文档库 最新最全的文档下载
当前位置:文档库 › 海拉感应式位置传感器技术及其应用

海拉感应式位置传感器技术及其应用

海拉感应式位置传感器技术及其应用
海拉感应式位置传感器技术及其应用

海拉感应式位置传感器技术及其应用

在传动系统和底盘系统中实现电控可进一步提高驾驶性能、安全性能、燃油经济性能以及排放水平。而在汽车可靠性不断提高的同时,作为电控装置的基本组成元件——位置传感器的开发也必须取得突破性的进展,即将传感器设计成为能有效免除灰尘影响的非接触类型。

实际应用表明,非接触式传感器替代电压计式传感器代表着技术进步的发展方向。因此,外界不断召唤新的非接触式传感器的出现。当然,最好的结果是在应用非接触式传感器的同时还要能够保留电压计式传感器的优点。

海拉拥有专利技术的感应式位置传感器是一种能够满足上述条件的新型位置传感器,它在一个简单、紧凑的空间条件下能够实现对线位移和角位移的非接触式测量,另外,它对制造精度和周围的环境要求较低,在汽车制造领域内获得了广泛的应用,如节气门传感器、加速踏板传感器和转向传感器等。

一、结构与原理

1.结构

图1 海拉传感器结构和信号原理

感应式位置传感器同其他角传感器一样,也是由定子和转子组成的。在PCB上的定子由激励线圈、3个感应接受线圈和其他信号处理电子元件组成,转子是一块简单的冲压金属片。图1所示的是一个海拉的测量范围为60°的传感器结构和信号原理简图,从中可以看出ASIC芯片内的振荡单元及PCB上的激励线圈和3个感应接受线圈,3个感应线圈的角度差值为量程的1/3(即20°)。

2.工作原理

图2感应耦合原理

感应耦合的原理如图2所示,激励线圈中电流产生的电磁场在转子中产生感应电流。第一次感应耦合与角位置无关,其作用仅是通过感应耦合将能量传递给转子。传感器的相关信息是通过转子与接受线圈之间的第二次感应耦合来实现的,这次感应与转子相对于定子的相对位置有关。在第二次感应中,定子上的电压幅值随相对位置而变化,信号处理单元接受线圈的电压信号,进行整流、放大并成对地将其按比例输出。这种将输出电压与角度按比例测量的原理在很大程度上不会受到机械公差(如空气间隙的变化、轴线偏心和倾斜)的影响。同时,电信号和电磁干扰在很大程度上也得到了抑制。

120°和60°的角度传感器相比较,仅需根据测量范围相应地改变PCB上的感应线圈和转子形状,其他零件都是不变的。这种标准化设计是海拉感应传感技术的优点之一,使得应用变得简单。

图3 线性位置传感器结构

感应传感原理的应用不仅仅局限于旋转机构,同样也可以将传感器设计成线性结构(如图3所示)。电子油门踏板模块就是线性感应传感原理应用的一个典型实例,由一块金属片组成的滑片(转子)贴在靠近回位弹簧的滑动元件上,能够实现100mm内的位移测量。

与静电磁场原理不同的是,感应式位置传感器里面没有与温度相关的磁性材料,如铁心、铁氧体或磁铁芯。因此,这种没有受温度影响元件的传感器无须设计专门

的温度补偿回路,所有因尺寸变化和电信号处理过程中产生的温度漂移都可通过比例测量技术加以消除。现在,该特性已在多种应用中得到了证实。

二、技术特点

1.定制芯片和定制芯片的研制

图4 海拉位置传感器的基本原理图

定制芯片技术是海拉的感应式位置传感器的一个重要组成部分。使用一个定制芯片,可以相应地减少传感器的电子元件。图4所示的是海拉传感器的原理框图,其输出信号有两种:模拟信号和脉宽调制信号。同时,该传感器还可以设计有总线通信接口。但由于只有基于大批量生产才能获得可以接受的价格,相比于直接提供模拟信号和脉宽调制信号的传感器而言,这种可用于总线通信的传感器还没有得到大规模应用。

除了这个挑战外,在汽车中的应用还要求传感器能在-40℃~+50℃的温度范围和振动高达30g的情况下工作,具有可靠性好、寿命长、耐湿度性能好等特性,并能在各种不同形式的电磁场下工作。

2.ASIC芯片家族及其开发策略

通过修改ASIC芯片,可在非接触式位置传感器的应用中不断取得进展。模块化的方法简化了传感器ASIC芯片的技术设计,使其可应用于各种场合。

有两种策略可以实现低成本的开发目标。第一种是以一个ASIC芯片实现所有功能,其优势在于该芯片可以实现大批量生产,但芯片尺寸偏大。另一种策略是定制ASIC芯片来实现特定的应用,其优势在于芯片尺寸小但批量不大。因此,必须利用模块化设计将传感器和芯片系列化,使得一种ASIC芯片要么满足特定的市场要么具有一定的应用功能。

为了降低复杂度并快速推向市场,第一种芯片往往只具有最基本的功能,芯片的输出通过一个微控制器通信完成。在此基础上,海拉研制出了更为复杂的芯片来完全替代电压计式传感器。这种微电子芯片可以逐个产品进行标定,具有可灵活设置的界面和自检等特性,能够替代电压计的感应传感器芯片包含所有上述特性。这种芯片在大灯调节系统中的轴位置传感器、空气悬架系统及从2000年开始大量生产的加速油门踏板中得到了广泛的应用。同时,该系列芯片还有两个应用特例,即:海拉设计的一种更为简洁的产品,能够实现踏板传感器的要求;海拉提供脉宽调制信号输出的旋转传感器。

3.安全性能要求及其解决方案

简单的传感器仅能应用于与安全无关的场合。如果传感器能够进行自我诊断,则该传感器必须占用电源电压。接受线圈的开路输入可以作为失效被检测到,另外一些数字信号处理的内部参数可以通过自检程序来控制和检查。在失效情形,ASIC 芯片可以关闭输出,而系统控制单元可以通过得到的非正常的电平发出相应的指令。

出于安全的考虑,电控系统需要冗余的电信号。上述的感应式传感技术可以轻易地满足此类要求。在同一块PCB上,可以设计2个独立电源、2个激励线圈、2

套接受线圈、2个ASIC芯片的独立传感器,这给容错设计提供了非常好的基础。

三、感应式位置传感器的优点

非接触位置传感器能够适用于恶劣的工作环境并满足各种负载的要求,因此,在发动机舱的机电系统中经常会用到它们。这种环境的极限高温达到150℃,有时甚至更高,振动高达30g,同时还有灰尘、水和其他物质(如润滑油、制动液等)的污染。

非接触式传感器不仅可以满足苛刻的使用环境要求,而且还保留了电压计式传感器的一个主要优点——比例测量技术。利用比例测量技术,传感器在一个较大范围内可以免除工作温度、振动和机械、电器公差的影响。

