文档库 最新最全的文档下载
当前位置:文档库 › 双侧电源的35KV线路继电保护课程设计

双侧电源的35KV线路继电保护课程设计

双侧电源的35KV线路继电保护课程设计
双侧电源的35KV线路继电保护课程设计

目录

1 引言 (1)

1.1 课程设计的目的 (1)

1.2 设计任务 (1)

1.3 对电力系统继电保护的基本要求 (1)

2 短路电流和电流保护的整定计算 (2)

2.1设计内容和要求 (2)

2.2 线路的阻抗计算 (2)

2.3 选出线路电流互感器变比 (3)

2.4 系统中各点短路电流计算 (4)

3 整定计算 (5)

3.1 线路XL-1A段整定计算 (5)

3.2 线路XL-4段整定计算 (6)

4 继电器的规格型号 (8)

4.1 断路器参数选择 (8)

4.2 电压互感器的参数选择 (8)

4.3 电流互感器的参数选择 (9)

4.4 继电器的选择 (10)

4.5 保护屏的设备表 (10)

5 继电保护展开图 (11)

5.1 XL-1继电保护展开图 (11)

5.2 XL-4继电保护展开图 (12)

6 总结 (12)

附录屏面布置图 (12)

参考文献 (13)

1 引言

1.1 课程设计的目的

继电保护课程设计是配合《电力系统继电保护》理论教学而设置的一门实践性课程。通过本课程设计,使学生掌握和应用电力系统继电保护的设计、整定计算、资料整理查询和电气绘图等使用方法。在此过程中培养学生对各门专业课程整体观的综合能力,通过较为完整的工程实践基本训练,为全面提高学生的综合素质及增强工作适应能力打下一定的基础。本课程主要设计35KV线路继电保护的原理、配置及整定计算,给今后继电保护的工作打下良好的基础。

1.2 设计任务

(1)选出线路XL—1A侧,XL—4线路电流互感器变比。

(2)选出线路XL—1A侧,XL—4线路保护方案并作出整定计算。

(3)选出所需继电器的规格、型号。

(4)绘制出XL—1,XL—4继电保护展开图。

(5)变电所A母线的两条引出线XL—1,XL—4共用一块保护屏,并按中心线对称布置,绘制出屏面布置图及设备表。

(6)写出说明书。

1.3 对电力系统继电保护的基本要求

1)选择性。继电保护动作的选择性是指保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。

2)速动性。继电保护的速动性是指继电保护装置应以尽可能快的速度切除故障设备。故障后,为防止并列运行的系统失步,减少用户在电压降低情况下工作的时间及故障元件损坏程度,应尽量地快速切除故障。

3)灵敏性。继电保护的灵敏性是指保护装置对于其应保护的范围内发生故障的反应能力。

4)可靠性。继电保护的可靠性是指保护装置在电力系统正常运行时不误动;再规定的保护范围内发生故障时,应可靠动作;而在不属于该保护动作的其他任何情况下,应可靠的不动作。(主保护对动作快速性要求相对较高;后备保护对灵敏性要求相对较高。)

2 短路电流和电流保护的整定计算

2.1设计内容和要求

原始资料:某双侧电源的35KV 线路网络接线(如下图):

图2.1网络接线图

已知:(1)、电厂为3台3′6000KW、电压等级为6、3KV 的有自动电压调节器的汽轮发电机,功率因数cosj=0.8,X d=0.125, X2 =0.15, 升压站为2台容量各为10MVA 的变压器Ud =7.5%,各线路的长度XL —1为20KM ;XL —2为50KM ;XL —3为25KM ;XL —4为14KM ;XL —5为40KM

(2)、电厂最大运行方式为3台发电机、2台变压器运行方式,最小运行方式为2台发电机、2台变压器运行方式;XL —1线路最大负荷功率为10MW ,XL —4线路最大负荷功率为6MW 。

(3)、各可靠系数设为:KIrel =1.2,KIIrel =1.1,KIIIrel =1.2,XL —1线路自起动系数KMs =1.1,XL —4线路自起动系数KMs =1.2,XL —5线路过流保护的动作时限为1.6秒, XL —3线路C 侧过流保护的动作时限为1.0秒,保护操作电源为直流220V 。

(4)、系统最大短路容量为169MVA ,最小短路容量为159MVA 。 2.2 线路的阻抗计算

1、35KV 输电线路长度L1=20Km 、L2=50Km 、L3=25Km 、L4=14Km 、L5=40Km 。

线路电抗X=0.4Ω/Km 选取基准值 SB=100MV A Uav=UB=37KV 发电机的阻抗值:

Ω=?=?=86.33.635125.03.6352

2

22'

'd

G

X X Ω=?=?=63.43.63515.03.63522

222

2x X

变压器的阻抗值 19.910

351005.710351002

2=?=?=

d T U X Ω 各线路的阻抗值:

XL1=L1×X=20×0.4=8Ω XL2=L2×X=50×0.4=20Ω XL3=L3×X=25×0.4=10Ω XL4=L4×X=14×0.4=5.6Ω

XL5=L4×X=40×0.4=16Ω

由 m a x m a x

d 3169d av I U MVA S == m i n m i n d 3159d av I U MVA S == 得系统最小阻抗: Ω==1.83m a x

d m i n

d av

I U X 系统最大阻抗: Ω==

6.83min

max d d av

I U X 系统最小阻抗标么值: 59.02

min min =?

=av

B

d sys U S Z X 系统最大阻抗标么值: 63.02

max max =?

=av

B

d sys U S Z X 35KV 下的电流基准值: KA U S I B B B 56.137

33

1003=??== 2.3 选出线路电流互感器变比 1、变压器一次额定电流 35KV 侧 A A I N 96.16435

310000

=?=

6.3kv 侧 A I N 904.5493

.636000

=?=

2、线路XL-1A 侧,XL-4线路电流互感器变比 35kv 侧计算变比 N=

5962

.1643?=57.146 变比选取 300/5

6.3kv 侧计算变比 N=

5

904

.5493?=190.492 变比选1000/5

2.4 系统中各点短路电流计算

1、当A 点短路时,系统等效阻抗计算图如下:

图2.2 A 点短路时的等效阻抗计算图

当系统在最大运行方式下时:

短路点左边的等效阻抗:Ω=+=+=88.52

19

.9386.3231T G X X X 短路点右边的等效阻抗:

Ω=+++=+++=1.461.810208min 3212d L L L X X X X X 系统短路阻抗: Ω=+?=+=2.51.4688.51

.4688.52121max X X X X X Ad

短路电流: 9317.02

75.0367.1231=+=+=

T G X X X 36.359.073.046.158.0min 3212=+++=+++=d L L L X X X X X 729.036

.39317.036

.39317.02121=+?=+=*X X X X X

37.1729

.011*===

X I A I I I B Ad 2140156037.1min =?=?= 当系统在最小运行方式下时: 短路点左边的等效阻抗:Ω=++=++=

84.82

19

.9263.486.32221T G X X X X 短路点右边的等效阻抗:

Ω=+++=+++=6.466.810208max 3212d L L L X X X X X 系统短路阻抗: Ω=+=

43.72

12

1min X X X X X Ad

短路电流: 285.12

75.02

15.067.12

2

21=++=++=T G X X X X

4.363.073.046.158.0max 3212=+++=+++=d L L L X X X X X 93.02

12

1=+=X X X X X

07.193

.011*===

X I A I I I B Ad 4.1677156007.1min =?=?=

2、其他各点的短路阻抗及短路电流计算类似A 点,将计算结果列入下表2-1

表2-1 短路计算结果

相关量 A B C D 系统 max d X 5.2 11.31 12.60 10.81 8.10 min d X

7.43 11.86 13.28 12.98 8.6 max

d I (A )

