文档库 最新最全的文档下载
当前位置:文档库 › 铁道车辆液压减振器低速特性的CFD仿真

铁道车辆液压减振器低速特性的CFD仿真

铁道车辆液压减振器低速特性的CFD仿真
铁道车辆液压减振器低速特性的CFD仿真

2012年9月

第40卷第17期

机床与液压

MACHINE TOOL &HYDRAULICS Sep.2012Vol.40No.17

DOI :10.3969/j.issn.1001-3881.2012.17.037

收稿日期:2011-08-15

作者简介:李俊琦(1986—),女,硕士研究生,研究方向为机、电、液一体化。E -mail :qiqi575@https://www.wendangku.net/doc/9415466997.html, 。

铁道车辆液压减振器低速特性的CFD 仿真

李俊琦1,樊友权2,于兰英1,刘桓龙1,秦剑

1

(1.西南交通大学机械工程学院,四川成都610031;2.株洲联诚集团减振器有限责任公司,湖南株洲412001)

摘要:机车车辆液压减振器对车辆的平稳性与动力性能有着非常重要的影响,减振器性能的好坏通过其阻尼特性反映出来。以高速重载列车某型号一系垂向减振器为研究对象,利用Pro /E 建立减振器内部流场三维模型,用ANSYS ICEM 与STAR-CD 软件联合划分六面体网格,运用流体动网格技术在ANSYS CFX 流体仿真分析软件中得出低速情况下精度较高的示功图。仿真结果与理论值接近,为铁道机车车辆减震器的优化设计提供了一种快速有效的方法。

关键词:液压减振器;阻尼阀;示功图;低速特性;CFD 仿真

中图分类号:U260.331+.5

文献标识码:A

文章编号:1001-3881(2012)17-127-3

CFD Simulation for Low-speed Performance of Train Damper

LI Junqi 1,FAN Youquan 2,YU Lanying 1,LIU Huanlong 1,QIN Jian 1

(1.School of Mechanical Engineering ,Southwest Jiaotong University ,Chengdu Sichuan 610031,China ;

2.Zhuzhou Lince Group Hydraulic Damper Co.,Ltd.,Zhuzhou Hunan 412001,China )

Abstract :Train hydraulic damper has a very significant impact on the stable and dynamic performances of the train.Damping performance is reflected by its damp characteristic.Taking a vertical damper used on a train as research object ,the three-dimensional flow field model of the damper was established by using Pro /E.The creation of hexa mesh was done by using ANSYS ICEM and STAR-CD.The dynamic meshing technique in the software of ANSYS CFX was adopted.As a result ,the indicator diagram of the damper under low speed situation was gotten.The simulation results are very close to the theory ones.It provides a quick and effective method for optimation of train hydraulic damper.

Keywords :Hydraulic damper ;Damper valve ;Indicator diagram ;Low-speed performance ;CFD simulation

液压减振器已在我国的机车与客车上使用了40多年,近10年随着我国铁路运输速度的提高,多数采用进口减振器。目前,我国减振器设计水平与生产能力较国外先进的减振器技术仍有一定的差距。

作者依据某型号一系垂向减振器的实际结构与参数,运用有限元分析软件与流体动网格技术对减振器内部流场进行分析,得出可以判定减振器性能的示功图与阻尼特性曲线,为减振器结构优化提供了理论依据,有利于加速我国减振器国产化的进程。

1液压减振器工作原理

液压减振器(下文简称减振器)按照油液循环方式,液压系统可分为开式系统和闭式系统,其基本动作是拉伸与压缩。闭式系统较开式系统结构紧凑、与空气接触机会少、空气不易渗入系统,故传动稳定。因而,闭式系统更易于实现轨道交通机车车辆所需要的阻尼特性。

当减振器处于低振动速度时,其油液单向循环流动的物理模型如图1所示

力F

c

时,底座单向阀处于关闭状态。在压力作用下

活塞单向阀导通,上下腔中的油液流过阻尼调节单元

产生压力p

c

,形成有压油腔。压力作用在活塞杆面积上,产生压缩阻尼力。

减振器无论处于拉伸状态还是压缩状态,油液都是从压力油缸经阻尼调节单元产生阻尼作用耗散能量。

2减振器仿真

减振器的阻尼调节单元有3个调节阀,其位置如

图2所示,3个调节阀对应的开启压力关系为:p

3

p 2<p

1

。因此,在不同振动速度下,减振器工作的调

节阀不同

图3拉伸工况三维流场模型与有限元模型

通过分析减振器工作状态,为保证计算精度并减少计算时间,对减振器动网格部分划分六面体网格,而调节阀3划分四面体网格

图4压缩工况三维流场模型与有限元模型

2.2仿真条件

在仿真计算中,根据实际情况对流体特性和流动状态设置如下(基本参数及其数值见表1)。

表1基本参数表

信号频率f/Hz0.1327

信号振幅A P/m24?10-3

运动黏度γ/(mm2·s-1)12.7

油液密度ρ/(kg·m-3)8.41?102

动力黏度μ=γρ/(N·s·m-2) 1.068?10-2

采用标准κ-ε紊流模型进行分析,储油腔的压力为一个大气压,流体与壁面的接触边界设置为静止壁面,阀芯部分给定正旋信号,利用流体动网格技术,对减振器在拉伸与压缩两种状态下的流场进行仿真计算,得出在低速情况下减振器阻尼阀内部流场分布与阻尼特性曲线。

