文档库 最新最全的文档下载
当前位置:文档库 › 实验五 双容对象的动态特性实验

实验五 双容对象的动态特性实验

实验五 双容对象的动态特性实验
实验五 双容对象的动态特性实验

实验二、二阶双容对象特性测试实验

一、实验目的

1)、熟悉双容水箱的数学模型及其阶跃响应曲线。

2)、根据由实际测得的双容液位阶跃响应曲线,分析双容系统的飞升特性。

二、实验设备

过程控制实验装置、上位机软件、计算机、RS232-485转换器1只、串口线1根、实验连接线。

三、原理说明

图2-1、双容水箱系统结构图

如图2-1所示:这是由两个一阶非周期惯性环节

串联起来,输出量是下水箱的水位h

。当输入量有一

2

时,输出量变化的反应曲线如图2-2

个阶跃增加?Q

1

所示的?h

曲线。它不再是简单的指数曲线,而是就

2

使调节对象的飞升特性在时间上更加落后一步。在图

中S形曲线的拐点P上作切线,它在时间轴上截出一

段时间OA。这段时间可以近似地衡量由于多了一个容

量而使飞升过程向后推迟的程度,因此,称容量滞后,

通常以τ

代表之。

C

设流量Q

为双容水箱的输入量,下水箱的液位高

1

度h

为输出量,根据物料动态平衡关系,并考虑到液

2

体传输过程中的时延,其传递函数为: 图2-2、变化曲线

式中 K=R 3,T 1=R 2C 1,T 2=R 3C 2,R 2、R 3分别为阀V 2和V 3的液阻,C 1 和C 2分别为上水箱和下水箱的容量系数。式中的K 、T 1和T 2须从由实验求得的阶跃响应曲线上求出。具体的做法是在图2-3所示的阶跃响应曲线上取:

1)、h 2(t )稳态值的渐近线h 2(∞); 2)、h 2(t )|t=t1=0.4 h 2(∞)时曲线上的 点A 和对应的时间t 1;

3)、h 2(t )|t=t2=0.8 h 2(∞)时曲线上的 点B 和对应的时间t 2。

然后,利用下面的近似公式计算式 (2-1)中的参数K 、T1和T2。其中:

对于式(2-1)所示的二阶过程,0.32〈t 1/t 2〈0.46。当t 1/t 2=0.32时 ,可近似为一阶环节;当t 1/t 2=0.46时,过程的传递函数G(S)=K/(TS+1)2(此时T 1=T 2=T=(t 1+t 2)/2* 2.18 )

四、实验步骤

1、设备的连接和检查

1)、开通以丹麦泵、电动调节阀、涡轮流量计以及上水箱出水阀1、阀4、阀9、阀21、阀23组成的水路系统;关闭通往其他对象的切换阀2、阀5、阀7、阀11、阀13、阀15。

2)、将中水箱的出水阀22开至适当开度。

h 0.40.820h h 1

h 2222.16t t T T )4)(K 2

1212+≈

+=∞=

、阶跃输入量

输入稳态值

O R h )

55.074.1()T (T T T )5212

2121-≈+t t 、1)-2 ( *)

1*)(1*()()()(2112e s

S T S T K S G S Q S H τ-++==图2-3、阶跃响应曲线

3)、检查电源开关是否关闭。

2、系统连线

实验接线如图2-4所示:

1)、将中水箱液位+接到任意一个智能调节仪的信号输入端1(即RSV的+极),

中水箱

液位-(负端)接到智能调节仪的2端(即RSV的-极)。

图2-4、实验接线图

2)、将智能调节仪的~20mA输出端的7端(即+极)接至电动调节阀的4~20mA 输入端的+端(即正极),将智能调节仪的4~20mA输出端的5端(即-极)接至电动调节阀的4~20mA输入端的-(即负极)。

3)、电源控制板上的三相、单相空气开关、单相泵电源开关打在关的位置。

4)、电动调节阀的~220V电源开关打在关的位置。

5)、智能调节仪的~220V电源开关打在关的位置。

3、启动实验装置

1)、将实验装置电源插头接到380V的三相交流电源。

2)、打开电源三相带漏电保护空气开关,电压表指示380V。

3)、打开总电源钥匙开关,按下电源控制屏上的启动按钮,即可开启电源。

4、实验步骤

1)、开启单相空气开关,中水箱液位传感器输出信号为1~5V电压信号,调整好仪表输入规格参数与其他各项参数,开始校准液位传感器的零位和增益,仪表输出方式设为手动输出,初始值为0。

2)、启动计算机MCGS组态软件,进入实验系统相应的实验,界面如图2-5所示:

图2-5、实验软件界面

3)、开启单相泵电源开关,启动动力支路,手动将仪表的输出值迅速上升到小于等于10,将被控参数液位高度控制在30%处(一般为5cm)。

4)、观察系统的被调量——水箱的水位是否趋于平衡状态。若已平衡,应记录调节仪输出值,以及水箱水位的高度h2和智能仪表的测量显示值并填入下表。

5)、迅速增加仪表手动输出值,增加10%的输出量,记录此引起的阶跃响应的过程参数,均可在上位软件上获得各项参数和数据,并绘制过程变化曲线。

6)、直到进入新的平衡状态。再次记录测量数据,并填入下表:

7)、将仪表输出值调回到步骤5)前的位置,再用秒表和数字表记录由此引起的阶跃响应过程参数与曲线。填入下表:

8)、重复上述实验步骤。

五、注意事项

不得任意改变开度大小。

1)做本实验过程中,阀V

2

2)阶跃信号不能取得太大,以免影响正常运行;但也不能过小,以防止影响对象特性参数的精确性。一般阶跃信号取正常输入信号的5%~15%。

3)在输入阶跃信号前,过程必须处于平衡状态。

六、实验报告要求

1)作出二阶环节的阶跃响应曲线。

2)根据实验原理中所述的方法,求出二阶环节的相关参数。

3)试比较二阶环节和一阶环节的不同之处。

七、思考题

1)在做本实验时,为什么不能任意变化中水箱出水阀的开度大小?