2140 1566 1591.8 1357 2106.5 min d I (A)

1677.4

1356.5

1485.7

1155.6

1950.5

3 整定计算

3.1 线路XL-1A 段整定计算

I 段保护

1)动作电流。线路AB 末端的最大三相短路电流为 kA X X E I L d S

Bd 59.11

min max =+=

保护的第I 段动作电流为 kA I K I Bd rel I

set 91.1max ==I

2)保护范围校验。根据

1max 23

L d S I

set X X E I +=

得Ω=-=

91.423max min 1d set

I

S

X I E l x

因此

%20%61min

>=AB

l l II 段保护

II

K rel

,一般取为1.1~1.2, I set II rel II I K I 1.2.set ==1.1?1.59kA=1.749kA

t t I II ?+=12t

II

set B I I K 2

.min ..k sen =

=5.1~3.18.017495

.1356<=,不满足要求。降低整定值为1043.46A,此时灵敏度为1.3,满足灵敏度要求 III 段保护

I max .L =

A A 96.16435

310000

=? max .max .L ss ss I K I =A A 45.18196.1641.1=?=

max .max .'re L ss III rel ss III rel I K K I K I ==

max .re

ss rel

're re set

1L III

III

I K K K I K I

==A 17.25696.16485.01.12.1=??= III

set

B I I K min

..k sen =

=5.3>1.3~1.5,满足要求。 3.2 线路XL-4段整定计算

I 段保护

1)线路AD 末端的最大三相短路电流为 kA X X E I L d S

Dd 23.24

min max =+=

保护的第I 段动作电流为 67.2max ==I D d rel I

set I K I

2)保护范围校验。根据

4m a x 23L d S I

s e t X X E I +=

得Ω=-=39.023max min 1d set

I

S

X I E l x 因此

%15%7min

<=AD

l l 由此可知此段保护不满足要求,采用瞬时电流电压联锁速断保护整定计算和校验:

动作电流 。kA X X E I L d S

set 23.24

min =+=

保护范围校验。根据4max 23

L d S I

set X X E I +=

得Ω=-=

64.223max min 1d set

S

X I E l x 因此

%20%47min

>=ab

l l 由此可知满足要求。 II 段保护

II

K rel

,一般取为1.1~1.2, I set II rel II I K I 1.2.set ==1.1?2.23kA=2.453kA

t t I II ?+=12t

II

set D I I K 2

.min ..k sen =

=5.1~3.15.024536

.1155<=,不满足要求。降低整定值为888.9安培,此时灵敏度为1.3,满足灵敏度要求

III 段保护 I max .L =

A A 97.9835

36000

=? max .max .L ss ss I K I =A A 76.11897.982.1=?=

max .max .'re L ss III rel ss III rel I K K I K I ==

max .re

ss rel

're re set

1L III

III I K K K I K I

==A 67.16797.9885.02.12.1=??=

III

set

D I I K min

..k sen =

=6.9>1.3~1.5,满足要求。 4 继电器的规格型号

4.1 断路器参数选择

(1)断路器的额定电压不小于装设电路所在电网的额定电压。 (2)断路器的额定电流不小于通过断路器的最大持续工作电流。 (3)断路器的额定关合电流不小于短路冲击电流。

(4)断路器的断流能力,一般可按断路器的额定开断电流Iekd 大于或等于断路器触头刚分开时实际开断的短路电流周期分量有效值Izk 来选择,即Iekd ≧Izk 。

(5)动稳定应满足条件为:ich≤idw 。 ich —三相短路冲击电流的幅值;

idw —设备允许通过的动稳定电流(极限电流)峰值。 (6)热稳定应满足条件为:Qd≤2t I t 。

(7)关于分合闸时间,对于110KV 以上的电网,当电力系统稳定要求快速切除故障时,分闸时间不宜大于0.04s ,用于电气制动回路的断路器,其合闸时间不宜大于0.04~0.06s 。

由于线路上最大的短路电流为max 4-XL I ,故选型号为ZW7-40.5的断路器。 4.2 电压互感器的参数选择

(1)一次电压U1:1.1Un >U1>0.9 Un.

Un —为电压互感器额定一次线电压,1.1和0.9是允许的一次电压的波动范围,即为±10% Un 。

(2)二次电压:电压互感器二次电压,应根据使用情况,选用所需二次额定电压U2n 如表3-1所示。

绕组

主二次绕组 附加二次绕组

表4-1 电压互感器二次额定电压选择表

准确等级:电压互感器应在哪一级下工作需根据接入的测量仪表,继电器和自动装置等设备对准确等级的要求确定。

二次负荷S2:S2≤Sn 。

型式的选择:330kV 及以上配电装置,高容量和准确度等级满足要求时,一般采用电容式电压互感器。在需要检查和监视一次回路单相接地时,应选用三相五柱式电压互感器或具有第三绕组的单相电压互感器组。而对XL-1A 侧电压、电流互感器的选择

因为电压互感器的变比为: 335/3

1

.0,电压互感器的型号:JDJJ-35 4.3 电流互感器的参数选择

(1)一次回路电压:Ug≤Un 。

Ug —为电流互感器安装处一次回路工作电压,Un 为电流互感器额定电压。 (2)一次回路电流:Ig.max≤I1n 。

Ig.max —为电流互感器安装处的一次回路最大工作电流,I1n 为电流互感器原边额定电流。

(3)准确等级:电流互感器准确等级的确定与电压互感器的相同,需先知电流互感器二次回路所按测量仪表的类型及对准确等级的要求,并按准确等级要求最高的表计来选择。

(4)二次负荷S2:S2≤Sn 。 (5)热稳定校验:(KrIe1)2t≥Qd Qd —为短路热效应;

Kr —为热稳定倍数,它等于互感器1s 热稳定电流与一次额定电流Ie1之比。 (6)动稳定校验:(Kd×2Ie1)≥ich(2)

高压侧接入方式

接于线电压上

接于相电压上

用于中性点直接

接地系统中

用于中性点不

接地或经消弧

线圈接地系统

二次额定电压(V )

100

100/3

100

100/3

XL-1A侧I段保护的动作电流与电流互感器的二次侧比值为:

1.195984908*2/0.005=478.3939632

由此可知电流互感器的变比为:300/5

电流互感器的型号:LDJ8-35

XL-4电流互感器的选择,XL-4III段保护的动作电流与电流互感器的二次侧比值为:0.16767416*2/0.005=67.069664

由此可知电流互感器的变比为:1000/5

电流互感器的型号:LQZ-35

4.4 继电器的选择

继电器额定工作电压的选择继电器额定工作电压是继电器最主要的一项技术参数。在使用继电器时,应该首先考虑所在电路(即继电器线圈所在的电路)的工作电压,继电器的额定工作电压应等于所在电路的工作电压。一般所在电路的工作电压是继电器额定工作电压的0.86。注意所在电路的工件电压千万不能超过继电器额定工作电压,否则继电器线圈烧毁。

线路XL-1A侧的继电保护所需继电器:XL-1B侧短路时,I段保护的二次侧动作电流为:

'

I*(5/300)=1.044230626*(5/300)=0.002088461(kA)

1-

o p A X L

III段保护的二次侧动作电流为:

'''

I*(5/300)=0.256168858*(5/300)=0.000512337(kA)

1-

d z A X L

所以继电器选用DL-33,2A, 0.5-2A。

XL-4所需继电器的规格、型号:XL-4末端短路时,III段保护的二次侧动作电流为:

'''

I*(5/1000)=0.16767416*(5/1000)=0.000335348(kA)

d z X L

4

-

所以继电器KS2选用MY2K-US、KM3选用JL14-12Z、KM4选用JL14-12Z。

4.5 保护屏的设备表

表 4-2 保护屏的设备表

编号名称型号规格代号

整定范围

数量

(只)

1 电流继电器DL-33 KA 0.6安 3

2 电压继电器K8AB-VS2 KV 100伏 3

3 速断电流继电器DL-33 KA1 6安 3

4 时间继电器JT3-10 KT DC12V 5A 1

5 中间继电器JL14-12Z KM 5A 3

6 按钮LA2 S3 4

7 功率方向继电器BG-12 KAV 100V 50HZ 3

8 信号灯AD11-25 HL 6

9 过电流继电器DL-33 KA1 2A 3

10 信号继电器MY2K-US KS DC12V 5A 3

5 继电保护展开图

5.1 XL-1继电保护展开图

图5.1XL-1继电保护展开图

5.2 XL-4继电保护展开图

图5.2 XL-4继电保护展开图

6 总结

在这一个多星期的课程设计里,我通过不断地学习探索,专业理论知识得到了很大的提升,实践动手能力也有了提高。首先要感谢学院为我提供良好的做课程设计的环境,促进了设计更快更好的完成。其次要感谢指导老师在课程设计上给予我的指导、提供给我的支持和帮助,这是我能顺利完成这次报告的主要原因,更重要的是老师帮我解决了许多技术上的难题。同时也要感谢帮助我的同学,为我解决了不少我不太明白的设计难题,让我体会到了团队合作、交流分工的重要性。最后再一次感谢所有在设计中曾经帮助过我的良师益友和同学。

附录屏面布置图

图附录屏面布置图

参考文献

1、《电力工程设计手册》二册

2、《电力工程设备手册》二册

3、《电力系统继电保护》教科书

35KV变电站继电保护课程设计(同名16366)

35KV变电站继电保护课程设计(同名16366)

广西大学行健文理学院 课程设计 题目:35kV电网的继电保护设计 学院 专业 班级 姓名 学号 指导老师: 设计时间:2015年12月28日-2016年1月8日

摘要 电力是当今世界使用最为广泛、地位最为重要的能源之一,电力系统的安全稳定运行对国民经济、人民生活乃至社会稳定都有着极为重大的影响。 电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。电力系统继电保护的基本作用是:全系统范围内,按指定分区实时地检测各种故障和不正常运行状态,快速及时地采取故障隔离或告警信号等措施,以求最大限度地维持系统的稳定、保持供电的连续性、保障人身的安全、防止或减轻设备的损坏。随着电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。 随着电力系统的迅速发展。大量机组、超高压输变变电的投入运行,对继电保护不断提出新的更高要求。继电保护是电力系统的重要组成部分,被称为电力系统的安全屏障,同时又是电力系统事故扩大的根源,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段,电力系统事故具有连锁反应、速度快、涉及面广、影响大的特点,往往会给国民经济和人民生活造成社会性的灾难。 本次毕业设计的题目是35kv线路继电保护的设计。主要任务是为保证电网的安全运行,需要对电网配置完善的继电保护装置.根据该电网的结构、电压等级、线路长度、运行方式以及负荷性质的要求,给35KV的输电线路设计合适的继电保护。 关键词:35kv继电保护整定计算故障分析短路电流计算

35kV毕业设计---35kV输电线路工程设计

35kV三梅输电线路工程设计 摘要:本设计讲述了架空输电线路设计的全部内容,主要设计步骤是按《架空输电线路设计》书中的设计步骤,和现实中的设计步骤是不一样的。本设计包括导线、地线的比载、临界档距、最大弧垂的判断,力学特性的计算,定位排杆,各种校验,代表档距的计算,杆塔荷载的计算,接地装置的设计,金具的选取。在本次设计中,重点是线路设计,杆塔定位和基础设计,对杆塔的组立施工进行了简要的设计,还简单地设计基础并介绍基础施工。 关键词:导线避雷线比载应力弧垂杆塔定位 1 前言 电力作为一个国家的经济命脉不论是对于国家的各种经济建设还是对于普通老百姓的生活都起着至关重要的作用,而输电线路则是电力不可缺少的一个组成部分。目前我国大部分地区都面临着缺电这一问题,国家正在加紧电网建设,许多地方新建和改建了一批输电线路,输电线路的规划设计也就相当重要了,输电线路工程设计是电力建设的重要组成部分,同时也对输电线路正常运行起着决定性作用。 本文针对一条具体的输电线路——35kV三梅输电线路进行了设计,其中包括比载、临界档距、应力弧垂、安装弧垂的计算,排定杆塔位置,进行各种杆塔定位校验,进行防振设计,选择接地装置,完成绝缘子串的组装图、杆塔地基基础设计、杆塔组立施工设计等,涵盖了输电线路的设计、施工等方面的内容。 1.1课题相关技术 1.1.1自立式铁塔地基基础的设计 输电线路杆塔的地下部分的总体统称为基础。它的作用是用来承载输电线路的杆塔。随着我国国民经济的飞速发展,国家每年用于电力基础设施,特别是用于高压输电线路的投资日益增加。输电线路中自立式铁塔基础的设计关系到自立式铁塔在受到各种设计条件允许外力作用下输电线路的安全运行。自立式铁塔的稳定取决于所选基础的抗拔稳定和基础地基的承载能力。输电线路杆塔基础型式的设计是输电线路初步设计的重要环节同时也是影响输电线路工程整体造价的重要环节。铁塔基础的设计应结合输电线路沿线的地质、施工条件和杆塔型式的特点综合考虑。有条件时应采用原状土基础,一般情况下铁塔宜采用现浇钢筋混

继电保护课程设计(完整版)

继电保护原理课程设计报告评语: 考勤(10) 守纪 (10) 设计过程 (40) 设计报告 (30) 小组答辩 (10) 总成绩 (100) 专业:电气工程及其自动化 班级:电气1004 姓名:王英帅 学号:201009341 指导教师:赵峰 兰州交通大学自动化与电气工程学院 2013年7月18日

1 设计原始资料 1.1 具体题目 如下图所示网络,系统参数为: 3115/E =? kV ,G115X =Ω、G310X =Ω,160L =km ,340L =km ,B-C 50L =km , C-D 30L =km ,D-E 20L =km ,线路阻抗0.4Ω/km , I rel 1.2K =、III rel rel 1.15K K II ==,A 300I m ax C.-B =、C-D.max 200A I =、D-E.max 150A I =,SS 1.5K =,re 0.85K = G1 G3 98 4 51 2 3 A B C D E L1L3 1.2 要完成的任务 我要完成的是对保护5和保护3进行三段电流保护的整定设计,本次课程设计通过对线路的主保护和后备保护的整定计算来满足对各段电流及时间的要求。 2 设计的课题内容 2.1 设计规程 根据规程要求110kV 线路保护包括完整的三段相间距离保护、三段接地距离保护、三段零序方向过流保护和低频率保护,并配有三相一次重合闸功能、过负荷告警功能,跳合闸操作回路。在本次课程设计中涉及的是三段过流保护。其中,I 段、II 段可方向闭锁,从而保证了保护的选择性。 2.2 本设计保护配置 2.2.1 主保护配置 主保护:反映整个保护元件上的故障并能最短的延时有选择的切出故障的保护。在本设计中,I 段电流速断保护、II 段限时电流速断保护作为主保护。 2.2.2 后备保护配置