感应式位置传感器具有如下优点:

比例测量原理受公差和干扰的影响小,传感器无需设定温度补偿;

传感器由印刷电路板和电子芯片组成,不需额外的磁性材料;

传感器不受磁场和电信号的干扰;

能够实现所有汽车电磁兼容性的要求;

所有的测量角度都可达到360°,甚至更大,应用灵活;

能够实现角位移和线性位移的测量;

利用ASIC芯片技术便于在终检线上对机械公差和电气公差进行标定。

以上优势使得海拉的感应式位置传感器在整个寿命周期和温度范围内能够将精度保持在1%以内,使用了标准化技术,不需要特殊的制造规范和很小的装配公差要求,很容易实现传感器的大批量生产。由于该传感器由PCB或陶瓷混合材料组成,很容易将其集成到控制器或其他电路中。在机电装置中,这种技术可以将传感器同其他电子元件集成到同一个PCB中。海拉传感器的布置简单就是其传感器的一个最大优势,将其集成至控制单元不需要额外的壳体和线束,线束的简化及连接件的减少同时还有利于可靠性的提高。

四、应用实例

汽车工业中位置传感器的另一个重大进展是将传感器集成在系统当中,而海拉拥有优化结构和强化封装的感应式传感器为集成方案提供了极大的方便。

1.电控动力系统

电控动力系统由电子油门踏板单元、发动机管理系统和电马达驱动的节气门(汽油机)组成。

图5 节气门传感器

图5所示的节气门传感器是一个120°的角度传感器,转子直接安装集成在齿轮的轴端上,定子直接安装在壳体上。这种设计便于装配,同时传感器的设计能够消除机械公差的影响。踏板模块包含的传感器将驾驶者的加速意图传递至发动机控

制单元,同时将踏板力反馈给驾驶者。发动机管理系统决定喷油量、控制点火时间并将气门控制在合适的位置,通过同时调整空气/燃油混合比来提高发动机性能和排放水平。该模块另有一个传感器用于测量气门的位置。

在这些应用中,海拉新研制的非接触式传感器技术取代了传统的电压计式传感器技术。

2.转向角度传感器

现代的动力转向系统都装有位置传感器以提高伺服机构的调节能力。电液动力转向系统使用位置传感器的转向速度信号来调节转向支撑。未来的机电动力转向系统将同时使用角度传感器和扭矩传感器。另外,转向位置传感器是电子稳定程序和智能前转向系统的基本组成部件,转向角度传感器件也是将来电控转向系统不可缺少的关键零件之一。

3.车身水平传感器

图6 集成了控制单元的车身水平传感器

高级底盘控制系统需要检测车身的倾斜情况。图6是一个与大灯调节系统控制单元一起工作的车身水平传感器,该位置传感器装在前后轴上,监测车辆的悬架运动情况。由于不同的机构和车身情况决定了该传感器必须具有不同的角度范围,要求该传感器输出模拟信号或脉宽调制信号。研制的可编程接口可使海拉的传感器无需在生产时进行调整便可直接安装在车上。车身水平传感器的另一个特别之处在于它可以和控制单元集成在一个封装中。这种集成方案可以减少零件数目、简化连接,同时增加功能。集成工作也是传感器系统研制的一个重要方向。

五、汽车领域中的应用需求

越来越多的应用要求将传感器直接集成在一个机电装置或一个控制单元中。在装置中直接处理传感器数据,可以通过算法补偿装置的动态特性和精度,集成在功能模块里的传感器可以提高装置的瞬态特性。另外,容易在终检线上对该方案进行测试,也可以在汽车的维护使用过程中进行诊断。

在恶劣环境中,如在发动机舱使用电子元件要解决温度、化学物质和机械载荷的影响,需要丰富的设计经验将电器集成在机械元件中。通常要采用成本较高的特殊装配方法,使得工程师必须对所采用的方案成本进行权衡。

集成设计概念不仅对传感器本身有影响,而且还会影响到整个系统产品的开发过程。在机电装置中将不同的部分(如电子装置或机械)集成在一起,因此,需要不同学科领域的工程师在早期的开发过程中就要开始紧密的合作。

https://www.wendangku.net/doc/9a15418470.html,/commIndustry2/content.asp?contentid=136578

传感器技术与应用第3版习题答案

《传感器技术与应用第3版》习题参考答案 习题1 1.什么叫传感器?它由哪几部分组成? 答:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。传感器通常由敏感元件和转换元件组成。其中敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。 2. 传感器在自动测控系统中起什么作用? 答:自动检测和自动控制技术是人们对事物的规律定性了解、定量分析预期效果所从事的一系列技术措施。自动测控系统是完成这一系列技术措施之一的装置。一个完整的自动测控系统,一般由传感器、测量电路、显示记录装置或调节执行装置、电源四部分组成。传感器的作用是对通常是非电量的原始信息进行精确可靠的捕获和转换为电量,提供给测量电路处理。 3. 传感器分类有哪几种?各有什么优、缺点? 答:传感器有许多分类方法,但常用的分类方法有两种,一种是按被测输入量来分,如温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等;另一种是按传感器的工作原理来分,如电学式传感器、磁学式传感器、光电式传感器、电势型传感器、电荷传感器、半导体传感器、谐振式传感器、电化学式传感器等。还有按能量的关系分类,即将传感器分为有源传感器和无源传感器;按输出信号的性质分类,即将传感器分为模拟式传感器和数字式传感器。 按被测输入量分类的优点是比较明确地表达了传感器的用途,便于使用者根据其用途选用;缺点是没有区分每种传感器在转换机理上有何共性和差异,不便使用者掌握其基本原理及分析方法。 按工作原理分类的优点是对传感器的工作原理比较清楚,有利于专业人员对传感器的深入研究分析;缺点是不便于使用者根据用途选用。 4. 什么是传感器的静态特性?它由哪些技术指标描述? 答:传感器测量静态量时表现的输入、输出量的对应关系为静态特性。它有线性度、灵敏度、重复性、迟滞现象、分辨力、稳定性、漂移等技术指标。 5. 为什么传感器要有良好的动态特性?什么是阶跃响应法和频率响应法? 答:在动态(快速变化)的输入信号情况下,要求传感器能迅速准确地响应和再现被测信号的变化。因此,需要传感器具有良好的动态特性。 测试和检验传感器的动态特性有瞬态响应法和频率响应法。阶跃响应法即瞬态响应法,是给传感器输入一个单位阶跃函数的被测量,测量其输出特性。动态特性优良的传感器的输出特性应该上升沿陡,顶部平直。 频率响应法是给传感器输入各种频率不同而幅值相同,初相位为零的正弦函数的被测量,测量其输出的正弦函数输出量的幅值和相位与频率的关系。动态特性优良的传感器,输出的正弦函数输出量的幅值对于各频率是相同的,相位与各频率成线性关系。

