells Using Deformable Proppants,”U.S.Patent7,322,411.2008.

Fulton,R,G,Peskunowicz,A.J.J.,and Olson,G.R.:“Method of Treating a Formation Using Deformable Proppants,”U.S.Patent8,062,998,2011.

King,G.E.:“Thirty Years of Gas Shale Fracturing:What Have We Learned?”Paper SPE133456, presented at the SPE Annual Technical Conference and Exhibition,Florence,Italy,19-22Sep.

2010.

Malone,W.T,Williams,Jr.,J.R,and Derby,J. A.:“Method of Fracturing and Propping a Subterranean Formation”U.S.Patent3,366,178,1968.

Rickards,A.R.,Brannon,H.D.,Wood,W.D.,and Stephenson,C.J.:“High Strength,Ultralight Weight Proppant Lends New Dimensions to Hydraulic Fracturing Applications,”SPE Production and Operations Journal,May2006.

Sahai,R.,Miskimins,J.L.,and Olson,K.E.:“Laboratory Results of Proppant Transport in Complex Fracture Systems,”Paper SPE168579,presented at the SPE Hydraulic Fracturing Technology Conference,The Woodlands,Texas,USA,4-6Feb.2014.

水力压裂技术

第四章水力压裂技术 水力压裂是利用地面高压泵组,将高粘液体以大大超过地层吸收能力的排量注入井中, 在井底憋起高压,当此压力大于井壁附近的地应力和地层岩石抗张强度时,在井底附近地层 产生裂缝。继续注入带有支撑剂的携砂液,裂缝向前延伸并填以支撑剂,关井后裂缝闭合在 支撑剂上,从而在井底附近地层内形成具有一定几何尺寸和导流能力的填砂裂缝,使井达到 增产增注的目的。 水力压裂增产增注的原理主要是降低了井底附近地层中流体的渗流阻力和 改变了流体的渗流状态,使原来的径向流动改变为油层流向裂缝近似性的单向流动和裂缝与井筒间的单向流 动,消除了径向节流损失,大大降低了能量消耗。因而油气井产量或注水井注入量就会大幅 度提高。 第一节造缝机理 在水力压裂中,了解裂缝形成条件、裂缝的形态和方位等,对有效地发挥压裂在增产、 增注中的作用都是很重要的。在区块整体压裂改造和单井压裂设计中,了解裂缝的方位对确 定合理的井网方向和裂缝几何参数尤为重要,这是因为有利的裂缝方位和几何参数不仅可以 提高开采速度,而且还可以提高最终采收率。 造缝条件及裂缝的形态、方位等与井底附近地层的地应力及其分布、岩石的力学性质、压 裂液的渗滤性质及注入方式有密切关系。图4一l是压裂施工过程中井底压力随时间的变化曲 线。P是地层破裂压力,P是裂缝延伸压力,P是地层压力。SEF

压裂过程井底压力变化曲线图4一l —微缝高渗岩石致密岩石; ba—在致密地层内,当井底压力达到破裂压力P后,地层发生破裂(图4—1中的a点),F然后在较低的延伸压力P下,裂缝向前延伸。对高渗或微裂缝发育地层,压裂过程中无明E显的破裂显示,破裂压力与延伸压力相近(图4—1中的b点)。 一、油井应力状况 一般情况下,地层中的岩石处于压应力状态,作用在地下岩石某单元体上的应力为垂向 主应力σ和水平主应力σ(σ又可分为两个相互垂直的主应力σ,σ)。YHHxZ (一)地应力 作用在单元体上的垂向应力来自上覆地层的岩石质量,其大小可以根据密度测井资料计 算,一般为: ????gdz?1)(4— s?0式中σ——垂向主应力,Pa;Z H——地层垂深,m; 2);.81 m/s g——重力加速度(93。——上覆层岩石密度,ρkg/m s 1 由于油气层中有一定的孔隙压力Ps,故有效垂向应力可表示为: ??(4—2)P??szz如果岩石处于弹性状态,考虑到构造应力等因素的影响,可以得到最大水平主应力为: ???????P?2EE1??S???124—3)P????(?? SH????11?21???式中σ——最大水平主应力,Pa;H ξ,ξ——水平应力构造系数,可由室内测试试验结果推算,无因次;21?——

石油压裂支撑剂行业情况

二、市场情况 1、产品的市场体量 (1)使用量:陶粒砂市场在2014年度过了一段冷却期,在2015年复苏回暖,中石油年度网络公示显示:陶粒砂使用量已从2008年的21万吨上升至2015年的50度万吨; (2)市场规模:国内石油需求量继续增加,石油对外依存度继续增大。为了满足国内日益增加的石油需求,石油开采业发展迅速。与此相对应的就是相关产品生产的迅速扩大。 我国石油压裂支撑剂行业在这段时间,发展比较迅速,市场规模增速达到20%。 2、产品的市场销售情况

3、国内市场需求量 (1)随着石油天然气工业的发展,石油天然气井的深度越来越大,开采的难度越来越大。例如,塔里木油田的深度达到了6500 米以上。据资料介绍,中国低渗透型矿床占中国未开采总量的55%以上,因此国内对高强度陶粒产品的需求量必将增大。目前我国石油压裂支撑剂年总需求量约为70 万吨。其中,大庆、塔里木、长庆、中原等几大油田,约需45 万吨以上;随着油价的升高、开采力度的加大,对支撑剂的需求量还在快速增长。2012需求将达120万吨,年均增长率约15%。 4、进出口及国际市场需求量 (1)总体而言,出口量小于进口量。我国的陶粒砂产品占据整个北美市场的13%,平均每年的业务总量达30亿美元; (2)目前国际市场对石油压裂支撑剂的年需求量约300 万吨,对高强度压裂支撑剂的需求量约60 万吨。资料显示:世界第一产油国俄罗斯石油支撑剂年需求量60 万吨。南美、北美、苏丹、委内瑞拉、印尼、哈萨克斯坦、澳大利亚等国的年需求量250 万吨。 三、行业现状 1、发展速度 该行业发展较慢,市场规模年均增长率约为15%。企业总产能年均增速约为12%。 2、企业现状 企业数量众多,大多数是小型企业,产量低,技术含量低。 3、行业增长速度 我国石油压裂支撑剂行业的增长速度约为10%。 4、对该行业的投资 四、行业竞争情况 1、竞争要素 (1)技术水平、企业规模、研发能力、营销渠道、原材料的获得。 (2011-2016 年中国石油压裂支撑剂行业市场运营格局及投资商机研究报告) 2、竞争手段 (1)主要集中在产品价格上。