2)用两点法和用切线法对同一对象进行参数测试,它们各有什么特点?

测试系统静态特性校准实验报告

实验一测试系统静态特性校准 一.实验目的 1.1 掌握压力传感器的原理 1.2掌握压力测量系统的组成 1.3掌握压力传感器静态校准实验和静态校准数据处理的一般方法 二.实验设备 本实验系统由活塞式压力计,硅压阻式压力传感器,信号调理电路,5位半数字电压表,直流稳压电源和采样电阻组成。图1-1实验系统方框图如下: 实验设备型号及精度 三.实验原理 在实验中,活塞式压力计作为基准器,为压力传感器提供标准压力0~0.6%Mpa信号调理器为压力传感器提供恒电源,将压力传感器输出的电压信号放大并转换为电流信号。信号处理器输出为二线制,4~20mA信号电源在250 采样电阻上转换为1~5V电压信号,由5位半数字电压表读出。

四.实验操作 4.1操作步骤 (1)用调整螺钉和水平仪将活塞压力计调至水平。 (2)核对砝码重量及个数,注意轻拿轻放。 (3)将活塞压力计的油杯针阀打开,逆时针转动手轮向手摇泵内抽油,抽满后,将油杯针阀关闭。严禁未开油杯针阀时,用手轮抽油,以防破坏传感器。 (4)加载砝码至满量程,转动手轮使测量杆标记对齐,再卸压。反复1-2次,以消除压力传感器内部的迟滞。 (5)卸压后,重复(3)并在油杯关闭前记录传感器的零点输出电压,记为正行程零点。 (6)按0.05Mpa的间隔,逐级给传感器加载至满量程,每加载一次,转动手轮使测量杆上的标记对齐,在电压表上读出每次加载的电压值。 (7)加压至满量程后,用手指轻轻按一下砝码中心点,施加一小扰动,稍后记录该电压值,记为反行程的满量程值。此后逐级卸载,并在电压表读出相应的电压值。 (8)卸载完毕,将油杯针阀打开,记录反行程零点,一次循环测量结束。 (9)稍停1~2分钟,开始第二次循环,从(5)开始操作,共进行5次循环。 4.2 注意事项 保持砝码干燥,轻拿轻放,防止摔碰。 轻旋手轮和针阀,防止用力过猛。 正、反行程中,要求保证压力的单调性,如遇压力不足或压力超值,应重新进行循环。 当活塞压力计测量系统的活塞升起是,请注意杆的标记线与两侧固定支架上的标记对齐,同时,用手轻轻旋动托盘,以保持约30转/分的旋转速度,用此消除静摩擦,此后方可进行读数。 严禁未开油杯针阀时,用手轮抽油,以防破坏传感器;或在电压表输出值不变的情况下,严禁连续转动手轮数圈。 五.数据处理 1、实验数据

实验1 二阶双容中水箱对象特性测试实验

实验1 二阶双容中水箱对象特性测试实验 一、实验目的 1、熟悉双容水箱的数学模型及其阶跃响应曲线; 2、根据由实际测得的双容液位阶跃响应曲线,分析双容系统的飞升特性。 二、实验设备 AE2000B 型过程控制实验装置、实验连接线 图1 双容水箱系统结构图 三、原理说明 如图1所示:这是由两个一阶非周期惯性环节串联起来,被调量是第二水槽的水位h 2。当输入量有一个阶跃增加?Q 1时,被调量变化的反应曲线如图2所示的?h 2曲线。它不再是简单的指数曲线,而是呈S 形的一条曲线。由于多了一个容器,就使调节对象的飞升特性在时间上更加落后一步。在图中S 形曲线的拐点P 上作切线,它在时间轴上截出一段时间OA 。 这段时间可以近似地衡量由于多了一个容量而使飞升过程向后推迟的程度,因此称容量滞后,通常以τ C 代表之。 设流量Q 1为双容水箱的输入量,下水箱的液位高度h 2为输出量,根据物料动态平衡关系,并考虑到液体传输过程中的时延,其传递函数为: 2112()()* ()(*1)(*1) s H S K G S Q S T S T S e τ-==++

图2 变化曲线 式中K=R3,T1=R2C1,T2=R3C2,R2、R3分别为阀V2和V3的液阻,C1和C2分别为上水箱和下水箱的容量系数。由式中的K、T1和T2须从由实验求得的阶跃响应曲线上求出。具体的做法是在图3所示的阶跃响应曲线上取: 1)h2(t)稳态值的渐近线h2(∞); 2)h2(t)|t=t1=0.4 h2(∞)时曲线上的点A和对应 的时间t1; 3)h2(t)|t=t2=0.8 h2(∞)时曲线上的点B和对应 的时间t2。 然后,利用下面的近似公式计算式2-1中的参数 K、T1和T2。其中:2 () K O h R ∞ == 输入稳态值 阶跃输入量 图3 阶跃响应曲线 4)12 12 t t T T 2.16 + +≈ 对于式(2-1)所示的二阶过程,0.32〈t1/t2〈0.46。当t1/t2=0.32时,为一阶环节;当t1/t2=0.46 h 0.4 0.8 2 h h 1 h 2 2 2

一阶单容上水箱对象特性的测试实验报告

《控制工程实验》实验报告 实验题目:一阶单容上水箱对象特性的测试 课程名称:《控制工程实验》 姓名: 学号: 专业: 年级: 院、所: 日期: 2019.04.05

实验一一阶单容上水箱对象特性的测试 一、实验目的 1. 掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2. 根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数; 3. 掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 1. 实验装置对象及控制柜 1套 2. 装有Step7、WinCC等软件的计算机 1台 3. CP5621专用网卡及MPI通讯线各1个 三、实验原理 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图1 所示为单容自衡水箱特性测试结构图及方框图。阀门F 1-1和F 1-6 全开,设上水箱 流入量为Q 1,改变电动调节阀V1的开度可以改变Q 1 的大小,上水箱的流出量为 Q 2,改变出水阀F 1-11 的开度可以改变Q 2 。液位h的变化反映了Q 1 与Q 2 不等而引起 水箱中蓄水或泄水的过程。若将Q 1 作为被控过程的输入变量,h为其输出变量, 则该被控过程的数学模型就是h与Q 1 之间的数学表达式。 根据动态物料平衡关系有: (1) 变换为增量形式有: (2) 其中:,,分别为偏离某一平衡状态的增量; A为水箱截面积