机器人的位置检测传感器

机器人的位置检测传感器 一.机器人的位置检测传感器可分为两类: 1)检测规定的位置,常用ON/OFF两个状态值。这种方法用于检测机器人的起始原点、终点位置或某个确定的位置。给定位置检测常用的检测元件有微型开关、光电开关等。规定的位移量或力作用在微型开关的可动部分上,开关的电气触点断开(常闭)或接通(常开)并向控制回路发出动作信号。 2)测量可变位置和角度,即测量机器人关节线位移和角位移的传感器是机器人位置反馈控制中必不可少的元件。常用的有电位器、旋转变压器、编码器等。其中编码器既可以检测直线位移,又可以检测角位移。下面是几种常用的位置检测传感器。 1.光电开关 2.编码器 3.旋转变压器。 二.机器人速度、角速度传感器: 1.编码器 对任意给定的角位移,编码器将产生确定数量的脉冲信号,通过统计指定时间(dt)内脉冲信号的数量,就能计算出相应的角速度。dt越短,得到的速度值就越准确,越接近实际的瞬时速度。但是,如果编码器的转动很缓慢,则测出的速度可能不准。通过对控制器的编程,将指定时间内脉冲信号的个数转化为速度信息就可以计算出速度。 2. 测速发电机 测速发电机是一种把输入的转速信号转换成输出的电压信号的机电式信号元件,它可以作为测速、校正和解算元件,广泛应用于机器人的关节测速中。 3. 位置信号微分 如果位置信号中噪音较小,那么对他进行微分来求取速度信号不仅可行,而且很简单。为此,位置信号应尽可能连续,以免在速度信号中产生大的脉动。所以,建议使用薄膜式电位器测量位置,因为绕线式电位器的输出时分段的,不适合微分。然而,信号的微分总是会有噪音的,应该仔细处理。 三.机器人接触觉传感器: 机器人接触觉传感器是用来判断机器人是否接触物体的测量传感器。传感器输出信号常为0或1,最经济适用的形式是各种微动开关。常用的微动开关由滑柱、弹簧、基板和引线构成,具有性能可靠、成本低、使用方便等特点。接触觉传感器不仅可以判断是否接触物体,而且还可以大致判断物体的形状。一般传感器装在末端的执行器上,除了微动开关外,接触觉传感器还采用碳素纤维及聚氨基甲酸脂为基本材料构成触觉传感器。机器人与物体接触,通过碳素纤维与金属针之间建立导通电路,与微动开关相比,碳素纤维具有更高触电安装密度、更好的柔性、可以安装在机器手的曲面手掌上。 四.机器人接近觉传感器 .机器人接近觉传感器能感知相距几毫米到几时厘米内对象物或障碍物的距离、对象物的便面性质等的传感器,其目的是在接触对象前得到必要的信息,以便后续动作。接近觉传感器有许多不同的类型,如电磁式、涡流式、霍尔效应式、光学式、超声波式、电感式和电容式等等。 五.机器人姿态传感器:

传感器原理及应用期末考试试卷(含答案)

传感器原理及应用 一、单项选择题(每题2分.共40分) 1、热电偶的最基本组成部分是()。 A、热电极 B、保护管 C、绝缘管 D、接线盒 2、为了减小热电偶测温时的测量误差,需要进行的温度补偿方法不包括( )。 A、补偿导线法 B、电桥补偿法 C、冷端恒温法 D、差动放大法 3、热电偶测量温度时( )。 A、需加正向电压 B、需加反向电压 C、加正向、反向电压都可以 D、不需加电压 4、在实际的热电偶测温应用中,引用测量仪表而不影响测量结果是利用了热电偶的哪 个基本定律( )。 A、中间导体定律 B、中间温度定律 C、标准电极定律 D、均质导体定律 5、要形成测温热电偶的下列哪个条件可以不要()。 A、必须使用两种不同的金属材料; B、热电偶的两端温度必须不同; C、热电偶的冷端温度一定要是零; D、热电偶的冷端温度没有固定要求。 6、下列关于测温传感器的选择中合适的是()。 A、要想快速测温,应该选用利用PN结形成的集成温度传感器; B、要想快速测温,应该选用热电偶温度传感器; C、要想快速测温,应该选用热电阻式温度传感器; D、没有固定要求。 7、用热电阻测温时,热电阻在电桥中采用三线制接法的目的是( )。 A、接线方便 B、减小引线电阻变化产生的测量误差 C、减小桥路中其他电阻对热电阻的影响 D、减小桥路中电源对热电阻的影响 8、在分析热电偶直接插入热水中测温过程中,我们得出一阶传感器的实例,其中用到了()。 A、动量守恒; B、能量守恒; C、机械能守恒; D、电荷量守恒; 9、下列光电器件中,基于光电导效应工作的是( )。 A、光电管 B、光敏电阻 C、光电倍增管 D、光电池

霍尔位置传感器原理和应用

霍尔位置传感器原理和应用 一.霍尔位置传感器的特点: 霍尔位置传感器是一种检测物体位置的磁场传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔位置传感器以霍尔效应原理为其工作基础。 霍尔位置传感器具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。 霍尔位置传感器开关型输出的具有无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。采取了各种补偿和保护措施的霍尔位置传感器的工作温度范围可达到-55℃~150℃。 按照霍尔位置传感器的功能可将它们分为:霍尔线性型传感器和霍尔开关型传感器。前者输出模拟量,后者输出数字量。 霍尔位置传感器通过它对磁场变化的测量,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制,因而有着广泛的用途。 二.霍尔位置传感器的原理: 2.1霍尔效应和霍尔元件

在一块通电的半导体薄片上,加上和片子表面垂直的磁场B,在薄片的横向两侧会出现一个电压,如图1中的VH,这种现象就是霍尔效应,是由科学家爱德文·霍尔在1879年发现的。VH称为霍尔电压。 这种现象的产生,是因为通电半导体片中的载流子在磁场产生的洛仑兹力的作用下,分别向片子横向两侧偏转和积聚,因而形成一个电场,称作霍尔电场。霍尔电场产生的电场力和洛仑兹力相反,它阻碍载流子继续堆积,直到霍尔电场力和洛仑兹力相等。这时,片子两侧建立起一个稳定的电压,这就是霍尔电压,这个半导体薄片称为霍尔元件。霍尔元件可用多种半导体材料制作,如Ge、Si、InSb、GaAs、InAs、InAsP等等。 2.2 霍尔集成电路 霍尔集成电路是将一个霍尔元件和电压放大电路、信号处理电路集成在同一个硅芯片上,生产出单片霍尔集成电路,它又分为霍尔线性电路和霍尔开关电路。