2.3仿真计算的假设

减振器的流体仿真分析计算建立在以下假设的基础上:

(1)液压油不可压缩。由于减振器油缸容积小,油液压缩系数小,故油缸压力变化对液压油体积影响很小。

(2)活塞上下腔液压油的温度相等。减振器流路短,流动过程快,上下腔液压油温度几乎相等。

(3)不考虑气穴现象。由于活塞上下腔压力远高于液压油空气分离压,不满足气穴产生的条件。

(4)不考虑油液重力。减振器内工作油的重力势能远小于其动能与压力势能。

(5)假定活塞与缸筒、活塞杆与导承件之间泄漏为零。

(6)不考虑阻尼阀阀片的重力。因阻尼阀阀片的重力相对于油缸内的压力引起的力很小,故不考虑阻尼阀发片的重力。

3仿真结果及分析

液压减振器无论处于拉伸状态还是压缩状态,阻

·

821

·机床与液压第40卷

尼阀都起到主要的调节作用。对其进行流场分析可以直观地得到减振器结构参数对减振器性能的影响。根据调节单元3的对称性,选取x-y平面进行分析。当活塞运动速度为0.02m/s时,拉伸工况的调节单元3的速度矢量图与压力云图如图5所示,压缩工况的速度矢量图与压力云图如图6所示

图5

拉伸工况阻尼阀速度矢量图与压力云图

图6压缩工况阻尼阀速度矢量图与压力云图

分析可知:当活塞受力拉伸上腔压力增加时,油液经过阻尼阀流入储油箱;当活塞受力压缩运动时,下腔体积减少量大于上腔体积增加量,导致上腔压力增加,油液通过调节单元产生的阻尼作用耗散能量。减振器在两种工况下,阻尼阀流场大致相同,阻尼孔入口两侧都存在小范围的负压区,油液经过阻尼孔速度达到最大而压力减小。阻尼孔上侧与阻尼阀顶部形成涡流,涡流区范围随着活塞运动速度的增大而增加。

根据上述分析,在ANSYS CFX后处理中分别提取活塞在拉伸与压缩两种工况下减振器上腔压力,得出拉伸工况上腔压力分布曲线(图7)与压缩工况上腔压力分布曲线(图8)

)仿真1759.381710.84 1.3987.97

理论1711.841675.64 1.0785.59

偏差/% 1.36 1.03 1.29理想的示功图不对称率应在10%范围内。通过表2可以得到:仿真不对称率为1.39%,与理论计算值偏差也小于1.36%,远小于理想示功图要求值。仿真结果逼真,减振器各项技术指标符合要求,较好地实现了仿真要求。

4结论

(1)采用ANSYS ICEM与STAR-CD软件对流体动网格部分联合划分六面体网格,保证了网格质量与计算精度。

(2)运用ANSYS CFX流体仿真动网格技术对减震器内部流场进行了动态模拟计算,分析了阻尼阀内部流场分布,得到精确的F-s曲线与阻尼特性曲线。

(3)研究方法相较于传统减震器设计方法更为直观,精确率更高。根据仿真结果计算得出的性能参数符合设计要求,与理论值接近,为铁道机车车辆减震器的优化设计提供了一种快速有效的方法。

参考文献:

【1】梁志杰.SS

8

机车一系垂向减振器仿真系统的研究[D].成都:西南交通大学,2001.

【2】樊友权,凌平,戴谋军.国外油压减振器在铁路机车车辆上的应用[J].电力机车与成规车辆,2003(6):4-6.

(下转第126页)

·

921

·

第17期李俊琦等:铁道车辆液压减振器低速特性的CFD仿真

由图6可以看出:在转向起始阶段,仿真曲线都会出现剧烈振荡。分析其原因为:控制节流口和放大节流口的通流面积增加过快,造成转向起始阶段节流口的开度变化幅度过大,转向器内部流量和压力产生冲击和振动。同时当方向盘以n =60r /min 的转速转动时,该转向器额定排量可以达到1250mL /s ,已知优先阀的额定排量为250mL /s ,其流量输入给转向器,可知该转向器的排量提高了4倍。

为了消除这一影响,在保证转向器额定输出流量为1250mL /s 和4倍流量放大的基础上,经过反复修改尺寸和计算,对C8节流口的结构进行优化设计。改进后阀芯上的槽45宽度增加为5mm ,阀套上的孔38由两个半圆孔和一个长方形孔组合而成。

再次进行仿真,得到SHTLF 型全液压转向器输出流量曲线(如图7所示)和液压油缸活塞位移速度(如图8所示)。对比图6和7可得:改进后的转向系统在转向起始阶段振动明显减弱,表明该转向器的结构改进在理论上是可行的

214.