图1 单容自衡水箱特性测试结构图(a)及方框图(b) 在平衡时,Q 1=Q 2 ,=0;当Q 1 发生变化时,液位h随之变化,水箱出口处的 静压也随之变化,Q 2 也发生变化。由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。但为了简化起见,经线性化处理后,可近似认为Q 2 与h成正比关系,与阀F 1-11 的阻力R成反比,即 或 (3) 式中: R为阀F 1-11 的阻力,称为液阻。 将式(2)、式(3)经拉氏变换并消去中间变量 Q2,即可得到单容水箱的数学模型为 (4) 式中 T 为水箱的时间常数,T=RC;K 为放大系数,K=R;C 为水箱的容量系数。若令 Q1(s)作阶跃扰动,即,=常数,则式(4)可改写为: (5) 对上式取拉氏反变换得 (6) 当 t—>∞时,,因而有

材料动态特性实验(南京理工大学)分析

南京理工大学 机械工程学院研究生研究型课程考试答卷 课程名称:材料动态特性实验 考试形式:□专题研究报告□论文√大作业□综合考试学生姓名:学号: 评阅人: 时间:年月日

材料动态特性实验 一.实验目的: 1、了解霍普金森杆的实验原理和实验步骤; 2、会用霍普金森杆测试材料动态力学性能。 二.实验原理: 分离式Hopkinson 压杆的工作原理如图1.1所示装置中有两段分离的弹性杆,分别为输入杆和输出杆,短试样夹在两杆之间。当压气枪发射一撞击杆(子弹),以一定速度撞击输入杆时,将产生一入射弹性应力脉冲,随着入射波传播通过试样,试样发生高速塑性变形,并相应地在输出杆中传播一透射弹性波,而在输入杆中则反射一反射弹性波。透射波由吸收杆捕获,并最后由阻尼器吸收。 图1.1 现在的Kolsky 杆装置示意图 根据压杆上电阻应变片所测得的入射波、反射波、透射波,以及一维应力波理论可得到如下的计算公式。 试样的平均应变率为: )00t r i l c εεεε--=( (1-1) 试样中的平均应变: dt l c t r i s ?--= )(00εεεε (1-2)

试样中的平均应力: )(20t r i A AE εεεσ++= (1-3) 式中t r i εεε,,分别表示测试记录的入射、反射和透射波,C 0 是弹性纵波波速,C=5189m/s,L 0为试样的初始长度,E 为压杆的弹性模量,A/A 0为压杆与试样的 截面比。 由应力均匀化条件可知: r i t εεε+= (1-4) 将公式(l 一4)代入(1一l)!(l 一2)!(l 一3)式可得 t s E A A εσ0= (1-5) ?-=dt l c r s εε002 (1-6) 一般采用公式(l 一5)、(1一6)来计算材料的动态应力一应变行为。 该试验技术作了如下几个假定: (1)一维假定 弹性波(尤其是对短波而言)在细长杆中传播时,由于横向惯性效应,波会发生弥散,即波的传播速度和波长有关。Pochhammer 最早研究过波在无限长杆内的色散效应,但当入射波的波长(可由子弹的长度来控制,即波长为子弹长度的2倍)比输入杆的直径大很多时,即满足必/兄<<1时,杆的横向振动效应,除波头外,可作为高阶小量忽略不计。子弹和输入杆都假定处于一维应力状态,可直接利用一维应力波理论进行计算。 (2)均匀化假定 压缩脉冲通过试样时,在试样内发生了多次波的反射。由于压缩脉冲的持续作用时间比短试样中波的传播时间要长得多,使得试样中的应力很快趋向均匀化,因此可以忽略试样内部波的传播效应。 (3)不计导杆与试样端部的摩擦效应 由于试样和导杆加工时表面的不光滑,以及导杆横向变形的不均匀,在试样与输入杆的接触面会产生摩擦,这使得试样处于复杂的应力状态,给试验数据的

实验三 电容式传感器静、动态特性实验

实验三电容式传感器静、动态特性实验 一、实验目的: 1. 了解电容式传感器结构及其特点。 2. 了解电容传感器的动态性能的测量原理与方法。 二、需用器件与单元: 电容传感器、电容传感器实验模板、测微头、相敏检波、低通滤波模板、数显单元、直流稳压源、双踪示波器。 三、实验步骤: 1、按实验二的图2-1安装示意图将电容传感器接于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图3-1。 图3-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01与数显表单元V i相接(插入主控箱V i孔),R w调节到中间位置。 4、接入±15V电源,旋动测微头推进电容传感器动

极板位置,每间隔0.2mm记下位移X与输出电压值,填入表3-1。 5、根据表3-1的数据计算电容传感器的系统灵敏度S和非线性误差δf。 6、传感器安装图同实验二图2-1,按图3-1接线。实验模板输出端V01 接滤波器输入端。滤波器输出端V,接示波器一个通道(示波器X轴为20ms/div、Y轴示输出大小而变)。调节传感器连接支架高度,使V01输出在零点附近。 7、主控箱低频振荡器输出端与振动源低频输入相接,振动频率选6~12Hz之间,幅度旋钮初始置0。 8、输入±15V电源到实验模板,调节低频振荡器的频率与幅度旋钮使振动台振动幅度适中,注意观察示波器上显示的波形。 9、保持低频振荡器幅度旋钮不变,改变振动频率,可以用数显表测频率(将低频振荡器输出端与数显Fin输入口相接,数显表波段开关选择频率档)。从示波器测出传感器输出的V01峰-峰值。保持低频振荡器频率不变,改变幅度旋钮,测出传感器输出的V01峰-峰值。 四、思考题: 1、试设计利用ε的变化测谷物湿度的传感器原理及结构?能否叙述一下在设计中应考虑哪些因素? 2、为了进一步提高电容传器灵敏度,本实验用的传感器可作何改进设计?如何设计成所谓容栅传感器? 3、根据实验所提供的电容传感器尺寸,计算其电容量