年产20万吨石油压裂支撑剂项目可行性研究报告(模板)

年产20万吨石油压裂支撑剂项目 可行性研究报告 xxx科技发展公司

第一章项目概述 一、项目概况 (一)项目名称 年产20万吨石油压裂支撑剂项目 (二)项目选址 某开发区 项目建设方案力求在满足项目产品生产工艺、消防安全、环境保护卫生等要求的前提下尽量合并建筑;充分利用自然空间,坚决贯彻执行“十分珍惜和合理利用土地”的基本国策,因地制宜合理布置。 (三)项目用地规模 项目总用地面积53406.69平方米(折合约80.07亩)。 (四)项目用地控制指标 该工程规划建筑系数73.24%,建筑容积率1.54,建设区域绿化覆盖率6.49%,固定资产投资强度176.24万元/亩。 (五)土建工程指标 项目净用地面积53406.69平方米,建筑物基底占地面积39115.06平方米,总建筑面积82246.30平方米,其中:规划建设主体工程56882.50平方米,项目规划绿化面积5338.32平方米。 (六)设备选型方案

项目计划购置设备共计167台(套),设备购置费5524.51万元。 (七)节能分析 1、项目年用电量763131.71千瓦时,折合93.79吨标准煤。 2、项目年总用水量22376.67立方米,折合1.91吨标准煤。 3、“年产20万吨石油压裂支撑剂项目投资建设项目”,年用电量763131.71千瓦时,年总用水量22376.67立方米,项目年综合总耗能量 (当量值)95.70吨标准煤/年。达产年综合节能量39.09吨标准煤/年,项目总节能率20.32%,能源利用效果良好。 (八)环境保护 项目符合某开发区发展规划,符合某开发区产业结构调整规划和国家 的产业发展政策;对产生的各类污染物都采取了切实可行的治理措施,严 格控制在国家规定的排放标准内,项目建设不会对区域生态环境产生明显 的影响。 (九)项目总投资及资金构成 项目预计总投资18828.26万元,其中:固定资产投资14111.54万元,占项目总投资的74.95%;流动资金4716.72万元,占项目总投资的25.05%。 (十)资金筹措 该项目现阶段投资均由企业自筹。 (十一)项目预期经济效益规划目标

石油压裂支撑剂行业情况

二、市场情况、产品的市场体量1年复苏回暖,中石油在2015年度过了一段冷却期,陶粒砂市场在)(1使用量:2014 年度网络公示显示:陶粒砂使用量已从年的50度万吨;2015212008年的万吨上升至石油对外依存度继续增大。为了满足国内日2()市场规模:国内石油需求量继续增加,与此相对应的就是相关产品生产的迅速扩大。,益增加的石油需求石油开采业发展迅速。发展比较迅速我国石油压裂支撑剂行业在这段时间,,20%市场规模增速达到。、产品的市场销售情况2(单位:亿元)

3、国内市场需求量 (1)随着石油天然气工业的发展,石油天然气井的深度越来越大,开采的难度越来越大。例如,塔里木油田的深度达到了6500 米以上。据资料介绍,中国低渗透型矿床占中国未开采总量的55%以上,因此国内对高强度陶粒产品的需求量必将增大。目前我国石油压裂支撑剂年总需求量约为70 万吨。其中,大庆、塔里木、长庆、中原等几大油田,约需45 万吨以上;随着油价的升高、开采力度的加大,对支撑剂的需求量还在快速增长。2012需求将达120万吨,年均增长率约15%。 4、进出口及国际市场需求量 (1)总体而言,出口量小于进口量。我国的陶粒砂产品占据整个北美市场的13%,平均每年的业务总量达30亿美元; (2)目前国际市场对石油压裂支撑剂的年需求量约300 万吨,对高强度压裂支撑剂的需求量约60 万吨。资料显示:世界第一产油国俄罗斯石油支撑剂年需求量60 万吨。南美、北美、苏丹、委内瑞拉、印尼、哈萨克斯坦、澳大利亚等国的年需求量250 万吨。 三、行业现状 1、发展速度 该行业发展较慢,市场规模年均增长率约为15%。企业总产能年均增速约为12%。 2、企业现状 企业数量众多,大多数是小型企业,产量低,技术含量低。 3、行业增长速度 我国石油压裂支撑剂行业的增长速度约为10%。 4、对该行业的投资 (单位:亿元) 年度投资金额增长率 年2009 4.7 2011 年32% 6.2 年201213% 7 四、行业竞争情况、竞争要素1(1)技术水平、企业规模、研发能力、营销渠道、原材料的获得。 (2011-2016 年中国石油压裂支撑剂行业市场运营格局及投资商机研究报告)

石油压裂支撑剂性能和分类

【石油压裂支撑剂性能和分类】 陶粒压裂支撑剂是一种陶瓷颗粒产品,具有很高的压裂强度,主 要用于油田井下支撑,以增加石油天然气的产量, 属环保产品。此产品利用优质铝矾土、煤等多 种原材料,用陶瓷烧结而成,是天然石英砂、玻璃 球、金属球等中低强度支撑剂的替代品,对增产石油天然气有良好效果。石油天然气深井开采时,高闭合压力低渗透性矿床经压裂处理后,使含油气岩层裂开,油气从裂缝形成的通道中汇集而出。用高铝支撑材料随同高压溶液进入地层充填在岩层裂隙中,起到支撑裂隙不因应力释放而闭合的作用,从而保持高导流能力,使油气畅通,增加产量。实践证明,使用高铝支撑剂压裂的油井可提高产量30-50%,还能延长油气井服务年限,是石油、天然气低渗透油气井开采:施工的关键材料。产品应用于深井压裂施工时,将其填充到低渗透矿床的岩层裂隙中,进行高闭合压裂处理,使含油气岩层裂开,起到支撑裂隙不因应力释放而闭合,从而保持油气的高导流能力,不但能增加油气产量,而且更能延长油气井服务年限。 52MPa、69MPa、86MPa低、中、高强度陶粒支撑剂,是一种高技术含量的产品。利用河南省得天独厚的优质铝矾土原料,经过独特的粉磨、制粒和高温烧结而成,具有耐高温、高压、强度高、导流能力强、及耐腐蚀等特点,是开采石油、天然气压裂施工中不可缺少的好帮手。产品经中国石油勘探开发研究院廊坊分院支撑评价实验室检测,各项性能指标完全达到SY/T5108/2006标准,目前在国内处于领先