35KV变电站继电保护课程设计

广西大学行健文理学院 课程设计 题目:35kV电网的继电保护设计 学院 专业 班级 姓名 学号 指导老师: 设计时间:2015年12月28日-2016年1月8日

摘要 电力是当今世界使用最为广泛、地位最为重要的能源之一,电力系统的安全稳定运行对国民经济、人民生活乃至社会稳定都有着极为重大的影响。 电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。电力系统继电保护的基本作用是:全系统范围内,按指定分区实时地检测各种故障和不正常运行状态,快速及时地采取故障隔离或告警信号等措施,以求最大限度地维持系统的稳定、保持供电的连续性、保障人身的安全、防止或减轻设备的损坏。随着电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。 随着电力系统的迅速发展。大量机组、超高压输变变电的投入运行,对继电保护不断提出新的更高要求。继电保护是电力系统的重要组成部分,被称为电力系统的安全屏障,同时又是电力系统事故扩大的根源,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段,电力系统事故具有连锁反应、速度快、涉及面广、影响大的特点,往往会给国民经济和人民生活造成社会性的灾难。 本次毕业设计的题目是35kv线路继电保护的设计。主要任务是为保证电网的安全运行,需要对电网配置完善的继电保护装置.根据该电网的结构、电压等级、线路长度、运行方式以及负荷性质的要求,给35KV的输电线路设计合适的继电保护。 关键词:35kv继电保护整定计算故障分析短路电流计算

变电站及线路继电保护设计和整定计算

继电保护科学和技术是随电力系统的发展而发展起来的。电力系统发生短路是不可避免的,为避免发电机被烧坏发明了断开短路的设备,保护发电机。由于电力系统的发展,熔断器已不能满足选择性和快速性的要求,于1890年后出现了直接装于断路器上反应一次电流的电磁型过电流继电器。19世纪初,继电器才广泛用于电力系统保护,被认为是继电保护技术发展的开端。1901年出线了感应型过电流继电器。1908年提出了比较被保护元件两端电流的电流差动保护原理。1910年方向性电流保护开始应用,并出现了将电流与电压相比较的保护原理。1920年后距离保护装置的出现。1927年前后,出现了利用高压输电线载波传送输电线路两端功率方向或电流相位的高频保护装置。1950稍后,提出了利用故障点产生的行波实现快速保护的设想。1975年前后诞生了行波保护装置。1980年左右工频突变量原理的保护被大量研究。1990年后该原理的保护装置被广泛应用。与此同时,继电保护装置经历了机电式保护装置、静态继电保护装置和数字式继电保护装置三个发展阶段。20世界50年代,出现了晶体管式继电保护装置。20世纪70年代,晶体管式保护在我国被大量采用。20世纪80年代后期,静态继电保护由晶体管式向集成电路式过度,成为静态继电保护的主要形式。20世纪60年代末,有了用小型计算机实现继电保护的设想。20世纪70年代后期,出现了性能比较完善的微机保护样机并投入系统试运行。80年代,微机保护在硬件结构和软件技术方面已趋成熟。进入90年代,微机保护以在我国大量应用。20世纪90年代后半期,继电保护技术与其他学科的交叉、渗透日益深入。为满足电网对继电保护提出的可靠性、选择性、灵敏性、速动性的要求,充分发挥继电保护装置的效能,必须合理的选择保护的定值,以保持各保护之间的相互配合关系。做好电网继电保护定值的整定计算工作是保证电力系统安全运行的必要条件。 电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断注入新活力。未来继电保护的发展趋势是向计算机化、网络化保护、控制、测量、数据通信一体化智能化发展。 随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。其发展将出现原理突破和应用革命,发展到一个新的水平。这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。

农村电网35kV输电线路设计

编号:AQ-JS-06200 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 农村电网35kV输电线路设计 Design of 35kV Transmission Line in rural power grid

农村电网35kV输电线路设计 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 广西水利系统农村电网建设与改造工程已到整体验收阶段,县城电网改造即将开始。输电线路作为从发电厂或变电站向用户输送电能的桥梁,在电力系统中起很重要的作用。而线路设计中的路径选定、测量、排杆等方面对线路设计有很大影响。本文对35kV输电线路设计的路径选定、测量、排杆及应注意的问题等进行分析总结,找出一些经验规律,以提高设计效率,达到优化线路设计的目的。 一、线路路径走向的选定 在确定输电线路的电气接线方案后,设计人员应在五万分之一的地图上大致确定线路的路径走向。设计者可参考下列因素选定路径,避免出现“之”字形及大转角路径走向: 1.尽可能选择较近的路径走向; 2.考虑交通方便,如沿公路的路径走向; 3.避开高赔偿的林区、耕作区、开发区、风景区等;

4.避免穿过城镇和村庄的建筑物; 5.尽量不跨越通讯线、铁路、公路、河流、水库等; 6.避开地质灾害及洪涝灾害频发地带; 7.避开国防通讯电缆及电气化铁路电线; 8.绕开农民坟地及农村庙宇等风水迷信地带; 9.避开高污染、高危险区域(如石场、烟花爆竹厂、油库等)。 二、线路测量定位桩的选定 测量是设计的前提,测量合理与否对设计有很大的影响,需要勘测定位人员本着认真负责的态度来完成。测量单位应按设计规程进行测量,测量点应有木桩标志,用红漆标记桩号高程及转角。一般来说,线路测量定位桩的选定可考虑以下因素: 1.应离通讯线20m以外; 2.应离公路边15m之外; 3.应离建筑物10m以外; 4.尽量不要设在陡坡或有滑坡危险的陡坡上; 5.不要设在有可能遭受河岸冲刷或河流行洪的地方;

继电保护课程设计

目录 电力系统继电保护课程设计任务书 (1) 一、设计目的 (1) 二、课题选择 (1) 三、设计任务 (1) 四、整定计算 (1) 五、参考文献 (2) 输电线路三段式电流保护设计 (3) 一、摘要 (3) 二、继电保护基本任务 (3) 三、继电保护装置构成 (4) 四、继电保护装置的基本要求 (4) 五、三段式电流保护原理及接线图 (6) 六、继电保护设计 (7) 1.确定保护3在最大、最小运行方式下的等值电抗 (7) 2.相间短路的最大、最小短路电流的计算 (8) 3.整定保护1、2、3的最小保护范围计算 (8) 4.整定保护2、3的限时电流速断保护定值,并校验灵敏度 (9) 5.保护1、2、3的动作时限计算 (11) 参考文献: (12)

电力系统继电保护课程设计任务书 一、设计目的 1、巩固和加深对电力系统继电保护课程基础理论的理解。 2、对课程中某些章节的内容进行深入研究。 3、学习工程设计的基本方法。 4、学习设计型论文的写作方法。 二、课题选择 输电线路三段式电流保护设计 三、设计任务 1、设计要求 熟悉电力系统继电保护、电力系统分析等相关课程知识。 2、原理接线图 四、整定计算 ,20,3/1151Ω==G X kV E φ