双容水箱液位控制 开题研究报告

双容水箱液位控制开题研究报告

————————————————————————————————作者:————————————————————————————————日期:

自动控制系统课程设计 双容水箱系统 ——开题报告 学校:北京工业大学 学院:电控学院 专业:自动化 班级: 组号:第五组 组员: 实验日期: 指导教师:

目录 1、绪论 (2) 2、研究对象的数学模型及特性分析 (3) 3、控制系统的性能指标要求 (5) 4、控制器的选择与控制方案的设计与仿真 (6) 5、拟采用的实验步骤及理想的实验曲线 (15) 6、模型参数获取的实验设计 (17) 7、附录 (19)

1绪论 双容水箱系统是一种比较常见的工业现场液位系统,在实际生产中,双容水箱控制系统在石油、化工﹑环保﹑水处理﹑冶金等行业尤为常见。通过液位的检测与控制从而调节容器内的输入输出物料的平衡,以便保证生产过程中各环节的物料搭配得当。 经过比较和筛选,串级控制系统PID控制无论是从操作性、经济性还是从系统的控制效果均有比较突出的特性,因此采用串级控制系统PID控制对双容水箱液位控制系统实现控制。 论文以THBDC-1型控制理论?计算机控制技术实验平台为基础的实验数据作为出发点,利用MATLAB的曲线拟合的方法分别仿真出系统中上水箱、下水箱的输出响应曲线。对曲线进行处理求出各水箱的参数,用所求出的参数列写出水箱的传递函数。采用复杂控制系统中的串级控制系统列写出系统框图,根据串级控制系统PID参数整定的方法整定出主控制器和副控制器的P、I、D的数值,从而满足控制系统对各项性能的要求。

最新第一组:一阶单容上水箱对象特性测试实验

实验一、一阶单容上水箱对象特性测试实验 一.实验目的 (1)建立单容水箱阶跃响应曲线。 (2)根据由实际测得的单容水箱液位的阶跃响应曲线,用作图的方法分别确定它们的参数(时间常数T 、放大系数K )。 二.实验设备 CS2000型过程控制实验装置, PC 机,DCS 控制系统与监控软件。 三、系统结构框图 单容水箱如图1-1所示: 丹麦泵 电动调节阀 V1 DCS控制系统手动输出 h V2 Q1 Q2 图1-1、 单容水箱系统结构图 四、实验原理 阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过DCS 控制系统监控画面——调整画面,(调节器或其他操作器),手动改变(调节阀的开度)对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。 五.实验内容步骤 1)对象的连接和检查:

(1)将CS2000 实验对象的储水箱灌满水(至最高高度)。 (2)打开以水泵、电动调节阀、孔板流量计组成的动力支路(1#)至上水箱的出水阀门.关闭动力支路上通往其他对象的切换阀门。 (3)打开上水箱的出水阀至适当开度。 2)实验步骤 (1)打开控制柜中水泵、电动调节阀、24V电源的电源开关。 (2)打开DCS控制柜的电源,打开电脑,启动DCS上位机监控软件,进入主画面,然后进入实验一画面“实验一、一阶单容上水箱对象特性测试实验”。 注满水箱打开出水阀打开阀门,连通电动调节阀 关闭支路阀打开上水箱打开上水箱打开电源 进水阀出水阀 打开泵的开关打开调节阀开关打开24V电源打开DCS控制柜电源

测试装置动态特性仿真实验报告

测试装置动态特性仿真实验 班级:7391 学号:2009301828 姓名:张志鹏 一、实验目的 1、加深对一阶测量装置和二阶测量装置的幅频特性与相频特性的理解; 2、加深理解时间常数变化对一阶系统动态特性影响; 3、加深理解频率比和阻尼比变化对二阶系统动态特性影响; 4、使学生了解允许的测量误差与最优阻尼比的关系。 二、实验原理 1、 一阶测量装置动态特性 一阶测量装置是它的输入和输出关系可用一阶微分方程描述。一阶测量装置的频率响应函数为: 式中:S S 为测量装置的静态灵敏度;τ为测量装置的时间常数。 一阶测量装置的幅频特性和相频特性分别为: 可知,在规定S S =1的条件下,A (ω)就是测量装置的动态灵敏度。 当给定一个一阶测量装置,若时间常数τ确定,如果规定一个允许的幅值误差ε,则允许测量的信号最高频率ωH 也相应地确定。 为了恰当的选择一阶测量装置,必须首先对被测信号的幅值变化范围和频率成分有个初步了解。有根据地选择测量装置的时间常数τ,以保证A (ω)≥1-ε 能够满足。 2、二阶测量装置动态特性 二阶测量装置的幅频特性与相频特性如下: 幅频特性202220)/(4))/(1(/1)(ωωξωωω--=A 相频特性2200))/(1/()/(2()(ωωωωξφ--=arctg w Α(ω)是ξ和ω/0ω的函数,即具有不同的阻尼比ξ的测试装置当输入信??????ωτ+ωτ-ωτ+=ωτ+=ω22s s )(1j ) (11S j 11S )j (H ()()2 11 A ωτ+=ω()ωτ -=ωφarctan