水平,公司产品经过美国STIM-LAB实验室检验,检验结果完全符合APl标准,已达到国际先进水平。 功能型镀膜支撑剂(详细参数) 基质为石英砂或陶粒颗粒,在颗粒表面涂镀多层高强壳体。在高强壳体外层镀上不同的功能层。不但具有普通型的特点,而且赋予特殊的性能。 1. 超低密度镀膜支撑剂:公司新开发的超低密高强支撑剂,体密度小于1.20g.cm-3,视密度小于 2.0 g.cm-3,69MPa破碎率小于3%,为国内首创。 2.软粘结防沙支撑剂:公司在开发防沙型支撑剂的前提下,通过自主创新,独创研制出具有软粘结的防沙支撑剂,有效地解决因地层运动造成树脂防沙层破坏而引起重新出沙的难题,受到油田方面的高度认可,为国内首创。 3. 减磨型:添加表面润滑剂和特殊材料,使颗粒表面更加光滑和消除静电荷聚集,从而减少压裂设备和管道的磨损 4. 阻水型:改变涂镀表面材料的性能,使颗粒表面具有阻碍水流通过,加速油液通过的能力。在常压下水不能通过,油能顺利通过;在加压下,阻碍水的通过,加速油液的通过。 5. 高透型:根据气体吸附特性,改变颗粒表面涂镀性能,加速气体顺利通过。

煤矿井下水力压裂技术的发展现状与前景

龙源期刊网 https://www.wendangku.net/doc/9615389822.html, 煤矿井下水力压裂技术的发展现状与前景 作者:郭晨 来源:《科学与财富》2016年第07期 摘要:我国煤炭安全生产形势依然严峻,增加煤层透气性、进行有效瓦斯抽放迫在眉 睫。水力压裂技术是目前增加煤层透气性最有效的方法之一,文章从水力压裂机理、封孔技术、工艺设备发展三方面,综述了我国井下煤层水力压裂技术的发展和应用前景。 关键词:水力压裂;煤层;增透;发展现状 基金项目:重庆科技学院研究生科技创新计划项目,编号:YKJCX2014047 目前我国煤炭行业的安全形势依然严峻,由于煤层透气性低、瓦斯难以有效抽放导致的瓦斯突出、爆炸等事故屡见不鲜,造成了巨大的人员伤亡和经济损失,因此,加强瓦斯抽放、增加煤层透气性势在必行。水力压裂技术已成为增加煤层透气性最有效方法之一,本文通过介绍水力压裂机理、封孔技术及工艺设备的研究现状,指出水力压裂技术研究的必要性与可行性,以期为工程应用提供参考。 1.水力压裂机理研究 水力压裂技术1947年始于美国,起初主要用于低渗透油、气田的开发中,在地面水力压裂方面的研究仅仅局限在石油、油气藏以及地热资源的地面钻井开采过程中[1]。前苏联科学 家在20世纪60年代开始在卡拉甘达和顿巴斯矿区进行井下水力压裂的试验研究[2]。目前针对井下煤层水力压裂增透技术的研究已取得了明显发展,国内学者郭启文、张文勇等经过试验与现场应用研究了煤层的压裂分解机理,指出水力压裂技术只能够在煤层内产生很少的裂缝,并会在裂缝周围产生应力集中区[3],存在一定局限性。李安启等将理论与实践相结合,研究了 煤层性质对水力裂缝的影响,还在煤层压裂裂缝监测基础上提出了煤层水力裂缝的几何模型。 在水力压裂机理方面的研究,国内外学者对水力压裂在油气系统地面钻井压裂、煤炭行业井下增加煤层透气性方面都进行了较为深入的研究,但其压裂机理方面仍存在一定分歧,不能很好的控制水力压裂的效果。随着我国煤炭安全生产逐步发展和穿煤隧道等工程的逐步建设,水力压裂技术将大范围推广应用,因此加强水力压裂技术理论研究势在必行。 2.压裂钻孔封孔技术研究 煤层水力压裂钻孔封孔是有效实施水力压裂技术的关键,而封孔质量的好坏取决于两个主要因素:①封孔材料,需要选择性能良好、价格适中、易于操作的材料;②封孔的长度,封孔长度太短会导致高压水的渗漏,太长会造成人力、材料、时间的浪费。因此,要使水力压裂技术能够有效开展,必须在选取“物美价廉”的封孔材料的同时,研究材料承载能力与封孔长度之