,10,1032Ω=Ω=G G X X L1=L2=60km ,L3=40km, LB-C=30km,LC-D=30km, LD-E=20km,线路阻抗0.4Ω/km, 2.1=I rel K ,=∏rel K 15.1=I ∏rel K , 最大负荷电流IB-C.Lmax=300A, IC-D.Lmax=200A, ID-E.Lmax=150A, 电动机自启动系数Kss=1.5,电流继电器返回系数Kre=0.85。 最大运行方式:三台发电机及线路L1、L2、L3同时投入运行;最小运行方式:G2、L2退出运行。 五、参考文献 [1] 谷水清.电力系统继电保护(第二版)[M].北京:中国电力出版社,2013 [2] 贺家礼.电力系统继电保护[M].北京:中国电力出版社,2004 [3] 能源部西北电力设计院.电力工程电气设计手册(电气二次部分).北京: 中国电力出版社,1982 [4] 方大千.实用继电保护技术[M].北京:人民邮电出版社,2003 [5] 崔家佩等.电力系统继电保护及安全自动装置整定计算[M].北京:水利电 力出版社,1993 [6] 卓有乐.电力工程电气设计200例[M].北京:中国电力出版社,2002 [7] 陈德树.计算机继电保护原理与技术[M].北京:水利电力出版社,1992

35kv的输电线路继电保护设计(参考模板)

毕业设计(论文)题目35KV输电线路继电保护设计 学生姓名 学号 20093096 51 专业发电厂及电力系统 班级 20093096 指导教师 评阅教师 完成日期二零一一年十一月十一日 目录

摘要………………………………………………………………………………前言………………………………………………………………………………1.继电保护概论………………………………………………………………… 1.1继电保护的作用…………………………………………………………… 1.2电保护的基本原理和保护装置的组成…………………………………… 1.3对电力系统继电保护的基本要求………………………………………… 1.4 继电保护技术的发展简史………………………………………………… 2.35KV线路故障分析………………………………………………………… 2.1常见故障原因分析………………………………………………………… 2.2 35KV线路继电保护的配置…………………………………………… 4.电网相间短路的电流保护…………………………………………………… 4.1瞬时电流速断保护…………………………………………………………………… 4.2限时电流速断电流保护……………………………………………………… 4.3定时限过电流保护…………………………………………………………… 4.4电流三段保护小结…………………………………………………………… 5.输电线路三段式电流保护的构成及动作过程…………………………… 5.1零序电流保护………………………………………………………………… 6.中性点非直接接地电网中的接地保护…………………………………… 6.1、中性点不接地系统单相接地时的电流和电压 6.2中性点不接地电网的保护…………………………………………………… 6.3绝缘监视装置………………………………………………………………… 6.4零序电流保护……………………………………………………………… 6.5零序功率方向保护…………………………………………………………… 7.电流三段保护小结 结论………………………………………………………………………………致谢………………………………………………………………………………参考文献…………………………………………………………………………… 35KV线路继电保护设计

35kv线路继电保护设计

继电保护课程设计 1、系统的等值电路图 1.1 两台变压器的等值阻抗计算 电压百分数的计算: ()()1(13)(12)(23)11%%%% 17.510.5 6.510.7522 k k k k U U U U ---= +-=+-=()()2(12)(23)(13)11%%%%10.5 6.517.50.2522 k k k k U U U U ---=+-=+-=- ()()3(13)(23)(12)11%%%%17.5 6.510.5 6.7522k k k k U U U U ---=+-=+-= 变压器的等值阻抗计算: 11%10.751000.1710010063 k B T TN U S X S =?=?= 22%0.251000.00410010063 k B T TN U S X S -=?=?=- 33% 6.751000.1110010063k B T TN U S X S = ?=?= 1.2 系统的等值电路图 系统的等值电路图如图1-1所示: 图1-1 系统的等值电路图

2、线路短路计算 分别进行最大运行方式和最小运行方式下各条线路发生对称三相短路,单相接地短路,两相接地短路和两相短路。 2.1 各线路阻抗参数及计算公式 经过查手册得:LGJ-400型线路=0x 0.396Ω/km ,LGJ-300型线路=0x 0.404Ω/km ,LGJ-150型线路=0x 0.425Ω/km ,LGJ-120型线路=0x 0.435Ω/km 。利用计算公式:0x x l =? 2.2 各线路阻抗参数计算数值 2.2.1各线路阻抗参数计算数值 各线路阻抗参数计算数值如下表2.1所示: 2.2.2各线路阻抗参数标幺值计算数值 标幺值计算为:2*B B U S x x ? = 计算数值如下表 2.2所示:(其中110 1.05115.5B U =?=Kv )

35kV输电线路设计说明

35kV输电线路设计说明

35kV迁改工程 设 计 说 明 2010年12月

批准: 审定: 审核: 校核: 编写:

一、设计依据 1、昆明西北绕城公路建设指挥部关于委托电力工程设计公司; 2、本工程设计合同书; 3、有关单位对35kV线路改线现场确定的方案; 4、国家有关电力行业设计技术规范及南方电网云南电网公司昆明供电局有关输电线路的技术规范。 二、线路设计原则 1、本工程设计气象条件:参照原有线路气象条件云南省典型一级气象区。复冰C=5mm,最大风速V=30m/s;最高气温40℃,最低气温-5℃;年平均气温+15℃。 2、绝缘配合: 耐张绝缘子串:2×9×LXHY1-70 直线绝缘子串:2×8×LXHY1-70;跳线绝缘子串:1×8×LXHY1-70; 3、相序:按原有线路相序; 4、导线、避雷线的设计应力及安全系数 根据《110kV~500kV架空送电线路设计技术规范》的有关规定,按导线、避雷线的设计安全系数不应小于2.5,地线的设计安全系数宜大于导线的设计安全系数。本工程导线安全系数K=8.0,地线安全系数K=10.0。 名称符单位导线避雷线

号LGJ-185/25 GJX-35(1× 7-8.7-1270) 标称截面铝 股 mm2 187.04 钢 芯 mm2 24.25 37.15 综 合 mm2 211.29 股数×毎股直径铝 股 24×3.15 钢 芯 7×2.107/2.6 计算外 径 d mm 18.9 7.8 质量W kg/km 706.1 318.2 综合弹性系数E N/ mm2 76000 181400 综合线 膨胀系 数 α1/℃18.9×10-611.5×10-6拉断力N N 59420 45503 5、导线及避雷线的防振

继电保护及课程设计_第二次作业

继电保护及课程设计_第二次作业 36. 电力系统发生故障时,继电保护装置应将故障部分切除 ,电力系统出现不正常工作时,继电保护装置一般应发出信号。 37. 继电保护的可靠性是指保护在应动作时不拒动 ,不应动作时不误动。 38. 本线路限时电流速断保护的保护范围一般不超出相邻下一线路电流速 断保护的保护范围,故只需带0.5s 延时即可保证选择性。 39. 检验电流保护灵敏系数时,最小短路电流I d.min是指在被保护范围末端,在最小运行方式下的两相短路电流。40. 为保证选择性,过电流保护的动作时限应按阶梯原则整定,越靠近电源处的保护,时限越长。 41. 电流继电器的返回系数过低,将使过电流保护的动作电流增 大,保护的灵敏系数降低。 42. 电流保护的接线系数定义为流过继电器的电流与电流互感器二次电 流之比,故两相不完全星形接线的接线系数 为 1 。 43. 中性点不接地电网发生单相接地后,将出现零序电压U0,其值为故障前相电压 值,且电网各处零序电压相等。44. 绝缘监视装置给出信号后,用依次断开线路方法查找故障线路,因此该装置适用于出线较少的情况。 45. 阻抗继电器根据比较原理的不同分为幅值比较式和相位比较式两类。 46. 当保护范围不变时,分支系数越大(小),使保护范围越小(大),导致灵敏性越低(高)。 47. 阻抗继电器的执行元件越灵敏,其精确工作电流越小。 48. 三种圆特性的阻抗继电器中,方向阻抗继电器受过渡电阻的影响最大,全阻抗继电器受过