号频率相同时,应具有不同的幅值响应,反之,当不同的频率的简谐信号送入同一测试装置时它们的幅值响应也不相同,同理具有不同的阻尼比ξ的测试装置当输入信号频率相同时,应有不同的相位差。 (1).当ω=0时,Α(ω)=1;(2).当ω→∞,A (ω)=0;(3).当ξ≥0.707时随着输入信号频率的加大,Α(ω)单调的下降, ξ<0.707时Α(ω)的特性曲线上出现峰值点;(4)如果ξ=0,))/(1/(1))/(1(/1)(202 20ωωωωω-=-=A ,显然,其峰值点出现在ω=0ω处。其值为“∞”,当ξ从0向0.707变化过程中随着的加大其峰值点逐渐左移,并不断减小。 对以上二阶环节的幅频特性的结论论证如下: (1).当ω=0时A(ω)=1 (2).当ω→∞时,A(ω)=0 (3).要想得到A(ω)的峰值就要使202220)/(4))/(1(/1)(A ωωξ-ωω-=ω 中的202220)/(4))/(1(ωωξωω--取最小值。 令:t=20)/(ωω t t t f 224)1()(ξ+-= 对其求导可得t=1-22ξ时,f(t)取最小值.由于t=20)/(ωω≥0,所以1-22ξ≥0, 2ξ必须小于1/2时,f(t)才有最小值,即ξ>2/2时,A(ω)不出现峰值点;当ξ<2/2时4244)(ξξ-=t f ,f(t)对ξ求导得)21(82ξξ-,可以看出f(t): ξ属于[0, 2/2]时单调递增,于是得A(ω)的峰值点A 为4244/1)(/1ξξ-=t f ; 在ξ属于[0,2/2]递减。 (4).当ξ=0时 A=∞,t=20)/(ωω,ω/0ω=1,即ξ=0时A(ω)的峰值为∞,且必出现在ω/0ω=1时,当ξ=2/2时,t=0→ω=0,A(ω)=1. 还可以看出,在ξ属于[0,2/2]增大时t=1-22ξ就减小,即f(t)的峰值左平移。 (二)阻尼比的优化 在测量系统中,无论是一阶还是二阶系统的幅频特性都不能满足将信号中的所有频率都成比例的放大。于是希望测量装置的幅频特性在一段尽可能宽的范围内最接近于1。根据给定的测量误差,来选择最优的阻尼比。

螺栓联接静、动态特性实验报告

螺栓联接静、动态特性实验报告 专业班级 ___________ 姓名 ___________ 日期 2011-09-28 指导教师 ___________ 成绩 ___________ 一、实验条件: 1、试验台型号及主要技术参数 螺栓联接实验台型号: 主要技术参数: ①、螺栓材料为40Cr、弹性模量E=206000 N/mm2,螺栓杆外直径D1= 16mm,螺栓杆内直径D2=8mm,变形计算长度L=160mm。 ②、八角环材料为40Cr,弹性模量E=206000 N/mm2。L=105mm。 ③、挺杆材料为40Cr、弹性模量E=206000 N/mm2,挺杆直径D=14mm,变形 计算长度L=88mm。 2、测试仪器的型号及规格 ①、应变仪型号:CQYDJ-4 ②、电阻应变片:R=120Ω,灵敏系数K=2.2 二、实验数据及计算结果 1、螺栓联接实验台试验项目: 空心螺杆 2、螺栓组静态特性实验 实测值理论值 螺栓拉力螺栓扭矩八角环挺杆螺栓拉力螺栓扭矩八角环挺杆预紧形变值(μm) 33 109 33 109 预紧应变值(με) 136 235 154 7 206.25 预紧力(N) 4224.7 578 4113.7 111 6407 712.9 6407 0 预紧刚度(N/mm) 128021.6 38758.8 194150.4 58779.5 预紧标定值(με/N) 0.0321916 0.1287668 0.0374359 0.0630631 0.0212267 0.3282367 0.0240362 0 加载形变值(μm) 42 93 42 93 加载应变值(με) 158 272 119 54 262.5 加载力(N) 4908.1 668.1 4051.9 856.2 8154.4 825.1 5466.5 2687.9 加载刚度(N/mm) 128021.2 38758.7 194151.5 58779.8 加载标定值(με/N) 0.0321917 0.1287650 0.0293689 0.0630694 0.0192534 0.329657 0.0217689 0.02009

双容水箱-过控课程设计报告-上海电力_图文(精)

《过程控制系统设计》课程设计报告 姓名: 学号: XXXXXX 班级: XXXXXXXX 指导老师: 设计时间:2014年 1月 11日 ~1月 15日 第一部分双容水箱液位串级 PID 控制实物实验时间:同组人: 一、实验目的 1、进一步熟悉 PID 调节规律 2、学习串级 PID 控制系统的组成和原理 3、学习串级 PID 控制系统投运和参数整定 二、实验原理(画出“ 系统方框图” 和“ 设备连接图” 1、实验设备:四水箱实验系统 DDC 实验软件、四水箱实验系统 DDC 实验软件 2、原理说明: 控制系统的组成及原理 一个控制器的输出用来改变另一个控制器的设定值,这样连接起来的两个控制器称为“串级” 控制器。两个控制器都有各自的测量输入, 但只有主控制器具有自己独立的设定值, 只有副控制器的输出信号送给被控对象, 这样组成的系统称为串级控制系统。本仿真系统的双容水箱串级控制系统如下图 1所示:

图 1 双容水箱串级控制系统框图 串级控制器术语说明 主变量:y1称主变量。使它保持平稳使控制的主要目的 副变量:y2称副变量。它是被控制过程中引出的中间变量 主对象:下水箱;副对象:上水箱 主控制器:PID 控制器 1,它接受的是主变量的偏差 e1,其输出是去改变副控制器的设定值副控制器:PID 控制器 2,它接受的是副变量的偏差 e2,其输出去控制阀门 主回路:若将副回路看成一个以主控制器输出 r2为输入,以副变量 y2为输出的等效环节, 则串级系统转化为一个单回路,即主回路。 副回路:处于串级控制系统内部的,由 PID 控制器 2和上水箱组成的回路 串级控制系统从总体上看, 仍然是一个定值控制系统, 因此, 主变量在干扰作用下的过渡过程和单回路定值控制系统的过渡过程具有相同的品质指标。但是串级控制系统和单回路系统相比, 在结构上从对象中引入一个中间变量(副变量构成了一个回路,因此具有一系列的特点。串级控制系统的主要优点有:

实验 典型环节的动态特性实验报告

实验一典型环节的动态特性 一.实验目的 1.通过观察典型环节在单位阶跃信号作用下的相应曲线,熟悉它们的动态特性。 2.了解各典型环节中参数变化对其动态特性的影响。 二.实验内容 1.比例环节 G(S)= K 所选的几个不同参数值分别为K1= 33 ; K2= 34 ; K3= 35 ; 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值): 2.积分环节