水力压裂技术

水力压裂水力压裂:: 一项一项经久不衰的技术经久不衰的技术经久不衰的技术 自从Stanolind 石油公司于1949年首次采用水力压裂技术以来,到今天全球范围内的压裂施工作业量将近有250万次。目前大约百分之六十新钻的井都要经过压裂改造。压裂增产改造不但增加油井产量,而且由于这项技术使得以前没有经济开采价值的储量被开采了出来(仅美国自1949年以来就约有90亿桶的石油和超过700万亿立方英尺的天然气因压裂改造而额外被开采出来)。另外,通过促进生产,油气储量的静现值也提高了。 压裂技术可以追溯到十八世纪六十年代,当时在美国的宾夕法尼亚州、纽约、肯塔基州和西弗吉尼亚州,人们使用液态的硝化甘油压浅层的、坚硬地层的油井。目的是使含油的地层破裂,增加初始产量和最终的采收率。虽然使用具有爆炸性的硝化甘油进行压裂是危险并且很多时候是违法的,但操作后效果显著。因此这种操作原理很快就被应用到了注水井和气井。 在十九世纪三十年代,人们开始尝试向地层注入非爆炸性的流体(酸)用以压裂改造。在酸化井的过程中,出现了一种“压力从逢中分离出来”现象。这是由于酸的蚀刻会在地层生成不能完全闭合的裂缝,进而形成一条从地层到井的流动通道,从而大大提高了产量。这种“压力从逢中分离出来”的现象不但在酸化的施工现场,在注水和注水泥固井的作业中也有发生。 但人们就酸化、注水和注水泥固井的作业中形成地层破裂这一问题一直没有很好的理解,直到Farris 石油公司(后来的Amoco 石油)针对观察井产量与改造压力关系进行了深入的研究。通过此次研究,Farris 石油萌生出了通过水力压裂地层从而实现油气井增产的设想。 第一次实验性的水力压裂改造作 业由Stanolind 石油于1947年在 堪萨斯州的Hugoton 气田完成(图 1)。首先注入注入1000加仑的粘 稠的环烷酸和凝稠的汽油,随后是 破胶剂,用以改造地下2400英尺 的石灰岩产气层。虽然当时那口作 业井的产量并没有因此得到较大 的改善,但这仅仅是个开始。在 1948年 Stanolind 石油公司的 J.B.Clark 发表了一篇文章向石油 工业界介绍了水力压裂的施工改造过程。1949年哈里伯顿固井公司(Howco)申请了水力压裂施工的专利权。 哈里伯顿固井公司最初的两次水力压裂施工作业于1949年3月17日,一次在奥克拉荷马州的史蒂芬郡,总花费900美元;另一次在位于得克萨斯州的射手郡,总花费1000美元,使用的是租来的原油或原油与汽油的混合油与100到150磅的砂子(图2)。在第一年中,332口井被压裂改造成功,平均增加了75%的产量。压裂施工被大量应用,也始料未及地加强了美国的石油供应。十九世纪五十年代中期,压裂施工达到了每月3000口井的作业量。第一个过五十万英镑的压裂施工作业是由美国的Pan 石油公司(后来的Amoco 石油,现在的BP 石油)于1968年10月在奥克拉荷马州的史蒂芬郡完成的。在2008年世界范围内单级花费在1万到6百万美元之间的压裂作业超过了5万级。目前,一般的单井压裂级数为8到40

10万吨陶粒砂(石油压裂支撑剂)生产线项目可行性研究报告

10万吨陶粒砂(石油压裂支撑剂) 生产线项目 可行性研究报告

目录第一章总论 1.1 项目概况 1.2 项目建设单位概况 1.3 项目提出的背景 1.4 项目报告编制依据和原则 1.5 报告编制范围 1.6 建设规模及内容 1.7 主要经济技术指标 1.8 研究结论 1.9 存在问题与建议 第二章项目建设的必要性和产业关联度分析 2.1 建设的必要性 2.2 产业关联度分析 第三章市场需求分析 3.1产品简介 3.2 石油压裂支撑剂市场前景分析 第四章主要原辅材料供应 4.1 主要原材料供应与来源 第五章生产工艺 5.1 产品技术特点优势 5.2 工艺说明 5.3 工艺技术特点和优势 5.4 产品方案 5.5 设备选型

第六章建厂条件与厂址选择 6.1 项目选址 6.2 建设条件 6.3 公用配套工程 第七章土建工程技术方案 7.1 设计指导思想 7.2 编制原则 7.3 建设内容 7.4 总平面布臵 7.5 土建 7.6 公用工程 7.7 给排水方案 7.8 供电方案 第八章环境保护 8.1 设计依据 8.2 项目对区域环境影响分析及污染治理措施 8.2.1 施工期环境影响分析及治理措施 8.2.1 营运期环境影响分析及治理措施 8.3 环境影响评价初步结论 8.4 绿化 8.5 水土流失与水土保持 第九章消防 第十章节能 10.1 编制依据 10.2 设计原则 10.3节能措施综述 10.4 节能效果分析 10.5 资源综合利用

_ 第十一章劳动安全与工业卫生 11.1 编制依据 11.2 危害因素和危害程度 11.3 安全措施方案 11.4 劳动卫生 第十二章管理体制及定员 12.1 管理体制 12.2 组织机构 12.3 劳动定员 12.4 人员培训 第十三章项目实施计划 13.1 建设工期 13.2 进度安排 13.3 建设期管理 13.4 项目进度管理 13.5 项目费用管理 13.6 项目质量管理 第十四章投资估算与资金筹措 14.1 投资估算 14.2 费用估算说明 14.3 资金筹措 14.4 资金使用计划 第十五章财务评价 15.1 评价依据 15.2 基础数据 15.3 收入估算 15.4 总成本费用估算 15.5 利润总额及分配 15.6 财务评价指标 15.7 财务评价结论

延长油田用压裂液的优点与不足讲解

延安职业技术学院 毕业论文 题目:延长油田用压裂液的优点与不足所属系部:石油工程系 专业:应用化工生产技术(油田化学)年级班级:07应用化工(4)班 作者:李阿莹 学号: 指导老师: 评阅人: 2010年月日

目录 第一章绪论…………………………………………………………………()第二章延长油田地质情况……………………………………………()第三章压裂液概述………………………………………………………()3.1 概述………………………………………………….……………………()3.2 分类……………………………………………………………….………()3.3 压裂液的国内外研究与应用状况…………………………….….()第四章延长油田用压裂液…………………………………..………()4.1 胍尔胶压裂液……………………………………………………………()4.2 清洁压裂液………………………………………………………………()4.3清洁压裂液与胍胶压裂液的应用对比…………………………………()结论…………………………………………………………..…………….………()参考文献…………………………………………………………….……………()致谢………………………………………………………………………………()

摘要:经过几十年的开发,延长油田已进入中后期开发阶段,为了达到稳产、增产进而合理利用资源的目的,油田企业会对部分井实施措施作业。本论文以此为出发点,就油田常用的两种压裂液体系用外加剂、工艺、施工效果等方面做了概述并由对两种压裂液体系的应用对比,总结出各自的有优点与不足. 关键词:水力压裂延长油田胍胶压裂液清洁压裂液