渡电阻的影响最小。 49. 阻抗继电器受系统振荡影响的程度取决于两个因素,即保护的安装地点和阻抗继电器的特性。 50. 闭锁式高频方向保护在故障时启动发信,而正向元件动 作时停止发信,其动作跳闸的基本条件是正向元件动作且收不到闭锁信号。 51. 方向高频保护是比较线路两侧端功率方向,当满足功率方向同时指向线路条件时,方向高频保护动作。 52. 线路纵联保护载波通道的构成部件包括输电线 路、高频阻波器、耦合电容器、结合滤波器、高频电缆、保护间隙、接地刀闸和收发信机。 53. 相差高频保护是比较线路两端电流的相位,当满足电流相位同相条件时,相差高频保护动作。54. 高频保护启动发信方式有保护启 动、远方启动和手动启动。 55. 具有同步检定和无电压检定的重合闸,在线路一侧,当线路无电压时,允许该端线路的重合闸重合;而在另一侧,需检测母线电压和线路电压满足同期 条件时允许重合闸重合。 56. 在变压器的励磁涌流中,除有大量的直流分量外,还有大量的高次谐波分量,其中以二次谐波为主。 57. 对于变压器纵差动保护,在正常运行和外部故障时,流入差动继电器的电流为零(理论值)。 58.名词解释:选择性 答:选择性——是指首先由故障设备的保护切除故障,系统中非故障部分仍继续运行,以尽量缩小停电范围。当保护或断路器拒动时,才由相邻设备的保护或断路器失灵保护切除故障。 59.名词解释:速动性 答:速动性——是指保护装置应尽可能快的切除短路故障。 60.名词解释:灵敏性 答:灵敏性——是指在设备的被保护范围内发生金属性短路时,保护装置应具有的反应能力。 61.名词解释:系统最大(小)运行方式

35KV架空输电线路初步设计方案

35KV架空输电线路初步设计方案 第二部分工程概况 -、设计情况 随着经济发展,负荷增加,近年来,用户对供电可靠性的要求不断提高,为避免因线路故障及检修造成对XX变电站停电及线路网架要求,该线路的建设必要性非常大。 本工程线路全线经过地带为平原,沿线植被主要是农田、 粮林间作带。根据通许县城城市整体规划,经过与县城规划部 门实地查看,规划部门允许该线路走径。 电压等级:35KV 线路回数:本期采用单回路架设 线路长度:35KV输电线路工程单回5.98kM。 导地线型号:导线LGJ-185/30; 二、气象条件 根据本地区高压输电线路多年运行经验。本工程线路所选气象条件为线路所通过地区30年一遇的数值(其值详见下表)。

气象条件一览表

第三部分设计说明书 第一章.导线及避雷线部分 导线是固定在杆塔上输送电流的金属线,由于经常承受着拉力和风、冰、雨、雪及温度变化的影响,同时还受空气中化学杂质的侵蚀,所以导线的材料除了应有良好的导电率外,还有足够的机械强度和防腐性能。 导线和地线: 根据规划,新建线路全部采用LGJ-185/30。 导线:按GB1179-83标准推荐用LGJX-185/30钢芯铝(稀土)绞线。 地线:根据Q/GDW179-2008)《地线采用镀锌钢绞线时与导线配合表》选用GJ-35(1×7) 镀锌绞线。 导地线定货标记: 导线:LGJX-185/30 GB1179-83稀土钢芯铝绞线 地线:GJ-35:1×7-2.6

导地线参数表

注:拉断力取计算拉断力的95%。 线路设计规程规定,35kV线路设计气象条件,应根据沿线的气象资料和附近已有线路的运行经验考虑。 在确定最大设计风速时,应按当地气象台(站),10min时距平均的年最大风速作样本,并宜采用极值I型分布作为概率统计值。35kV线路的最大设计风速不应低于28m/s。 合理的选择导线截面,对电网安全运行和保障电能质量有重大意义,随着经济的高速发展,对电力的需求越来越大,我们在选择导线的时候,还要考虑线路投运后5年的发展需要。 本设计中我们按照经济电流密度进行导线截面选择 公式如下:L I (其中S指导线截面;J指经济电流密度; s J I指线路最大负荷电流) L 导地线使用条件 导线:全段导线设计安全系数为 3.0,导线综合拉断力为61104N,最大使用力为20368N。 地线:地线采用GJ-35镀锌钢绞线,综合拉断力为43688N,安全系数按规定宜大于导线安全系数K=3。 导地线布置:导线采用上字形及平行排列方式。 地线全线采用水平排列方式。

继电保护课程设计

1. 前言 《电力系统继电保护》作为电气工程及其自动化专业的一门主要课程,主要包括课堂讲学、课程设计等几个主要部分。在完成了理论的学习的基础上,为了进一步加深对理论知识的理解,本专业特安排了本次课程设计。电能是现代社会中最重要、也是最方便的能源。而发电厂正是把其他形式的能量转换成电能,电能经过变压器和不同电压等级的输电线路输送并被分配给用户,再通过各种用电设备转换成适合用户需要的其他形式的能量。在输送电能的过程中,电力系统希望线路有比较好的可靠性,因此在电力系统受到外界干扰时,保护线路的各种继电装置应该有比较可靠的、及时的保护动作,从而切断故障点极大限度的降低电力系统供电范围。电力系统继电保护就是为达到这个目的而设置的。本次110kv电网继电保护设计的任务主要包括了五大部分,运行方式的分析,电路保护的配置和整定,零序电流保护的配置和整定,距离保护的配置和整定,原理接线图及展开图。通过此次线路保护的设计可以巩固我们本学期所学的《电力系统继电保护》这一课程的理论知识,能提高我们提出问题、思考问题、解决问题的能力。

2. 运行方式分析 电力系统运行方式的变化,直接影响保护的性能,因此,在对继电保护进行整定计算之前,首先应该分析运行方式。需要着重说明的是,继电保护的最大运行方式是指电网在某种连接情况下通过保护的电流值最大,继电保护的最小运行方式是指网在某种连接情况下通过保护的电流值最小。 图1 110kV电网系统接线图 系统接线图如图1所示,发电机以发电机—变压器组方式接入系统,最大开机方 式为4台机全开,最小开机方式为两侧各开1台机,变压器T5和T6可能2台 也可能1台运行。参数如下: 电动势:E = 115/3kv; 发电机:= = = = 5 + (15 5)/14=, = = = = 8 + (9 8)/14=; 变压器:~ = 5 + (10 5)/14=, ~ = 15 + (30 15)/14=., = = 15 + (20 15)/14=, = = 20 + (40 20)/14=; 线路:L A-B = 60km,L B-C = 40km,线路阻抗z1 = z2 = /km,z0 = /km, =60km× /km=24,=40km×/km=16; =60km×/km=72,=40km×/km=48; = = 300A; K ss = ,K re = ; 电流保护:K I rel = ,K II rel = , 距离保护:K I rel = ,K II rel = 负荷功率因数角为30,线路阻抗角均为75,变压器均装有快速差动保护。