传感器技术与应用考题及部分答案

一、填空题(每空1分,共30分) 1、声波是一定频率范围内可以在弹性介质中传播的波,低于16 Hz的声波称为次声波,高于20k Hz的声波称为超声波。 2、超声波可分为纵波、横波、表面波。 3、超声波中的纵波能在固体、液体、气体中传播;横波只能在固体中传播。 4、在空气中传播的超声波,其频率应选得较低;在固体、液体中传播的超声波,其频率应选得较高。 5、光电元件的工作原理是基于不同形式的光电效应。 6、光敏电阻的相对光敏灵敏度与入射光波长的关系称为光谱特性,亦称为光谱响应。 7、光敏电阻的阻值与入射光量有关,而与电压、电流无关。 8、光敏晶体管的光电特性是指外加偏置电压一定时,光敏晶体管的输出电流与光照度之间的关系。 9、光电检测必须具备光源、被测物、和光敏元件。 10、光电开关可分为直射(透射)型和反射型两种。 11、光纤传感器主要由光导纤维、光源和光探测器组成。 12、光纤是利用光的完全内反射原理传输光波的一种媒质。 13、接触式码盘的码道数n越大,所能分辨的角度α越小,测量精度越高。

14、感应同步器利用定尺和滑尺的两个平面印刷电路绕组的互感随其相对位置变化的原理,将位移转换为电信号。 二、选择题(每小题2分,共30分) 1、直探头可发射和接收 A 波,斜探头可发射和接收 B 波。 A 纵B横C表面 2、超声波测厚常用C 法。 A穿透B反射C脉冲回波 3、光敏二极管在测光电路中应处于 B 偏置状态;而光电池通常处于 A 偏置状态。 A 正向B反向C零 4、温度上升,光敏电阻、光敏二极管、光敏三极管的暗电流 A 。 A上升B下降C不变 5、普通型硅光电池的峰值波长为 B 。 A 0.8mm B 0.8μm C 0.8nm 6、下列传感器中,不能直接用于直线位移测量的传感器是 C 。 A 长光栅 B 感应同步器 C 角编码器 7、增量式位置传感器输出的信号是 C 。 A 电压信号 B 电流信号 C 脉冲信号 8、某直线光栅每毫米刻线数为50线,采用四细分技术,则该光栅的分辨力为 A μm。 A 5 B 20 C 50 9、光栅中采用sin和cos两套光电元件是为了 B 。 A 抗干扰 B 辨向 C 进行三角函数运算 10、增量式编码器通常为 B 码盘。 A 接触式 B 光电式 C 电磁式 11、有一只1024位增量式角编码器,光敏元件在30秒内连续输出了102400个脉冲,则该编码器测得的转速为 A r/min。 A 200 B 1024 C 3000 12、感应同步器的输出电压 C 励磁电压。

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 1.1什么是传感器?(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 1.2传感器特性在检测系统中起到什么作用? 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 1.3传感器由哪几部分组成?说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图1.1所示。 1.4传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意 义?动态参数有那些?应如何选择? 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 1.5某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 1.6某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=0.2mV/℃、

机器人的位置检测传感器

机器人的位置检测传感器 测量可变位置和角度,即测量机器人关节线位移和角位移的传感器是机器人位置反馈控制中必不可少的元件。常用的有电位器、旋转变压器、编码器等。其中编码器既可以检测直线位移,又可以检测角位移。下面是几种常用的位置检测传感器。1、光电开关2、编码器3、旋转变压器。二、机器人速度、角速度传感器:1、编码器对任意给定的角位移,编码器将产生确定数量的脉冲信号,通过统计指定时间(dt)内脉冲信号的数量,就能计算出相应的角速度。dt越短,得到的速度值就越准确,越接近实际的瞬时速度。但是,如果编码器的转动很缓慢,则测出的速度可能不准。通过对控制器的编程,将指定时间内脉冲信号的个数转化为速度信息就可以计算出速度。2、测速发电机测速发电机是一种把输入的转速信号转换成输出的电压信号的机电式信号元件,它可以作为测速、校正和解算元件,广泛应用于机器人的关节测速中。3、位置信号微分如果位置信号中噪音较小,那么对他进行微分来求取速度信号不仅可行,而且很简单。为此,位置信号应尽可能连续,以免在速度信号中产生大的脉动。所以,建议使用薄膜式电位器测量位置,因为绕线式电位器的输出时分段的,不适合微分。然而,信号的微分总是会有噪音的,应该仔细处理。三、机器人接触觉传感器:机器人接触觉传感器是用来判断机器人是否接触物体的测量传感器。传感器输出信号常为0或1,最经济适用的形式是各种微动开关。常用的微动开

关由滑柱、弹簧、基板和引线构成,具有性能可靠、成本低、使用方便等特点。接触觉传感器不仅可以判断是否接触物体,而且还可以大致判断物体的形状。一般传感器装在末端的执行器上,除了微动开关外,接触觉传感器还采用碳素纤维及聚氨基甲酸脂为基本材料构成触觉传感器。机器人与物体接触,通过碳素纤维与金属针之间建立导通电路,与微动开关相比,碳素纤维具有更高触电安装密度、更好的柔性、可以安装在机器手的曲面手掌上。四、机器人接近觉传感器、机器人接近觉传感器能感知相距几毫米到几时厘米内对象物或障碍物的距离、对象物的便面性质等的传感器,其目的是在接触对象前得到必要的信息,以便后续动作。接近觉传感器有许多不同的类型,如电磁式、涡流式、霍尔效应式、光学式、超声波式、电感式和电容式等等。五、机器人姿态传感器:姿态传感器是用来检测机器人与地面相对关系的传感器,当机器人被限制在工厂的地面时,没有必要安装这种传感器,如大部分工业机器人。但当机器人脱离了这个限制,并且能够自由的移动,如移动机器人,安装姿态传感器就成必要了。典型的姿态传感器是陀螺仪,他利用高速旋转物体(转子)经常保持一定姿态的性质。转子通过一个支撑它的,被称为万向接头的自由支持机构,安装在机器人上。机器人围绕着输入轴仅转过一个角度。在速率陀螺仪中,加装了弹簧。卸掉这个弹簧后的陀螺仪成为速率积分陀螺仪,此时输出轴以角速度旋转,且此角速度与围绕输入轴的转角速度成正比。姿态传感器设置在机器人的躯干部分,它用来检测移动中的躯干部分,它用来你

《传感器技术与应用》期中考试题(含答案)