关于水力压裂设备及技术的发展及应用

关于水力压裂设备及技术的发展及应用 【摘要】水力压裂技术经过了半个多世纪的发展,在设备和技术应用上都取得了较大的发展,在全球各地的石油开采中也发挥了关键性的作用,是目前仍在广泛应用的评价认识储层的一种重要方法,水力压裂技术也是油田煤矿等产业生产中确保安全、降低危险的重要技术。近年来,水力压裂的几部发展很快,在压裂设备材料上也有了较大突破,压裂技术在油田勘探开发应用中和其他行业的应用中的前景还是十分广阔的。 【关键词】水力压裂;发展现状;趋势 随着技术进步和应用范围的扩大,施工对压裂技术也提出了更高的要求,对压裂设备性能、压裂液等材料的要求也越来越高,不同地理环境下的压裂技术应用也有不同的需求,所以水力压裂设备和技术的研究也在不断进行,笔者在此对水力压裂技术的发展应用现状和今后的发展前景进行了展望,具体内容如下。 一、水力压裂设备技术的发展应用现状 (一)端部脱砂压裂技术 现代油气田勘探开发技术发展应用速度快,各种新技术工艺也都得到了综合运用,过去压裂设备和技术主要应用于低渗透油田,现在应用范围有了明显的扩大,在国内许多大型油田的中高渗透地层中不但应用了压裂设备和技术,且在技术上有了更大的突破。压裂技术应用于中高渗透地层时,实现短宽型的裂缝能够更好的控制油气层的开发,所以端部脱砂压裂技术应运而生,并在应用中取得了非常好的效果,近年来端部脱砂压裂技术在浅层、中深地层、高渗透以及松软地层都得到了应用,该技术的相关设备也在应用中得到了不断的改进。 (二)重复压裂技术 随着油田开发的不断深入,出现越来越多的失效井和产量下降的压裂井,二重复压裂技术正是针对该类油井改造和提高产量的有效技术措施。全球范围内各个国家对重复压裂设备和技术的研究都很重视,经过实践检验其应用效果也十分显著,重复压裂的成功率能够达到75%左右。在美国还有油田企业在应用重复压裂技术的同时还采用了先进的强制闭合技术和端部脱砂技术,取得了很好的经济效益。重复压裂技术设备能够用于改造低渗透和中渗透的油层,在直井、大斜度井以及水平井中都具有很高的应用效果,对提高产能具有很好的作用。 (三)高渗层防砂压裂技术 高渗层防砂压裂技术不但能够实现高渗透油藏的压裂,还能够同时完成充填防砂作业。传统的砾石充填防砂技术很容易造成对高渗透油层的破坏,导致导流能力下降,而高渗透防砂压裂技术是结合的端部脱砂技术,使裂缝中的支撑剂浓

国内水力压裂技术现状

280 水力压裂技术又称水力裂解技术,是开采页岩气时普遍采用的方法,先多用于石油开采和天然气开采之中,其原理时利用水压将岩石层压裂,从而形成人工裂缝,然后让裂缝延伸到储油层或者储气层,从而提高油气层中流体流动能力,然后通过配套技术使石油天然气在采油井中流动,从而被开采出来。这项技术具有非常广泛的应用前景,可以有效的促进油气井增产。 1?水力压裂技术的出现和发展 水力压裂技术是1947年在美国堪萨斯州实验成功的一项技术,其大规模利用是出现在1998年,在美国开采页岩气的时候,作为一项新的技术使用,而这项技术的运用,使美国美国页岩气开发的进程和效率大大加快。 水力压裂技术在中国的研究和开发开始于二十世纪五十年代,而大庆油田于1973年开始大规模使用这项技术,迄今已有30年历史。而随着时代的发展,中国的压裂技术已经有了长足进步,已经非常接近国际先进水平。而在技术方面,由于不断引进和开发相关的裂缝模拟软件等,通过多次的实验研究,在很大程度上实现了裂缝的仿真模拟。而相应的技术也使用在了低渗透油气田的改造工作中,并且在中高渗透性油田也有广泛应用。这项技术在低渗透油田的应用技术已经非常接近国际水平,相比较差距非常小。 2?水力压裂技术的发展现状 随着时代的发展,水力压裂技术也随之不断发展,逐渐成为一项成熟的开采技术。而这项技术具有一定的进步性,主要表现在以下方面: (1)从单井到整体的优化。最开始的时候,由于受技术限制,水力压裂技术只能针对一口井来使用,难以考虑到整体的效益。而随着技术的逐渐成熟,这项技术可以广泛的运用到整个油藏之中,可以对整个油藏进行优化设计,实现油藏的有效合理开发。 (2)在低渗透油藏的开发运用。由于受各种因素的影响,低渗透油藏大都难以有效的开发利用,虽然在各项新技术的使用下得到了一定得好转,但是低渗透油藏的开发依旧是举步维艰。而水力压裂技术的日益成熟,很大程度上改善了这一状况。通过综合考虑水利裂缝的位置和导油能力,使用水力压裂技术使油藏的流体流动能力进一步增强,从而实现低渗透油藏的最大程度的开采利用。 (3)水力裂缝的模型逐渐从二维转变为拟三维。水力裂缝的拟三维模型可以适用于各种不同的地层,可以非常真实的模拟水力压裂的过程,可以更好的更为直观的预测和观测水力压裂的使用进度,更好的对水力压裂过程进行控制,不但提高了效率,还可以在很大程度上节约成本。 (4)水力压裂规模扩大。随着技术的成熟和配套设施的完善,水力压裂的作业规模也随之变大,从最初的几立方米到现在几十甚至上百立方米,在很大程度上提高了效率,也提高了低渗透油藏的采油率,实现了油藏的有效利用,因而成为开采作业中非常重要的技术之一。 3?水力压裂技术的发展方向和前景 水力压裂技术具有广阔的发展前景,因为随着石油资源的逐年开采,低渗透油藏广泛出现,水力压裂技术之外的技术虽然可以一定程度上改善低渗透油藏难以开采的现状,但是随着时代的发展,水力压裂技术逐渐广泛使用在低渗透油藏之中,使低渗透油藏的开采效率大大增加。 (1)在低渗透油藏重复压裂促进采油率。主要的发展研究方向主要是加强对油藏状况的研究,建立科学的压裂模型,还要做到实时监测水力裂缝,对裂缝进度进行模拟和控制,其次利用高排量和大输砂量的泵注设备,进行注入作业,从而实现低渗透油藏的有效开发。 (2)做好拟三维化模型向全三维化模型的转换,全三维化模型可以非常有效的、更为直观的模拟和观测地下裂缝的进度,可以非常有效的控制水力压裂技术的科学使用。还要做好油气藏模拟技术的研发,配合三维化模型,更好的观测和了解油藏状态,从而做出合理的高效的开采计划。 (3)针对传统的水力压裂技术会出现污染地下水的问题,可以在无水压裂液体系做出研究,实现高能气体压裂技术和高速通道压裂技术等新技术的开发和利用,实现提高开采效率和环境保护的双赢。 有水压裂到无水压裂,从直井压裂到水平井分段压裂,从常规的压裂技术到现在的体积改造技术,压裂技术不断进步的同时,为人类带来了丰富的油气资源。而随着油藏开发,大量低渗透油藏的出现,给水力压裂技术的使用带来了广阔的空间,因而水力压裂技术拥有非常好的发展前景。 4?结束语 水力压裂技术是油气开发中所需要的非常重要的配套技术,而水力压裂技术和开采开发之间的结合,很大程度上提高了采油效率,降低了成本,在很大程度上提高了开采水平,使低渗透油藏得以稳定生产。而我国在这一技术上进行了大量投入,从研究人员和设施上,为技术的发展提供了很好的支持。而这一技术的逐步发展,在很大程度上提高了我国油气的开发效率,也很大程度改善了我国的石油供应紧张的现状,为我国的可持续发展做出了重大贡献,而作为油气开发的重要技术,水力压裂技术也会进一步发展,实现更高效率的油气开采。 国内水力压裂技术现状 续震?1,2 卢鹏?1,3? 1.西安石油大学 陕西 西安 710000 2. 延长油田股份有限公司杏子川采油厂 陕西 延安 717400 3.延长油田股份有限公司下寺湾采油厂 陕西 延安 716100 摘要:最早的水力压裂技术出现于1947年,而现代使用的水力压裂技术则是1998年首次使用。这项技术的出现,是油气井增产出现了新的希望,帮助石油开采取得了很好的技术成就和经济效益,从而使这项技术在我国石油开采上广泛应用,并取得了很好的成果。本文针对我国水力压裂技术的现状和发展前景做出研究。 关键词:水力压裂?现状?前景