35kV输电线路继电保护设计

本科课程设计 课程名称:电力系统继电保护原理 设计题目:35kV输电线路继电保护设计

摘要 力是当今世界使用最为广泛、地位最为重要的能源之一,电力系统的安全稳定运行对国民经济、人民生活乃至社会稳定都有着极为重大的影响。 电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。电力系统继电保护的基本作用是:全系统范围内,按指定分区实时地检测各种故障和不正常运行状态,快速及时地采取故障隔离或告警信号等措施,以求最大限度地维持系统的稳定、保持供电的连续性、保障人身的安全、防止或减轻设备的损坏。随着电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。 随着电力系统的迅速发展。大量机组、超高压输变变电的投入运行,对继电保护不断提出新的更高要求。继电保护是电力系统的重要组成部分,被称为电力系统的安全屏障,同时又是电力系统事故扩大的根源,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段,电力系统事故具有连锁反应、速度快、涉及面广、影响大的特点,往往会给国民经济和人民生活造成社会性的灾难。 本次毕业设计的题目是35kv线路继电保护的设计。主要任务是为保证电网的安全运行,需要对电网配置完善的继电保护装置.根据该电网的结构、电压等级、线路长度、运行方式以及负荷性质的要求,给35KV的输电线路设计合适的继电保护。 关键词:35kv继电保护、整定计算、故障分析、设计原理

目录 1.1继电保护的作用 (3) 1.1.1继电保护的概念及任务 (3) 1.2继电保护的基本原理和保护装置的组成 (3) 1.2.1反应系统正常运行与故障时电器元件(设备)一端所测基本参数的变化而构 成的原理(单端测量原理,也称阶段式原理) (3) 1.2.2反应电气元件内部故障与外部故障(及正常运行)时两端所测电流相位和功 率方向的差别而构成的原理(双端测量原理,也称差动式原理) (3) 1.2.3保护装置的组成部分 (4) 1.3对电力系统继电保护的基本要求 (4) 1.3.1选择性 (4) 1.3.2速动性 (5) 1.3.3灵敏性 (5) 1.3.4可靠性 (5) 1.4继电保护技术发展简史 (5) 2.35KV线路故障分析 (6) 2.1常见故障分析 (6) 2.1.1相间短路 (6) 2.1.2接地短路 (7) 3、35KV线路继电保护的配置 (7) 4.电网相间短路的电流保护 (7) 4.1瞬时电流速断保护 (8) 4.1.1 瞬时电流速断保护的工作原理 (8) 4.1.2原理接线 (9) 4.1.3瞬时电流速断保护的整定计算 (9) 4.2限时电流速断电流保护 (13) 4.2.1限时电流速断保护的工作原理 (13) 4.2.2 限时电流速断保护的整定计算 (14) 4.2.3 限时电流速断保护的单相原理接线 (16) 4.3定时限过电流保护 (16) 4.3.1定时限过电流保护的工作原理 (16) 4.3.2定时限时电流保护的整定计算 (18) 4.3.3 定时限过电流保护的灵敏度校验和保护动作时间 (18) 5:致谢 (20) 6:参考文献 (21)

35KV架空输电线路设计分析

35KV架空输电线路设计分析 发表时间:2018-11-29T11:33:01.053Z 来源:《河南电力》2018年11期作者:陈宁[导读] 电力线路在整个电力系统中是最关键的组成部分,所以对在电力线路进行施工时一定要格外注重对电力线路的设计工作 (陕西省地方电力设计有限公司陕西西安 710075) 摘要:在如今时代下最为重要的能源之一就是电能,而且因为电能在使用时比较便利还可以轻易进行较远距离的电能运输与控制,所以电能也开始被人们进行广泛使用。电力线路在整个电力系统中是最关键的组成部分,所以对在电力线路进行施工时一定要格外注重对电力线路的设计工作,而在对35KV架空输电线路进行设计的过程中一定要注意其分成的两个阶段,并将设计过程中出现的问题进行及时、有效的处理,从而确保整个35KV架空输电线路的运行。本文主要针对35kV架空输电线路设计工作的两个阶段进行详细的分析。 关键词:35KV;架空输电线路;设计分析 在电力系统当中最为主要的一部分就是电力的线路,因为电力线路主要负责的就是电能的运输与分配是非常主要的一项任务,一旦电力线路出现任何问题都会导致整个电力系统彻底终端,严重的话还会对人们的生命安全与机械设备的安全造成很大程度的影响,因此对电力线路的设计工作一定要给予一定程度的重视。而35KV架空输电线路的整体设计一共可以分成两个阶段分别是初期设计阶段与施工图纸设计阶段,其中最为主要的内容有很多比如对导线型号、线路路径的选择,还有对杆塔基础与形状上的设计与选择等。所以在对35KV架空输电线路进行设计的过程中,一定要确保在进行施工之后的输电线路可以更加安全、经济的稳定运行。 一、35KV架空输电线路设计初期阶段的详细分析 在35KV架空输电线路整个工程的设计工作当中最为主要的阶段就是初期的设计阶段,所以在进行这个阶段的线路设计时一定要将输电线路的路径不断的进行技术与经济方面的对比,在所有当中选取最为适合的设计方案开始进行并确定出整体设计的标准原则。 1、对导线进行确定 在对35KV架空输电线路进行设计之前一定要对使用的导线进行确定,并按照国家相关标准规定当中的负荷信息资料与选取的导线截面,最终在将所在城市经济的整体发展趋势来进行综合检验。伴随着现如今社会经济的不断发展与进步,现如今无论是市民日常生活用电量还是各类行业的用电量都处于不断上涨的趋势中,另外有些电力线路进行设计的过程中有很多企业还没有对未来发展进行合理规划,这就会在电力线路已经完成之后一直处于超负荷的状态下进行运行。这样长期进行超负荷状态下进行运行就会导致整个电力线路当中的导线损耗程度非常严重,在线路当中的导线连接点也会一直处于发热的状态,这些状况都会为电力线路的安全带来很大程度的影响。所以在对35kV架空输电线路当中使用导线进行确定的过程中,除了对导线截面进行确定以外还需要按照所在城市的实际状况来进行选择最为适合的导线。并且在对导线的截面进行选择的过程中一定要截面较大的导线,因为截面较大的导线所承受的负荷更大一些,从而确保35KV架空输电线路可以更加安全顺利的运行【1】。 2、对天气状况进行确定 在对35KV架空输电线路进行设计时当地的天气状况与整个输电线路之间有着非常紧密的关联,所以在进行设计之前一定要将所在城市的天气状况进行确定,并将所在城市的天气状况信息数据与已建成输电线路的具体运行状况等元素都充分的考虑到设计当中,从而确保可以对整个35KV架空输电线路进行安全、合理的设计。在对所在城市天气状况进行分析考虑的过程中主要可以从以下六点开始进行:第一点是所在城市中最高的温度可以达到多少,以此在确保在对导线的最大弧垂进行计算准确性的同时确保整个输电线路与建筑物和地面之间的距离处于安全距离当中;第二点是所在城市中最低的温度可以达到多少,以此来确保导线的最大拉应力进行确定,而且在对导线的最大拉应力进行试验的过程中这是最为基本的条件之一;第三点是所在城市中最热的一个月平均温度可以达到多少,以此来对导线安全的载流量进行更好的计算;第四点是所在城市中风速可以达到多大,以此来确定导线、电杆等受力的部分负荷具体是多少从而避免因为风速发生安全事故,并确保导线与周围建筑物之间的距离处于安全距离之内;第五点是所在城市是冬天时输电线路当中导线的覆冰状况,以此来计算导线、电杆等部分的机械强度;第六点是所在城市处于雷雨天气时及时采用防雷措施,以此来确保输电线路可以安全、稳定的运行。 3、对绝缘进行配合设计 在对35kV架空输电线路当中谲云进行设计的过程中,一定要将绝缘的具体强度按照区段的形式进行划分,在输送电力的路径当中绝月的具体强度需要一句清洁与污秽区域开始划分,对污秽区域进行划分的过程中可以按照污秽的等级与周围附盐密度、性质、距离等详细状况开始进行划分,从而确保可以对绝缘方面的设计进行确定。在对绝缘进行设计的过程中需要按照电压的具体等级状况与负荷程度等各有不同的绝缘状况来选择最为适合的绝缘子串与详细片数。在对绝缘当中的防雷进行设计的过程中需要按照输送电线当中的具体电压等级、已建完成的输电线路运行信息数据与所在城市的雷电活跃状况等多方面的因素进行设计,而且在选取避雷线的具体根数、保护角与避雷线和输电线路当中导线之间存在的最小距离时也需要按照以上多方面的因素进行选取。最适合35kV架空输电线路的避雷方式就是将避雷线以接地的方式进行,并且还需要确保可以使避雷线的保护角角度可以达到最小,以此来保证最终设计出的绝缘避雷措施的遮蔽性能。但由于输电线路当中的电压具体等级在不断进行下降,而避雷线的成本价格却不断的进行上涨,所以在35kV架空输电线路绝缘设计当中大多数都不会在整个输电线路当中都设置避雷线。在没有避雷针的输电线路当中都是将导线以三角的排列形式进行的,使处于最上方的导线拥有避雷效果那么整个三角形当中的输电导线都具有一定程度的避雷效果,从而确保整个35kV架空输电线路在运行的过程中避免遭受到雷电攻击所引起的意外事故【2】。 二、35kV架空输电线路的施工图纸设计阶段的详细分析 在35kV架空输电线路的设计工作经过初期阶段的确定之后,就开始进行施工图纸的设计阶段。在开始进行施工图纸的设计阶段时整体的流程是从经过了初期阶段最终选取最为适合的线路方案开始进行实时的测量工作,之后是对选取的线路进行防线与打杆位桩等工作,然后再将整个施工所需图纸进行详细的设计,这其中主要包括了需要跨越的交叉图表、杆塔的明细图标、杆塔、路径、绝缘子与基础铁塔等方面的具体图纸。最终还需要为施工单位提供最为准确的施工材料列表与施工计算预算书与图纸设计的详细说明书等,以此来确保整个35kV架空输电线路经过施工后可以安全、稳定的进行运行【3】。