一、填空题:(每空2分,共20分) 1、传感器的动态特性越好,则能测的信号频率越宽(宽、窄)。 2、已知一米尺的修正值为-2mm,现用该米尺测得某物体长度为32.5cm,则该物体长度为 32.3 。 3、测50mm的物体,测得结果为50.02mm,则相对误差为 0.04% 。 4、相敏检波电路与差动变压器配合使用是为了辨别方向。 5、电阻式传感器是将被测非电量转换为电阻的变化的装置。 6、在差动变压器的实验中,观察到的现象是在一定范围内呈线性。 7、在某些晶体物质的极化方向上施加电场时,这些晶体物质会产生变形,这种现象称为逆压电效应。 8、电容式传感器存在的边缘效应可以通过初始电容量c0 或 加装等位环来减小。 9、差动变压器是属于信号调制中的调幅类型(调幅、调频、调相)。 二、判断题(正确的打√,错误的打×。每小题1分,共10分) 1、差动结构从根本上解决了非线性误差的问题。( x ) 2、为了使压电陶瓷具有压电效应,必须在一定温度下通过强电场作用对其作极化处理。( Y ) 3、变间隙型的电感式传感器初始间隙越大,灵敏度越低,非线性误差越小,量程越大。( Y ) 4、变面积型的电容式传感器输出与输入之间的关系是线性的。( Y ) 5、压电式传感器只能进行动态测量。( Y ) 6、随机误差可以通过系统校正来减小或消除。( X ) 7、求和取平均是为了减小系统误差。( X )

8、电涡流式传感器不仅可以用于测量金属,还可以测量非金属。( X ) 9、石英晶体沿任意方向施加力的作用都会产生压电效应。( X ) 10、电容传感器采用运算放大器测量电路则从原理上解决了单个变间隙型电容传感器输出特性非线性问题。( Y ) 三、计算题(每小题10分,共50分) 1、将一电阻应变片接入电桥电路中,已知电阻应变片在无应变时的电阻值为80欧,R3=40欧,R4=100欧。运算放大器的电压增益为20。问R2选取多大合适?如果该电阻应变片的灵敏度为4,受力的作用后发生变形其应变为2×10-3,电阻值变化为多少?受到该力的作用后输出电压U为多少? U

传感器技术及应用 试 题(2007)重点

哈工大2007 年秋季学期 传感器技术及应用试题 课程综合考试,合计分数70分 一、判断题(正确打√标记,错误打×标记,每题1分,共5分) 1.()传感器是一种测量器件或装置,它将被测量按一定规律转换成可用输出,一般系统有输入和输出,所以均可看作传感器。 2.()对变间隙的电容式传感器而言,即使采用差动结构也不能完全消除非线性误差。 3.()压电晶体有三个互相垂直的轴,分别为X轴(电轴)、Y轴(力轴)、Z轴(光轴),当沿某一轴的方向施加外作用力时,会在另外两个轴的表面出现电荷。 4.()光电池和光敏二极管都是建立在内光电效应基础上,工作电路也一样。 5.()自感式电感传感器改变空气隙等效截面积类型变换器转换关系为非线形的,改变空气隙长度类型的为线形的。 二、简答题(每题5分共20分) 1.什么是传感器?传感器由哪三个部分组成? 2.简述热电偶热电势产生的原因。

3.简要说明金属应变片与半导体应变片在工作原理上的区别? 4.什么是电容传感器的“驱动电缆技术”,采用它的目的是什么? 三、(8分)影响电容传感器精度的主要因素是边缘效应和寄生电容,试分别详细说明减少这两种影响的措施(建议以图示进行辅助说明)。

H 四、(12分)什么是电感传感器的零点残余电压?残余电压过大带来哪些影响?减小零点残余电压的措施有哪些? 五、(10分)霍尔片采用恒流源供电,为补偿温度误差,采用在输入回路并联电阻,如下图示,若已知霍尔元件灵敏度温度系数为α,霍尔元件输入电阻温度系数为β,温度t 0 时的输入电阻为R i0,霍尔元件灵敏度系数为K H0;温度t 1时的输入电阻为00[1()]it i R R t t β=+-,霍 尔元件灵敏度系数为00[1()]Ht H K K t t α=+-,请推导并联的电阻R P 的大小。

霍尔传感器直线电机位置检测

电流检测部分 本控制系统中永磁直线电机的两相电枢电流通过霍尔电流传感器得到,另外一相电流通过计算得到。电流传感器采用LEM公司生产的LTSR -6-NP型电流传感器,该产品具有高精度,高线性度,高响应速度,高频率带宽,高电流过载能力,低温漂,低接入损耗,以及对外部信号的高抗干扰能力,非常适合在永磁电机伺服系统中使用。根据选择不同的引脚接法,该产品可以提供三种不同的额定采样电流值,分别为2A、3A和6A电流有效值,对应的最大采样电流值分别为6.4A,9.6A 和19.2A。由于该传感器输出电压范围为0.5~4.5V,而 TMS320LF240DSP的AD输入信号只能在0V—+3.3V之间,所以需要将传感器的输出电压经过运放电路处理后,再输入DSP的AD口,具体电路如图4—10所示.

一种低成本的线性霍尔位置检测方法在永磁直线电机伺服控制系统中,无论采用何种控制方式,都需要准确检测出电机动子位置。可以说,位置检测部分是伺服控制系统中非常关键的组成部分,直接影响着电机控制精度和系统运行性能。目前,在直线运动控制系统中,最常见的位置检测方法是采用直线光栅,但是光栅的成本很高,对安装要求也很高;也有增加额外机械结构,将直线运动转变成旋转运动,然后用旋转编码器进行位置检测的方法,显然该方法在成本和精度上都存在缺点;还有采用无位置检测的方法,但是目前所有无位置检测方法的在电机低速段效果都不是很理想,而直线电机恰恰需要频繁的起动和停止,采用无位置检测方法获得理想的效果难度较大,尚未有实用的解决方案提出。因此,本节将介绍一种低成本的利用线性霍尔元件对永磁直线电机进行位置检 测的方法。 §4.6.1线性霍尔位置检测方法的基本原理 线性霍尔元件可以用来检测磁通密度,在一定磁场强度范围内,其输出电压与被检磁场磁通密度成线性关系.永磁直线同步电机气隙磁场为正弦分布,因此很容易通过检测气隙磁场磁通密度的方法来确定电机动子的位置。本节以空心式圆筒型永磁直线电机为例,具体介绍该方法。电机及霍尔元件的安装位置示意图如图4—18所示.因为电机只沿Z轴方向做运动,所以只需要检测电机动子在z轴上的位置。在第三章中,已经分析了该电机气隙磁密Br,沿Z轴基本成正弦分布,在一对极范围内,也就是一个周期内,Br不是Z的单值函数,因此不

传感器技术与应用试题及答案(二)