石油压裂支撑剂

石油压裂支撑剂 一、使用压裂开采方式 1、埋藏深 2、致密性强岩层 二、性能:增强石油裂缝导流能力 1、短期导流(用于评价和选择) 2、长期导流(用于压裂效果评价) 三、压裂支撑剂的类型 1、从类别分类 硬脆性陶粒支撑剂 韧性支撑剂 2、从材质分类 石英砂、金属铝球、核桃壳、玻璃珠、塑料球、钢球、陶粒、树脂覆膜砂等,目前使用量为:石英砂占市场份额50%,树脂覆膜砂约占市场份额15%,陶粒以硬度高,成本低正广泛应用。 四、陶粒支撑剂(烧结铝矾土支撑剂、陶粒砂) 成份 主材:铝矾土(含三氧化二铝需达到72%以上,磨粉要求:超细磨粉40)辅料:锰粉,钛 生产方式: 回转窑(成本低,主推) 隧道窑 生产流程:原材料采集-------超细磨粉(精细要求程度400目)制粒-----烘干(230摄氏度-300摄氏度)-----筛析-----入窑----出窑 五、性能 1强度高 2 粒径均匀、圆球度好 3 杂质少杂质构成:铁的氧化物、长石、碳酸盐(以上测试判定酸溶解度)粘土、无机盐(以上测试判定浊度) 4 密度低平均小于 2.09G/CM3 (低<1.6/CM3;中<1.75G/CM3—1.9G/CM3;高<1.9G/cm3—2.09g/cm3) 5 化学惰性高 6 货源充足 六性能指标 圆度 球度 体积密度 视密度 浊度 酸溶解度 筛析 抗破碎能力 七检测标准

API RP60 高强度支撑剂检测方法(美国) ISO13503-2压力支撑剂测试评价方法(世界) SY/T5108—2006 (行业标准,高于国际标准) Q/SY5018—2007 (企业标准,高于行业标准) 知识点: 一、压力测质 1千克/m2 m2 = (100cm)2 = 10000 cm2 所以,1千克/m2 = 1 千克/10000 cm2 = 0.0001 千克/cm2 Pa 为压强单位,1 Pa = 1 N/m2 如果取重力加速度为9.8 m/s2 那么1 千克物体的重量为 1 * 9.8 = 9.8 N 1 千克/m 2 = 9.8 N/m2 = 9.8 Pa = 9.8 x 10^(-6) MPa 二、市场占有率 三、原材料要求铝矾土中三氧化二铝含量在72%以上 四、产品规格20/40 30/50 单位为目(目是筛网网孔大小)