G(S)= S T i 1 所选的几个不同参数值分别为T i1= 33 ; T i2= 33 ; T i3= 35 : 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值): 3.一阶惯性环节 G(S)= S T K c 1 令K不变(取K= 33 ),改变T c取值:T c1= 12 ;T c2= 14 ;T c3= 16 ;

对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值): 4. 实际微分环节 G(S)= S T S T K D D D 1 令K D 不变(取K D = 33 ),改变T D 取值:T D 1= 10 ;T D 2= 12 ;T D 3= 14 ;

对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值): 5.纯迟延环节 G(S)= S eτ- 所选的几个不同参数值分别为τ1= 2 ;τ2= 5 ;τ3= 8 ; 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值):

6. 典型二阶环节 G(S)= 2 2 2n n n S S K ωξωω++ 令K 不变(取K = 33 ) ① 令ωn = 1 ,ξ取不同值:ξ1=0;ξ2= 0.2 ,ξ3= 0.4 (0<ξ<1);ξ4=1;ξ5= 3 (ξ≥1); 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值): ②令ξ=0,ωn 取不同值:ωn 1= 1 ;ωn 2= 2 ; 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值):

双容水箱特性的测试

第二节双容水箱特性的测试 一、实验目的 1. 掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。 二、实验设备 1.THJ-2型高级过程控制系统实验装置 2.计算机、MCGS工控组态软件、RS232/485转换器1只、串口线1根 3.万用表1只 三、实验原理 图2-1 双容水箱对象特性结构图 由图2-1所示,被控对象由两个水箱相串联连接,由于有两个贮水的容积,故称其为双容对象。被控制量是下水箱的液位,当输入量有一阶跃增量变化时,两水箱的液位变化曲线如图2-62所示。由图2-2

可见,上水箱液位的响应曲线为一单调的指数函数(图2-2(a)),而下水箱液位的响应曲线则呈S形状(2-2(b))。显然,多了一个水箱,液位响应就更加滞后。 由S形曲线的拐点P处作一切线,它与时间轴的交点为A,OA则表示了对象响应的滞后时间。至于双容对象两个惯性环节的时间常数可按下述方法来确定。 图2-2 双容液位阶跃响应曲线图2-3 双容液位阶跃响应曲线在图2-3所示的阶跃响应曲线上求取: (1)h2(t)|t=t1=0.4h2(∞)时曲线上的点B和对应的时间t1; (2)h2(t)|t=t1=0.8h2(∞)时曲线上的点C和对应的时间t2;然后,利用下面的近似公式计算式 由上述两式中解出T1和T2,于是求得双容(二阶)对象的传递函数为

四、实验内容与步骤 1.接通总电源和相关仪表的电源。 2.接好实验线路,打开手动阀,并使它们的开度满足下列关系: V1的开度>V2的开度>V3的开度 3.把调节器设置于手动位置,按调节器的增/减,改变其手动输出值(一般为最大值的40~70%,不宜过大,以免水箱中水溢出),使下水箱的液位处于某一平衡位置(一般为水箱的中间位置)。 4.按调节器的增/减按钮,突增/减调节器的手动输出量,使下水箱的液位由原平衡状态开始变化,经过一定的调节时间后,液位h2进入另一个平衡状态。 5.点击实验界面下边的按钮,可切换到实时曲线、历史曲线和数据报表 6.根据实验所得的曲线报表和记录的数据,按上述公式计算K值,再根据图中的实验曲线求得T1、T2值。 60%上升峰值

第一节 单容自衡水箱液位特性测试实验

第一节 单容自衡水箱液位特性测试实验 一、实验目的 1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数; 3.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS 需两台计算机)、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个; 4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根; 5.SA-41挂件一个、CP5611专用网卡及网线; 6.SA-42挂件一个、PC/PPI 通讯电缆一根。 三、实验原理 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图2-1所示为单容自衡水箱特性测试结构图及方框图。阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q 1,改变电动调节阀V 1的开度可以改变Q 1的大小,下水箱的流出量为Q 2,改变出水阀F1-11的开度可以改变Q 2。液位h 的变化反映了Q 1与Q 2不等而引起水箱中蓄水或泄水的过程。若将Q 1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q 1之间的数学表达式。 根据动态物料平衡关系有 Q 1-Q 2=A dt dh (2-1) 将式(2-1)表示为增量形式 ΔQ 1-ΔQ 2=A dt h d ? (2-2) 式中:ΔQ 1,ΔQ 2,Δh ——分别为偏 离某一平衡状态的增量; A ——水箱截面积。 在平衡时,Q 1=Q 2,dt dh =0;当Q 1 发生变化时,液位h 随之变化,水箱出 图2-1 单容自衡水箱特性测试系统 口处的静压也随之变化,Q 2也发生变化 (a )结构图 (b )方框图 。由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。但为了简化起见,经线性化处理后,可近似认为Q 2与h 成正比关系,而与阀F1-11的阻力R 成反比,即 ΔQ 2=R h ? 或 R=2 Q ??h (2-3)

控制实验报告二典型系统动态性能和稳定性分析

控制实验报告二典型系统动态性能和稳定性分 析

实验报告2 报告名称:典型系统动态性能和稳定性分析 一、实验目的 1、学习和掌握动态性能指标的测试方法。 2、研究典型系统参数对系统动态性能和稳定性的影响。 二、实验内容 1、观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 2、观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 三、实验过程及分析 1、典型二阶系统 结构图以及电路连接图如下所示:

对电路连接图分析可以得到相关参数的表达式: ;;; 根据所连接的电路图的元件参数可以得到其闭环传递函数为 ;其中; 因此,调整R x的阻值,能够调节闭环传递函数中的阻尼系数,调节系统性能。 当时,为过阻尼系统,系统对阶跃响应不超调,响应速度慢,因此有如下的实验曲线。 当时,为临界阻尼系统,系统对阶跃响应恰好不超调,在不发生超调的情况下有最快的响应速度,因此有如下的实验曲线。对比上下两张图片,可以发现系统最后的稳态误差都比较明显,应该与实验仪器的精密度有关。同时我们还观察了这个系统对斜坡输入的响应,其特点是输出曲线转折处之后有轻微的上凸的部分,最后输出十分接近输入。