继电保护课程设计

继电保护课程设计

————————————————————————————————作者:————————————————————————————————日期:

电力系统继电保护原理 课程设计 班级:2008级生信1班 学号:20085097 姓名:曹学博 专业:电气工程及其自动化 指导老师:王牣 评分:A(优),B(良),C(中),D(合格),E(不合格) 项目学生自评指导老师评定 设计内容完整性 计算公式准确性 计算数据正确性 绘图质量 文档规范性 综合评定 教师签名(盖章): 日期:年月日

目录 第一节设计任务书 (1) 1、继电保护课程设计的目的 (1) 2、原始数据 (2) 2.1 基础数据 (2) 2.2 系统接线图 (3) 3、课程设计要求 (4) 3.1 需要完成的设计内容 (4) 3.2 设计文件内容 (5) 第二节馈线保护配置与整定计算 (6) 1、馈线保护配置 (6) 2、馈线保护整定计算 (6) 2.1 电流速断定值计算 (6) 2.2 阻抗I段定值计算 (6) 2.3 阻抗II段定值计算 (7) 2.4 过电流定值计算 (7) 第三节变压器保护配置与整定计算 (8) 1、变压器保护配置 (8) 2、变压器电量保护整定计算 (8) 2.1 差动速断保护 (8) 2.2 二次谐波制动的比率差动保护 (8) 2.3 三相低电压过电流保护 (9) 2.4 单相低电压过电流保护 (9) 2.5 零序过电流保护 (10) 2.6 过负荷保护 (10) 3、变压器非电量计算 (10) 3.1 瓦斯保护整定计算 (10) 3.2 主变过热整定计算 (10) 第四节并联电容补偿装置配置与整定计算 (11) 1、并联补偿装置保护配置 (11) 2、并联补偿装置整定计算 (11) 2.1 电流速断保护 (11) 2.2 差流保护 (11) 2.3 过电流保护 (12) 2.4 高次谐波过流保护 (12) 2.5 差压保护 (13) 2.6 低电压保护 (14) 2.7 过电压保护 (14) 第五节 B相馈线保护原理接线图和展开图 (15) 1、电流保护 (15) 2、阻抗保护 (16)

35kV电网继电保护设计说明书(精)

1 设计说明书 一、 d 5点短路电流计算 由于短路电流计算是进行电网继电保护配置设计的基础,加上时间的关系,指导老师只要求每个小组计算一个短路点。本小组计算第五个短路点。 (一三相短路电流计算: 最大运行方式:两电站的六台机组全部投入运行,中心变电所在地110 KV母线上的系统等值标么电抗为0.225。城关变电所总负荷为240A (35KV侧 ,由金河电站供给110KA、青岭电站供给130KA。剩余的110A经中心变电所送入系统。 根据题意转换出电抗标么值: 排除城关变电所,合并整理其它电抗值得:

整理合并得: X25=3.918 X26=1.833 整理合并得: X27=0.275 X28=0.175 合并、星-三角等值转换: X29=0.5 X30=7.583 X31=3.547 等值电抗转换: X32=0.712 X33=10.791 X34=5.047 计算得出的最大短路电流分别为:I S =7.731 I q =0.541 I j =1.115 第1页 (二两相短路电流计算:

最小运行方式:两电站都只有一台机组投入运行, 中心变电所110KV母线上的系统等值标么电抗为0.35城关变电所总负荷为105A(35KV侧 ,由金河电站供给40A、青岭电站供给65A。剩余的15A经中心变电所送入系统。 1、两相短路电流正序电抗化简: 最小运行方式下转换的电抗标么值: X1=0.35 X2=0.55 X3=0 X4=0.35 X5=0.55 X6=0 X9=0.292 X10=1 X12=5.33 X16=0.876 X19=0.75 X20= 4 合并青中线、金中线、中变电抗: X21=0.275 X22=0.175 X23=5.918 X24=6.33 整理、合并得: X25=0.625 X26=8.178 X27=8.751 整理、合并得: X28=0.825 X29=10.805 X30=11.562 2、两相短路电流负序电抗化简: 最小运行方式下转换的负序电抗标么值:

相关文档
相关文档 最新文档