水力压裂技术新进展

万方数据

万方数据

万方数据

64江汉石油职工大学学报 8压裂实时监控技术 实时监控和监测技术,是通过在施工现场实时地测定压裂液、支撑剂和施工参数,模拟水力裂缝几何形状的发展,随时修改施工方案,以获得最优的支撑裂缝和最佳的经济效益。 (1)施工参数监控,包括排量、泵压、砂比等由仪表车直接显示和控制。 (2)压裂质量监测:分别监测混砂车出、人口压裂液(携砂液)的流变性、温度、pH值等参数,对压裂液流变性,特别是加人各种添加剂后的性能以及携砂能力进行定量分析,常用的仪器为范氏系列粘度计,并在模拟剪切和地层温度条件下模拟整个施工过程。对于延缓硼交联压裂液和延缓释放破胶剂体系,矿场实时监测更为重要。 (3)实时压力分析:根据测定的施工参数和压裂液参数用三维压裂模拟器预测井口或井底压力,并与实际值进行拟合,预测施工压力变化(泵注和闭合期间)和裂缝几何形状。主要用途如下: ①识别井筒附近的摩阻影响(射孔和井筒附近裂缝的弯曲),并能定性判断其主要影响因素,判断井筒附近脱砂的可能性; ②评价压裂设计可信程度:如果施工压力与矿场实时预测压力相吻合,则设计的裂缝几何形状是可信的; ③预测砂堵的可能性; ④确定产生的水力裂缝几何形状I ⑤提供施工过程的图像和动画信息。 矿场实时分析随着便携式计算机的发展,在矿场上得到了广泛应用,除GRI外,其它石油公司也都相继研制和发展了这套系统。在实际应用中.经常与小型压裂测试分析结合应用。 9FASTFrac压裂管柱 贝克石油工具公司新近开发出一种连续油管压裂系统一FA刚下rac压裂管柱,用于对先前未处理到的层位进行选择性的增产措施,从而获得比常规压裂更高效、更经济的压裂效果。应用该技术能一趟管柱实现多层隔离与措施。从而降低了修井作业成本,节省了完并时间。由于该连续油管传送系统能保证高比重压井液不接触生产层,使完井和增产措施均不造成油井伤害,从而快速实现生产优化。FAsTFrac工具与Auto—J系统组成一个整体,Auto—J系统的作用是保证连续油管将压裂管柱送入或从井筒中起出。措施时,上部封隔元件和下部封隔元件能隔离一个或多个生产层。一旦第一次措施完毕,系统就复位并重新设置,下入另一个生产层。无论是FA跚下rac封隔器和桥塞系统,还是固定跨式双封隔器系统均能对过去遗漏的小型袋状油气藏实施经济高效的增产措施。 10新型CKFRAQ压裂充填系统 贝克石油工具公司新近研制成功新型CKFRAQ系统,该系统由多个高性能井下工具组件组成,尤其适用于极高流速和高砂比条件下。在应用软件的辅助下,CKFRAQ系统可以对压裂充填作业(用陶瓷支撑剂)中的泵的排量和容量进行优化,同时还可以将卡泵和套管腐蚀风险降至最低。经过大量模拟和小规模室内实验,该工具被应用于现场。人们还通过小规模室内试验,对工具转向孔的几何形状进行了评估,目的是找出哪种几何形状的转向孔遭遇的腐蚀最轻。此外,还进行了样机试验,以确保尽可能地延长套管的使用寿命。 贝克石油工具公司称,从毁坏性对比试验中可以看出,CKFRAQ系统的各种性能都胜过其它竞争产品。 今后的发展方向: (1)随着水力压裂施工的要求越来越高,压裂液和支撑剂的性能也需越来越高,因此必须加强高性能压裂液和支撑剂的研究与开发。 (2)开展有效的裂缝检测技术研究。目前压裂后裂缝的检测技术仍然是水力压裂技术的一个薄弱环节,国内外采用的检测方法虽然取得了一定的成效,但还有很大的局限性,还需要进一步的研究。 (3)在中高渗透地层中应用端部脱砂压裂技术,扩大水力压裂技术的应用范围。 (4)发展矿场实时监测和分析技术,提高施工的成功率和有效率。 [参考文献] [1]F.GUEKuru等著.冯敬编译,一种适用于低渗透浅层油藏的压裂方法[J].特种油气藏,2004(6).[2]吴信荣,彭裕生编,压裂液、破胶剂技术及其应用[M].北京:石油工业出版社,2003,9. [3]马新仿,张士诚.水力压裂技术的发展现状[J].河南石油,2002(1). [4]PaulWKte,JohnD.Harkrider,FractureStimulationOpti删功tioninaMatureWaterfloodRedevelopment,《JPlr》,January,2003. [5]shyapoberskyJ,chudnovsky.Areviewofrecentdevel—opmentinfracturemechanics诵thpetroleumengineer—ingapplications,SPE28074。1994.(下转第67页)  万方数据

陶粒砂石油压裂支撑剂系列产品说明书

陶粒砂石油压裂支撑剂系列产品说明书 目录 第一章:产品说明。。。。。。。。。。第2页第二章:产品种类。。。。。。。。。。第2页第三章:产品规格。。。。。。。。。。第3页第四章:产品结构。。。。。。。。。。第5页第五章:产品性能。。。。。。。。。。第5页第六章:产品用途。。。。。。。。。。第6页第七章:产品营销。。。。。。。。。。第6页

第一章产品说明 陶粒砂石油压裂支撑剂是石油、天然气低渗透油气井开采压裂施工的关键材料。我公司开发生产的52MPa 、69MPa 、86MPa 、102 Mpa 的高强度石油压裂支撑剂,是一种高技术含量的产品。是利用山西得天独厚的铝矾土原料,经过独特的粉末制粒和烧结而成,具有耐高温、耐高压、耐腐蚀、高强度、高导流能力、低破碎率等特点,是开采石油压裂施工中不可缺少的固体材料。 陶粒支撑剂产品应用于深井压裂施工时,将其填充到低渗透矿床的岩层裂隙中,进行高闭合压裂处理,使含油气岩层裂开,起到支撑裂隙不因应力释放而闭合,从而保持油气的高导流能力,不但能增加油气产量,而且更能延长油气井服务年限。 产品经中国石油勘探开发研究院廊坊分院支撑评价实验室检测,各项性能指标完全达到ISO13503-2 标准,目前在国内处于领先水平。公司已在美国STIM-LAB 实验室进行API 标准分析检验,检验结果完全符合API 标准。 第二章产品种类 1.低密度高强度石油支撑剂 2.中密度高强度石油支撑剂 3.高密度高强度石油支撑剂

各油(气)田可根据裂缝的具体深度和宽度选择相适的石油支撑剂品种。 第三章产品规格 1. 低密度高强度石油支撑剂52MPa 规格 指标名称 40/70 20/40 30/50 16/30 低密度g/cm3 体密≦1.60 ≦1.60 ≦1.60 ≦1.60 视密≦2.75 ≦2.75 ≦2.75 ≦2.75 圆度0.9 0.9 0.9 0.9 球度0.9 0.9 0.9 0.9 破碎率52MPa ≦5% ≦7% ≦7% ≦10% 耐酸度≦4.5 ≦4.5 ≦4.5 ≦4.5 长期导流能力/ / / / 浊度≦50 ≦50 ≦50 ≦50