传感器技术与应用试题及答案(二) 传感器技术与应用试题及答案(二) 题号一、选择题(本大题共20小题,每小题2分,共40分) 1、以下不属于我国电工仪表中常用的模拟仪表精度等级的是( ) A 0.1 B 0.2 C 5 D 2 2、( )又可分为累进性的、周期性的和按复杂规律变化的几种类型。 A 系统误差 B 变值系统误差 C 恒值系统误差 D 随机误差 3、改变电感传感器的引线电缆后,( ) A不必对整个仪器重新标定 B 必须对整个仪器重新调零 C 必须对整个仪器重新标定 D不必对整个仪器重新调零 4、在电容传感器中,若采用调频法测量转换电路,则电路中( )。 A、电容和电感均为变量 B、电容是变量,电感保持不变 C、电感是变量,电容保持不变 D、电容和电感均保持

不变 5、在两片间隙为1mm的两块平行极板的间隙中插入( ),可测得最大的容量。 A、塑料薄膜 B、干的纸 C、湿的纸 D、玻璃薄片 6、热电阻测量转换电路采用三线制是为了( ) 。 A、提高测量灵敏度 B、减小非线性误差 C、提高电磁兼容性 D、减小引线电阻的影响 7、当石英晶体受压时,电荷产生在( ) 。 A、Z面上 B、X面上 C、Y面上 D、X、Y、Z面上 8、汽车衡所用的测力弹性敏感元件是( )。 A、悬臂梁 B、弹簧管 C、实心轴 D、圆环 9、在热电偶测温回路中经常使用补偿导线的最主要的目的是( )。 A、补偿热电偶冷端热电势的损失 B、起冷端温度补偿作用 C、将热电偶冷端延长到远离高温区的地方 D、提高灵敏度 10、在仿型机床当中利用电感式传感器来检测工件尺寸,该加工检测装置是采了( )测量方法。 A、微差式 B、零位式 C、偏差式 D、零点式 11、测得某检测仪表的输入信号中,有用信号为20毫伏,干扰电压也为20毫伏, 则此时的信噪比为( )。

传感器分类及常见传感器的应用

机电一体化技术常用传感器及其原理 班级:机械设计制造及其自动化姓名: 学号:

一、传感器的分类 传感器有许多分类方法,但常用的分类方法有两种,一种是按被测物理量来分;另一种是按传感器的工作原理来分。按被测物理量划分的传感器,常见的有:温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等。 按工作原理可划分为: 1.电学式传感器 电学式传感器是非电量电测技术中应用范围较广的一种传感器,常用的有电阻式传感器、电容式传感器、电感式传感器、磁电式传感器及电涡流式传感器等。 电阻式传感器是利用变阻器将被测非电量转换为电阻信号的原理制成。电阻式传感器一般有电位器式、触点变阻式、电阻应变片式及压阻式传感器等。电阻式传感器主要用于位移、压力、力、应变、力矩、气流流速、液位和液体流量等参数的测量。 电容式传感器是利用改变电容的几何尺寸或改变介质的性质和含量,从而使电容量发生变化的原理制成。主要用于压力、位移、液位、厚度、水分含量等参数的测量。 电感式传感器是利用改变磁路几何尺寸、磁体位置来改变电感或互感的电感量或压磁效应原理制成的。主要用于位移、压力、力、振动、加速度等参数的测量。 磁电式传感器是利用电磁感应原理,把被测非电量转换成电量制成。主要用于流量、转速和位移等参数的测量。 电涡流式传感器是利用金屑在磁场中运动切割磁力线,在金属内形成涡流的原理制成。主要用于位移及厚度等参数的测量。 2.磁学式传感器 磁学式传感器是利用铁磁物质的一些物理效应而制成的,主要用于位移、转矩等参

数的测量。

3.光电式传感器 光电式传感器在非电量电测及自动控制技术中占有重要的地位。它是利用光电器件的光电效应和光学原理制成的,主要用于光强、光通量、位移、浓度等参数的测量。 4.电势型传感器 电势型传感器是利用热电效应、光电效应、霍尔效应等原理制成,主要用于温度、磁通、电流、速度、光强、热辐射等参数的测量。 5.电荷传感器 电荷传感器是利用压电效应原理制成的,主要用于力及加速度的测量。 6.半导体传感器 半导体传感器是利用半导体的压阻效应、内光电效应、磁电效应、半导体与气体接触产生物质变化等原理制成,主要用于温度、湿度、压力、加速度、磁场和有害气体的测量。 7.谐振式传感器 谐振式传感器是利用改变电或机械的固有参数来改变谐振频率的原理制成,主要用来测量压力。 8.电化学式传感器 电化学式传感器是以离子导电为基础制成,根据其电特性的形成不同,电化学传感器可分为电位式传感器、电导式传感器、电量式传感器、极谱式传感器和电解式传感器等。电化学式传感器主要用于分析气体、液体或溶于液体的固体成分、液体的酸碱度、电导率及氧化还原电位等参数的测量。 另外,根据传感器对信号的检测转换过程,传感器可划分为直接转换型传感器和间接转换型传感器两大类。前者是把输入给传感器的非电量一次性的变换为电信号输出,如光

《传感器原理与应用》综合练习答案(期末考试)

《传感器原理与应用》综合练习 一、填空题 1.热电偶中热电势的大小仅与金属的性质、接触点温度有关,而与热电极尺寸、形状及温度分布无关。 2.按热电偶本身结构划分,有普通热电偶、铠装热电偶、微型热电偶。3.热电偶冷端电桥补偿电路中,当冷端温度变化时,由不平衡电桥提供一个电位差随冷端温度变化的附加电势,使热电偶回路的输出不随冷端温度的变化而改变,达到自动补偿的目的。 4.硒光电池的光谱峰值与人类相近,它的入射光波长与人类正常视觉的也相近,因而应用较广。 5.硅光电池的光电特性中,光照度与其短路电流呈线性关系。 6.压电式传感器的工作原理是基于某些介质材料的压电效应。 7.压电陶瓷是人工制造的多晶体,是由无数细微的电畴组成。电畴具有自己极化方向。经过极化过的压电陶瓷才具有压电效应。 8.压电陶瓷的压电常数比石英晶体大得多。但石英晶体具有很多优点,尤其是其它压电材料无法比的。 9.压电式传感器具有体积小、结构简单等优点,但不能测量频率小的被测量。特别不能测量静态量。 10.霍尔效应是导体中的载流子在磁场中受洛伦茨力作用发生位移的结果。 11.霍尔元件是N型半导体制成扁平长方体,扁平边缘的两对侧面各引出一对电极。一对叫激励电极用于引入激励电流;另一对叫霍尔电极,用于引出霍尔电势。 12.减小霍尔元件温度误差的措施有:(1)利用输入回路的串联电阻减小由输入电阻随温度变化;引起的误差。(2)激励电极采用恒流源,减小由于灵敏度随温度变化引起的误差。 13.霍尔式传感器基本上包括两部分:一部分是弹性元件,将感受的非电量转换成磁物理量的变化;另一部分是霍尔元件和测量电路。 14.磁电式传感器是利用霍尔效应原理将磁参量转换成感应电动势信号输出。 15.变磁通磁电式传感器,通常将齿轮的齿(槽)作为磁路的一部分。当齿轮转动时,引起磁路中,线圈感应电动势输出。 16.热敏电阻正是利用半导体的数目随着温度变化而变化的特性制成的热敏感元件。 17.热敏电阻与金属热电阻的差别在于,它是利用半导体的电阻随温度变化阻值变化的特点制成的一种热敏元件。 18.热敏电阻的阻值与温度之间的关系称为热敏电阻的。它是热敏电阻测温的基础。 19.热敏电阻的基本类型有:负温度系数缓变型、正温度系数剧变型、临界温度型。 20.正温度系数剧变型和临界温度型热敏电阻不能用于温度范围的温度控制,而在某一温度范围内的温度控制中却是十分优良的。 21.正温度系数剧变型和临界温度型热敏电阻属于型,适用于温度监测和温度控制。