当时,为欠阻尼系统,系统对阶跃超调,响应速度很快,因此有如下的实验曲线。 2、典型三阶系统 结构图以及电路连接图如下所示:

根据所连接的电路图可以知道其开环传递函数为: 其中,R x的单位为kΩ。系统特征方程为,根据劳斯判据可以知道:系统稳定的条件为012,调节R x可以调节K,从而调节系统的性能。具体实验图像如下: 四、软件仿真 1、典型2阶系统 取,程序为:G=tf(50,[1,50*sqrt(2),50]); step(G) 调节时间为5s左右。 取,程序为:G=tf(50,[1,10*sqrt(2),50]); step(G) 调节时间为0.6s左右。 取,程序为:G=tf(50,[1,2*sqrt(2),50]); step(G)

检测系统的静态特性和动态特性

检测系统的静态特性和动态特性 检测系统的基本特性一般分为两类:静态特性和动态特性。这是因为被测参量的变化大致可分为两种情况,一种是被测参量基本不变或变化很缓慢的情况,即所谓“准静态量”。此时,可用检测系统的一系列静态参数(静态特性)来对这类“准静态量”的测量结果进行表示、分析和处理。另一种是被测参量变化很快的情况,它必然要求检测系统的响应更为迅速,此时,应用检测系统的一系列动态参数(动态特性)来对这类“动态量”测量结果进行表示、分析和处理。 研究和分析检测系统的基本特性,主要有以下三个方面的用途。 第一,通过检测系统的已知基本特性,由测量结果推知被测参量的准确值;这也是检测系统对被测参量进行通常的测量过程。 第二,对多环节构成的较复杂的检测系统进行测量结果及(综合)不确定度的分析,即根据该检测系统各组成环节的已知基本特性,按照已知输入信号的流向,逐级推断和分析各环节输出信号及其不确定度。 第三,根据测量得到的(输出)结果和已知输入信号,推断和分析出检测系统的基本特性。这主要用于该检测系统

的设计、研制和改进、优化,以及对无法获得更好性能的同类检测系统和未完全达到所需测量精度的重要检测项目进行深入分析、研究。 通常把被测参量作为检测系统的输入(亦称为激励)信号,而把检测系统的输出信号称为响应。由此,我们就可以把整个检测系统看成一个信息通道来进行分析。理想的信息通道应能不失真地传输各种激励信号。通过对检测系统在各种激励信号下的响应的分析,可以推断、评价该检测系统的基本特性与主要技术指标。 一般情况下,检测系统的静态特性与动态特性是相互关联的,检测系统的静态特性也会影响到动态条件下的测量。但为叙述方便和使问题简化,便于分析讨论,通常把静态特性与动态特性分开讨论,把造成动态误差的非线性因素作为静态特性处理,而在列运动方程时,忽略非线性因素,简化为线性微分方程。这样可使许多非常复杂的非线性工程测量问题大大简化,虽然会因此而增加一定的误差,但是绝大多数情况下此项误差与测量结果中含有的其他误差相比都是可以忽略的。

实验四 控制系统频率特性的测试 实验报告

实验四控制系统频率特性的测试 一.实验目的 认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。二.实验装置 (1)微型计算机。 (2)自动控制实验教学系统软件。 三.实验原理及方法 (1)基本概念 一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下: 幅频特性相频特性 (2)实验方法 设有两个正弦信号: 若以) (y tω为纵轴,而以tω作为参变量,则随tω的变xω为横轴,以) (t 化,) (y tω?所确定的点的轨迹,将在 x--y平面上描绘出一条封闭的xω和) (t 曲线(通常是一个椭圆)。这就是所谓“李沙育图形”。 由李沙育图形可求出Xm ,Ym,φ, 四.实验步骤 (1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。(2)首先确定被测对象模型的传递函数, 预先设置好参数

T1、T2、ξ、K (3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点 五.数据处理 (一)第一种处理方法: (1)得表格如下: (2)作图如下: (二)第二种方法: 由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。 (三)误差分析 两图形的大体趋势一直,从而验证了理论的正确性。在拐点处有一定的差距,在某些点处也存在较大的误差。 分析: (1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。 (2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。 (3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异 六.思考讨论 (1)是否可以用“李沙育”图形同时测量幅频特性和想频特性

螺栓联接的静动态特性

实验一 受轴向载荷螺栓联接的静态特性 螺栓联接是广泛应用于各种机械设备中的一种重要联接形式,受预紧力和轴向工作载荷的螺栓联接中,最常见的应用实例是气缸盖与气缸体的联接,如图1-1所示。螺栓受到的总拉力F 0除了与预紧力F '和工作载荷F 有关外,还受到螺栓刚度C 1和C 2被联接件刚度等因素的影响。图6-2为一螺栓和被联接件的受力与变形示意图。 图1-1 气缸盖与气缸体的联接 图1-2 螺栓和被联接件受力、变形情况 (a)螺母未拧紧 (b)螺母已拧紧 (c)螺栓承受工作载荷 图1-2(a)所示为螺栓刚好拧好到与被联接件相接触的的状态,此时螺栓和被联接件均未受力,因此无变形发生。 图1-2(b)所示为螺母已拧紧,但联接未受工作载荷的状态,此时螺栓受预紧力F '的拉伸作用,其伸长量为1δ;而被联接件则在力F '的作用下被压缩,其压缩量为2δ。 图1-2(c)所示为联接承受工作载荷F 时的情况,此时螺栓所受的拉力由F '增大至F 0 (螺栓的总拉力),螺栓的伸长量由1δ增大至11δδ?+;与此同时,被联接件则因螺栓伸长而被 放松,其压缩变形减少了2δ?,减小到2δ''(222δδδ?-='',2δ''为剩余变形量);被联接 件的压力由F '减少至F ''(剩余预紧力)。根据联结的变形协调条件,压缩变形的减少量2δ?应等于螺栓拉伸变形的增加量1δ?,即21δδ?=?。 一、 实验目的 本实验通过计算和测量螺栓受力情况及静动态特性参数达到以下目的: 1. 了解螺栓联接在拧紧过程中各部分的受力情况; 2. 计算螺栓相对刚度并绘制螺栓连接的受力变形图; 3. 验证受轴向工作载荷时,预紧螺栓联接的变形规律,及对螺栓总拉力的影响; 4. 通过螺栓的动载实验,改变螺栓联接的相对刚度,观察螺栓动应力幅值的变化,以验证提高螺栓联接强度的各项措施。 二、 实验设备及工作原理 1. 单螺栓连接实验台(如图1-3所示)