水力压裂综述

文献综述 前言 水力压裂是油田增产一项重要技术措施。由地面以超过地层吸收能力的排量高压泵组将液体注入井中,此时,在井底附近便会蹩起压力,当蹩气的压力超过井壁附近地层的最小地应力和岩石抗张强度时,在地层中便会形成裂缝。随之带有支撑剂的液体泵入缝中,裂缝不断向前延伸,这样,在地层中形成了具有一定长度、宽度及高度的填砂裂缝。由于压裂形成的裂缝提高了产油层导流能力,使油气能够畅流入井内,从而起到了增产增注的作用。 为了完成水力压裂设计,在地层中造成增产效果的裂缝,需要了解与造缝有关的地应力、井筒压力、破裂压力等分布与大小。这些因素控制着裂缝的几何尺寸,同时对与地面与井下设备的选择有关。同时,用于水力压裂的压裂液的性能、数量,支撑剂的排布情况关系到裂缝的几何尺寸,压裂技术-端部脱砂技术,对提高压裂效果起到很大作用,这些因素关系到能否达到油田增产的目的,需要进行详细研究。在建立适当的裂缝扩展模型的基础上,实现现场实际生产情况的模拟研究,对进一步优化水力压裂参数,提高压裂经济实用性起到很大作用。 这项油田增产措施自发展以来,得到国内外广泛采用,并且经不断的开发试验,已取得很大成效。 水力压裂技术的发展过程 水力压裂技术自 1947 年美国堪萨斯州进行的的第一次试验成功以来,至今近已有60余年历史。它作为油井的主要增产措施,正日益受到世界各国石油单位的重视及采用 ,其发展过程大致可分以下几个阶段: 60 年代中期以前 ,各国石油公司的工作者们的研究工作已适应浅层的水平裂缝为主,此时的我国主要致力于油井解堵工作并开展了小型压裂试验。 60 年代中期以后 ,随着产层加深 ,从事此项事业的工作者以研究垂直裂缝为主。已达成解堵和增产的目的。这一时期 ,我国发展了滑套式分层压裂配套技术。 70 年代 ,工作进入到改造致密气层的大型水力压裂阶段。我国在分层压裂技术的基础上 ,发展了蜡球选择性压裂工艺 ,以及化学堵水与压裂配套的综合

石油压裂支撑剂

摘要

Abstract

目录 摘要.................................................................................................................................................. I Abstract .......................................................................................................................................... II 目录............................................................................................................................................... III 第一章文章综述. (1) 1.1 前言 (1) 1.2 石油压裂支撑剂简介 (1) 1.2.1高密度石油压裂支撑剂 (2) 1.2.2 中密度石油压裂支撑剂 (2) 1.2.3 低密度石油压裂支撑剂 (2) 1.2.4 辅料 (3) 1.3 制备方法 (4) 1.3.1 熔融喷吹制备法 (4) 1.3.2 烧结制备法 (4) 1.4 工艺流程 (5) 1.4.1 制粒 (5) 1.4.2 煅烧 (6) 1.5 性能 (6) 1.5.1 性能要求 (6) 1.5.2 技术指标 (6) 1.6 工业废料在陶粒压裂支撑剂制备中的应用 (7) 1.6.1 粉煤灰的应用 (7) 1.6.2 赤泥的应用 (8) 1.6.3 陶瓷辊棒废料的应用 (8) 1.7 陶粒石油压裂支撑剂发展 (8) 第二章实验 (11) 2.1原料 (11) 2.2 原料破碎 (11) 第三章 (12) 3.1 (12)

中国石油压裂支撑剂行业发展研究与投资价值报告(2013版)

深圳市深福源信息咨询有限公司石油支撑剂又叫石油压裂支撑剂。在石油天然气深井开采时,高闭合压力低渗透性矿床经压裂处理后,使含油气岩层裂开,油气从裂缝形成的通道中汇集而出,此时需要流体注入岩石基层,以超过地层破裂强度的压力,使井筒周围岩层产生裂缝,形成一个具有高层流能力的通道,为保持压裂后形成的裂缝开启,油气产物能顺畅通过。用石油支撑剂随同高压溶液进入地层充填在岩层裂隙中,起到支撑裂隙不因应力释放而闭合的作用,从而保持高导流能力,使油气畅通,增加产量。 近几年,随着国内石油压裂支撑剂生产的发展,石油压裂支撑剂产品出口量逐渐从无到有,从少到多。不过,总体而言,出口量仍小于进口量。而且产品主要集中在附加值较低的中低端产品上,进口的则是附加值高的高端产品,如性能优秀的高强度石油压裂支撑剂产品。我国石油压裂支撑剂行业发展并不快,市场规模年均增长率在15%左右,企业总产能年均增速在12%左右。企业数量众多,但大多数是小型企业,产量低,技术含量低,竞争手段也主要集中在产品价格上面,并没有占据市场较大份额的特大规模企业产生。国内石油需求量继续增加,石油对外依存度继续增大。为了满足国内日益增加的石油需求,石油开采业发展迅速。与此相对应的就是相关产品生产的迅速扩大。我国石油压裂支撑剂行业在这段时间,发展比较迅速,市场规模增速达到20%。2009 年,中国石油压裂支撑剂行业投资金额4.7 亿元,2011 年增长到6.2亿元,年均增长率在13%以上。 预计今后几年,我国石油压裂支撑剂行业市场规模将快速扩大,企业总产能也快速增加。石油压裂支撑剂产品向着高强度的方向发展。而且,产品还会向着更加细分的趋势发展,产品系列将进一步丰富。我国石油压裂支撑剂产品市场规模将获得快速发展,年增长率在27%以上。预计2012年石油压裂支撑剂产品市场规模增速在29.23%,市场规模在274万吨左右。 第一章中国石油压裂支撑剂概述 一、行业定义 二、行业发展历程 第二章国外石油压裂支撑剂市场发展概况 第一节全球石油压裂支撑剂市场分析 第二节亚洲地区主要国家市场概况 第三节欧洲地区主要国家市场概况 第四节美洲地区主要国家市场概况 第三章中国石油压裂支撑剂环境分析 第一节我国经济发展环境分析 第二节行业相关政策、标准

相关文档