传感器技术及应用教学大纲

传感器及应用教学大纲 一、课程说明 课程性质:专业核心课 课程描述: “传感器技术”是电子、机电与自动控制类专业的专业核心课,是必修课。通过本课程的学习,学生能了解传感器的基本概念、传感器的构成、传感器工作的有关定律、传感器的作用、传感器和现代检测技术发展的趋势。其作用是通过本课程的学习,培养学生利用现代电子技术、传感器技术和计算机技术解决生产实际中信息采集与处理问题的能力,为工业测控系统的设计与开发奠定基础。知识目标:掌握主要传感器的原理、特性,各种应用条件下传感器的选用原则和应用电路设计。 技能目标:独立分析、解决传感器方面问题的能力;利用网络、数据手册、厂商名录等获取和查阅传感器技术资料的能力。 素质目标:具有较强的专业素质,不断进行创新。 教学重点与难点: 课程重点:电阻式、电感式传感器的原理与应用,霍尔式传感器,电流、电压传感器。 课程难点:各种传感器的温度误差与补偿,电容式传感器的屏蔽技术,光纤传感器的原理。 适用专业:机电一体化、电气自动化专业 学时数:80学时 二、教学目的与内容 1 传感器技术基础(2学时) 教学目的与要求: 明确“传感器技术”在专业培养计划中的地位,课程的性质、任务和大体内容,传感器在现代生产、生活中的作用。了解检测技术与传感器的定义、组成、作用和分类,了解传感器的静、动态特性,掌握传感器常用的技术指标。 教学重点与难点: 教学重点:传感器的定义、组成和作用 教学难点:传感器的技术指标 教学内容: 1)传感器简介 (1)传感器的定义

(2)传感器的组成与作用 2)传感器的分类 (1)按工作原理分 (2)按被测量分 (3)按输出信号性质分 3)传感器的特性及主要技术指标 (1)静态特性和动态特性 (2)主要技术指标 2 电阻式传感器(6学时) 教学目的与要求: 理解电阻式传感器的组成和基本原理,了解电阻式传感器的常用类型。掌握应变片式传感器的形式、特点、应用方法和转换电路。 教学重点与难点: 教学重点:电阻式传感器的组成和基本原理 教学难点:电阻应变片的工作原理 教学内容: 1)电位器式传感器(2学时) (1)电位器式传感器的基本工作原理 (2)电位器式传感器的输出特性 (3)电位器式传感器的特性 (4)电位器式位移传感器 2)应变式传感器(2学时) (1)电阻应变片的结构和工作原理 (2)电阻应变片的特性 (3)测量电路 (4)温度误差与补偿 3)压阻式传感器(2学时) (1)压阻效应 (2)结构与特性 (3)固态压阻传感器测量电路 (4)温度补偿 3 变磁阻式传感器(4学时) 教学目的与要求: 掌握三种变磁阻式传感器(电感式传感器、差分变压器式传感器、电涡流式传感器)的基本结构和工作原理,了解上述传感器将非电量信号转换成电信号的过程,了解三种变磁阻式传感器的特点、

传感器原理及其应用考试重点

传感器原理及其应用 第一章传感器的一般特性 1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 2)传感器又称变换器、探测器或检测器,是获取信息的工具 广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 3)传感器的组成: 敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。 基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。 4)传感器的静态性能指标 (1)灵敏度 定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比, 传感器输出曲线的斜率就是其灵敏度。 ①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。(2)线性度 定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。 线性度又可分为: ①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。 ②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。 端基直线定义:实际平均输出特性首、末两端点的连线。 ③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。 ④独立线性度:以最佳直线作为参考直线的线性度。 ⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。 (3)迟滞 定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。 即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 (4)重复性 定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输

传感器原理及其应用期末预习复习资料

信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 1.什么是传感器? 广义:传感器是一种能把特定的信息按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准:定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 2.传感器由哪几个部分组成?分别起到什么作用? 传感器一般由敏感元件、转换原件和基本电路组成。敏感元件感受被测量,转换原件将其响应的被测量转换成电参量,基本电路把电参量接入电路转换成电量。传感器的核心部分是转换原件,转换原件决定传感器的工作原理。 3.传感器的总体发展趋势是什么?传感器的应用情况。 传感器正从传统的分立式朝着集成化、数字化、多功能化,微型化、智能化、网络化和光机电一体化的方向发展,具有高精度、高性能、高灵敏度、高可靠性、高稳定性、长寿命、高信噪比、宽量程和无维护等特点。未来还会有更新的材料,如纳米材料,更有利于传感器的小型化。发展趋势主要体现在这几个方面:发展、利用新效应;开发新材料;提高传感器性能和检测范围;微型化与微功耗;集成化与多功能化;传感器的智能化;传感器的数字化和网络化。 4.了解传感器的分类方法。所学的传感器分别属于哪一类? 按传感器检测的范畴分类:物理量传感器、化学量传感器、生物量传感器按传感器的输出信号分类:模拟传感器、数字传感器 按传感器的结构分类:结构型传感器、物性型传感器、复合型传感器 按传感器的功能分类:单功能传感器、多功能传感器、智能传感器 按传感器的转换原理分类:机—电传感器、光—电传感器、热—电电传感器、磁—电传感器 电化学传感器 按传感器的能源分类:有源传感器、无源传感器 国标制定的传感器分类体系表将传感器分为:物理量、化学量、生物类传