双容水箱液位静动态特性测试(实验一)

青岛科技大学实验报告 年月日 姓名专业班级同组者 课程实验项目双容水箱液位静、动态特性测试 一、实验目的 1. 熟悉双容水箱的数学模型及其阶跃响应曲线。 2. 根据由实际测得双容液位的阶跃响应曲线,确定其传递函数。 二、实验设备 1. THJ-2型高级过程控制系统实验装置 2.计算机、MCGS工控组态软件、RS232/485转换器1只、串口线1根 3. 万用表 1只 三、实验原理 图1 双容水箱对象特性结构图 由图1所示,被控对象由两个水箱相串联连接,由于有两个贮水的容积,故称其为双容对象。被控制量是下水箱的液位,当输入量有一阶跃增量变化时,两水箱的液位变化曲线如图2所示。由图2可见,上水箱液位的响应曲线为一单调的指数函数(图2(a)),而下水箱液位的响应曲线则呈S形状(图2(b))。显然,多了一个水箱,液位响应就更加滞后。 图2 双容液位阶跃响应曲线 图3 双容液位特性参数计算 在图3所示的阶跃响应曲线上求取,利用下面的近似公式计算式

,从而得到双容对象的传递函数为。 四、实验内容与步骤 1、打开上位机,按照线路图接线。 2、检查线路,接通总电源和相关仪表的电源。 3、把调节器设置于手动位置,手动改变输出值到阀位65%,观察实时和历史曲线,使上水箱和中水箱的液位处于某一平衡位置。 4、突增/减调节器的手动输出量(建议增加到75%),重新达到平衡,作为一次阶跃输入,测得。减小手动阀位输出量到65%,使中水箱的液位由原平衡状态开始变化,经过一定的调节时间后,液位h2进入另一个平衡状态,测得。 5、两次参数求平均求得系统参数,并打印历史曲线。 五、实验要求 请给出实验的调节过程及调节参数,并附上历史曲线,分析实验结果,给出双容液位广义对象的传递函数表达式。

第二节 双容

第二节 双容(串联)水箱特性的测试 一、实验目的 1.掌握双容(串联)水箱特性的阶跃响应曲线测试方法; 2.根据由实验测得双容液位的阶跃响应曲线,确定其特征参数K 、T 1、T 2及传递函数; 3.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备(同前) 三、原理说明 图2-5 双容(串联)水箱对象特性测试系统 (a)结构图 (b)方框图 由图2-5所示,被测对象由两个不同容积的水箱相串联组成,故称其为双容对象。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。根据本章第一节单容水箱特性测试的原理,可知双容水箱数学模型是两个单容水箱数学模型的乘积,即双容水箱的数学模型可用一个二阶惯性环节来描述: G(s)=G 1(s)G 2(s)=) 1s T )(1s T (K 1s T k 1s T k 212211++=+?+ (2-9) 式中K =k 1k 2,为双容水箱的放大系数,T 1、T 2分别为两个水箱的时间常数。 本实验中被测量为下水箱的液位,当中水箱输入量有一阶跃增量变化时,两水箱的液位变化曲线如图2-10所示。由图2-10可见,上水箱液位的响应曲线为一单调上升的指数函数(图2-10 (a));而下水箱液位的响应曲线则呈S 形曲线(图2-10 (b)),即下水箱的液位响应滞后了,它滞后的时间与阀F1-10和F1-11的开度大小密切相关。 图2-6 双容水箱液位的阶跃响应曲线

(a )中水箱液位 (b )下水箱液位 双容对象两个惯性环节的时间常数可按下述方法来确定。在图2-11所示的阶跃响应曲线上求取: (1) h 2(t )|t=t1=0.4 h 2(∞)时曲线上的点B 和对应的时间t 1; (2) h 2(t )|t=t2=0.8 h 2(∞)时曲线上的点C 和对应的时间t 2。 图2-7 双容水箱液位的阶跃响应曲线 然后,利用下面的近似公式计算式 阶跃输入量 输入稳态值=∞=O h x )(K 2 (2-10) 2.16 t t T T 2121+≈+ (2-11) )55.074.1()T (T T T 2 122121-≈+t t (2-12) 0.32〈t 1/t 2〈0.46 由上述两式中解出T 1和T 2,于是得到如式(2-9)所示的传递函数。 在改变相应的阀门开度后,对象可能出现滞后特性,这时可由S 形曲线的拐点P 处作一切线,它与时间轴的交点为A ,OA 对应的时间即为对象响应的滞后时间τ。于是得到双容滞后(二阶滞后)对象的传递函数为: G (S )= ) 1)(1(21++S T S T K S e τ- (2-13) 四、实验内容与步骤 本实验选择左上水箱和左下水箱串联作为被测对象。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2全开,将左上水箱出水阀门F1-9、左下水箱出水阀门F1-11开至适当开度(要求F1-9开度稍大于F1-11的开度),其余阀门均关闭。 (一)、智能仪表控制 1.将SA-12挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口1,并按照本章第一节控制屏接线图连接实验系统。 2.接通总电源空气开关和钥匙开关,打开24V 开关电源,给压力变送器上电,按下启动按钮,合上空气开关,给智能仪表及变频器上电。 3.打开上位机MCGS 组态环境,打开“THKGK-3型智能仪表控制系统”工程,然后进入MCGS 运行环境,在主菜单中点击“实验二、双容(串联)自衡水箱对象特性测试” ,进

相关文档
相关文档 最新文档