传感器技术的应用及其发展

传感器技术的应用及其发展 摘要:传感器是新技术革命和信息社会的重要技术基础,传感器技术是实现测试与自动控制的重要环节,而测试技术与自动控制水平 高低,是衡量一个国家科学技术现代化程度的重要标志。本文列举了传感器技术在当前一些重要领域里的应用,并讲述了其发展趋势。 关键词:传感器技术应用现状发展趋势 一、引言 传感器技术是当今世界令人瞩目,迅速发展的高新技术之一,也是当代科学发展的一个重要标志,与通许技术、计算机技术共同构成21世纪信息产业的三大支柱。如果说计算机是人类大脑的扩展,那么传感器就是人类五官的延伸。因此各发达国家都将传感器技术作为本世纪重点技术加以发展。随着国内工业自动化、信息化和国防现代化的发展,传感器的年需求量持续增长。传感器的应用也越来越广泛、已渗透到各个专业领域。但是目前国内传感器技术的创新和新产品开发能力落后于国内外先进水平,制约了我国工业自动化和信息化技术的发展。 二、传感器介绍 传感器一般由敏感元件、传感元件和其他辅助件组成,有时也将信号调节与转换电路、辅助电源作为传感器的组成部分。传感器通常可以按照一系列方法进行分类。根据输入物理量的分类,传感器常以别测物理量命名,如位移传感器,速度传感器、温度传感器、压力传感器等;根据工作原理分类,传感器常可以依据工作原理进行命名,如应变式、电容式、电感式、热电式、光电传感器等;按输出信号分类,可分为模拟传感器和数字式传感器。输出量为模拟量则称为模拟式,输出量为数字式则称为数字式传感器等等。 三、主要传感器技术分类 传感器技术是当前代表国家综合科研水平的重要技术,传感器技术的具体应用是传感器技术转化的重要途径和方法。加强对传感器技术应用的研究也是了解传感器技术发展现状并对其未来发展进行预测的基础和前提。 3.1 光电传感器技术

13传感器技术与应用答案

传感器技术与应用习题答案 习题1 l.1 检测系统由哪几部分组成? 说明各部分的作用。 答:检测系统是由被测对象、传感器、数据传输环节、数据处理环节和数据显示环节构成。 传感器是把被测量转换成电学量的装置,显然,传感器是检测系统与被测对象直接发生联系的部件,是检测系统最重要的环节,检测系统获取信息的质量往往是由传感器的性能确定的。 数据传输、处理环节,又称之为测量电路,它的作用是将传感器的输出信号转换成易于测量的电压或电流信号。 数据显示记录环节是检测人员和检测系统联系的主要环节,主要作用是使人们了解被测量的大小或变化的过程。常用的有模拟显示、数字显示和图像显示三种。 1.2 传感器的型号有几部分组成?各部分有何意义? 答:传感器是由敏感元件、转换元件和测量电路组成,敏感元件:直接感受被测量的变化,并输出与被测量成确定关系的某一物理量的元件,它是传感器的核心。转换元件:将敏感元件输出的物理量转换成适于传输或测量电信号的元件。测量电路:将转换元件输出的电信号进行进一步转换和处理的部分,如放大、滤波、线性化、补偿等,以获得更好的品质特性,便于后续电路实现显示、记录、处理及控制等功能。 1.3 测量稳压电源输出电压随负载变化的情况时,应当采用何种测量方法? 如何进行? 答:直接测量。使用电压表进行测量,对仪表读数不需要经过任何运算,直接表示测量所需要的结果。 1.4 某线性位移测量仪,当被测位移由4.5mm变到5.0mm时,位移测量仪的输出电压由3.5V 减至 2.5V,试求该仪器的灵敏度。 解: 灵敏度s=(3.5-2.5)v/(5.0-4.5)mm=2v/mm 1.5 有三台测温仪表,量程均为0~800℃,精度等级分别为 2.5级、2.0级和1.5级,现要测量500℃的温度,要求相对误差不超过2.5%,选那台仪表合理? 答:2.5级时的最大绝对误差值为20℃,测量500℃时的相对误差为4%;2.0级时的最大绝对误差值为16℃,测量500℃时的相对误差为3.2%;1.5级时的最大绝对误差值为12℃,测量500℃时的相对误差为2.4%。因此,应该选用1.5级的测温仪器 1.6 什么是系统误差和随机误差?准确度和精密度的含义是什么? 它们各反映何种误差? 答:系统误差(简称系差):在一定的条件下,对同一被测量进行多次重复测量,如果误差按照一定的规律变化,则把这种误差称为系统误差。系统误差决定了测量的准确度。系统误差是有规律性的,因此可以通过实验或引入修正值的方法一次修正给以消除。 随机误差(简称随差,又称偶然误差):由大量偶然因素的影响而引起的测量误差称为随机误差。对同一被测量进行多次重复测量时,随机误差的绝对值和符号将不可预知地随机变

位置和动作传感器

第六章位置和运动传感器 现代线性数字集成电路被广泛应用于位置和运动传感器领域,结合线性和数字功能的完全集成技术,产生了符合成本效益的解决方案,这解决了过去使用昂贵的电子机械技术的问题。这些系统被用于很多应用场合包括:机器人、计算机辅助生产、工业自动化、航天电子技术和汽车制造。 本节概述线性和旋转位置传感器及其相关调节电路。介绍了在交流电机控制领域相关知识,一个关于数模混合集成电路融合的有趣应用。在最后讨论了一下微感应器。 位移传感器(LVDT) LVDT是用来测量直线距离精确和可靠的方法,LVDT被广泛用于现代机床、机器人技术、航天电子技术以及电脑制造业。在第二次世界大战结束之前,在过程控制领域LVDT作为传感器件已经得到了广泛认可,因此它被大量应用在飞机、水雷和武器系统上。1946年Herman Schaevitz出版了《The Linear Variable Differential Transformer》,这使读者清楚的认识到LVDT的特点和应用。 如图6.2,LVDT是一种把位置信号转换成电信号的传感器,它的输出和可动磁芯的位置相对应。可动磁芯在一个变压器内直线移动,这种变压器由一个中

心的初级线圈和两个外围的二次线圈组成并以圆筒形式缠绕。初级绕阻由一个交流电压源驱动(通常几千赫兹),诱导次级线圈随组件内磁芯位置的变化而变化。磁芯通常制作成螺纹,这是为了便于连接到非磁性杆上,非磁性杆依次依附在用于测量位移或运动的对象上。 二次绕阻相互之间相反缠绕,并且当磁芯集中在两个二次绕阻中心时两者电压相反,净输出电压为零。当磁芯移动偏离中心时,当磁芯朝向二次绕阻移动时电压会增加,相反移动时电压会减小。其结果是输出一个与位置成线性变化的差动电压。在设计范围内移动,通常为0.5%或更好的线性度是优良的。这种LVDT 提供良好的精度、线性度、灵敏度、无限的分辨率,以及运转无摩擦和耐用性。不同的传感器有各种各样的测量范围,通常从100um ±。典型的激励电 ±到25cm 压范围从1V到24V RMS,频率从50Hz到20kHz。在图6.3中给出了Schaevitz E100的主要参数。

相关文档
相关文档 最新文档