(上接第129页)

【3】杨国桢,王福天.机车车辆液压减振器[M ]

.北京:中国铁道出版社,

2003.【4】丁问司,巫辉燕.铁道车辆油压减振器三维流场动态仿

真[

J ].机械工程学报,2011(6):130-137.【5】梁志杰,于兰英,陈留,等.SS 8机车一系垂向减振器仿真

系统的研究[

J ].机车电传动,2002(3):24-27.【6】NAGASHIMA T.Development of a CAE System Based on

the Node-by-Node Meshless Method [J ]

.Comput Methods Appl Mech Engrg ,2000,187:1-34.

【7】中华人民共和国铁道部.TB /T1491-2004机车车辆油压

减振器技术条件[

S ].2005-01-15.【8】PATANKAR S V.Numerical Heat Transfer and Fluid Flow

[M ].Washington D C :Hemisphere ,1980.

【9】王福军.计算流体动力学分析—CFD 软件原理和应用

[M ].北京:清华大学出版社,2004.

【10】樊友权.高速列车减振器试验台的研制[D ].成都:西

南交通大学,

2004.·

621·机床与液压第40卷

4-1汽车减振器的选型设计.

汽车减振器的选型设计 东风汽车工程研究院陈耀明 2010年11月12日

目录 一、汽车减振器的作用和功能---------------------------4 1、减振器的作用--------------------------------------4 2、减振器的功能--------------------------------------4 (1)对自然振动--------------------------------------4 (2)对强迫振动--------------------------------------6 二、汽车减振器选型设计的任务-------------------------8 三、汽车减振器额定阻力和工作缸直径的选择-------------9 1、线性减振器的阻尼特性------------------------------9 2、实际减振器的非线性--------------------------------9 3、减振器示功试验的标准规范-------------------------10 4、悬架系统相对阻尼系数与减振器阻尼系数的关系-------11 5、计算额定阻力-------------------------------------12 6、选择减振器工作缸直径-----------------------------13 四、验算悬架系统在各种工况下的振动特性--------------14 五、减振器行程和长度的确定--------------------------14 1、减振器最大压缩(上跳)行程-----------------------14

第七 章 CFD仿真模拟

第七章CFD仿真模拟 一.初识CFD CFD是英文Computational Fluid Dynamics(计算流体动力学)的简称。它是伴随着计算机技术、数值计算技术的发展而发展的。简单地说,CFD相当于"虚拟"地在计算机做实验,用以模拟仿真实际的流体流动情况。而其基本原理则是数值求解控制流体流动的微分方程,得出流体流动的流场在连续区域上的离散分布,从而近似模拟流体流动情况。可以认为CFD是现代模拟仿真技术的一种。 1933年,英国人Thom首次用手摇计算机数值求解了二维粘性流体偏微分方程,CFD由此而生。1974年,丹麦的Nielsen首次将CFD用于暖通空调工程领域,对通风房间内的空气流动进行模拟。之后短短的20多年内,CFD技术在暖通空调工程中的研究和应用进行得如火如荼。如今,CFD技术逐渐成为广大空调工程师和建筑师解决分析工程问题的有力工具。 二.为什么用CFD CFD是一种模拟仿真技术,在暖通空调工程中的应用主要在于模拟预测室内外或设备内的空气或其他工质流体的流动情况。以预测室内空气分布为例,目前在暖通空调工程中采用的方法主要有四种:射流公式,Zonal model,CFD以及模型实验。 由于建筑空间越来越向复杂化、多样化和大型化发展,实际空调通风房间的气流组织形式变化多样,而传统的射流理论分析方法采用的是基于某些标准或理想条件理论分析或试验得到的射流公式对空调送风口射流的轴心速度和温度、射流轨迹等进行预测,势必会带来较大的误差。并且,射流分析方法只能给出室内的一些集总参数性的信息,不能给出设计人员所需的详细资料,无法满足设计者详细了解室内空气分布情况的要求; Zonal model是将房间划分为一些有限的宏观区域,认为区域内的相关参数如温度、浓度相等,而区域间存在热质交换,通过建立质量和能量守恒方程并充分考虑了区域间压差和流动的关系来研究房间内的温度分布以及流动情况,因此模拟得到的实际上还只是一种相对"精确"的集总结果,且在机械通风中的应用还存在较多问题; 模型实验虽然能够得到设计人员所需要的各种数据,但需要较长的实验周期和昂贵的实验费用,搭建实验模型耗资很大,有文献指出单个实验通常耗资3000~20000美元,而对于不同的条件,可能还需要多个实验,耗资更多,周期也长达数月以上,难于在工程设计中广泛采用。 另一方面,CFD具有成本低、速度快、资料完备且可模拟各种不同的工况等独特的优点,故其逐渐受到人们的青睐。由表1给出的四种室内空气分布预测方法的对比可见,就目前的三种理论预测室内空气分布的方法而言,CFD方法确实具有不可比拟的优点,且由于当前计算机技术的发展,CFD方法的计算周期和成本完全可以为工程应用所接受。尽管CFD方法还存在可靠性和对实际问题的可算性等问题,但这些问题已经逐步得到发展和解决。因此,CFD方法可应用于对室内空气分布情况进行模拟和预测,从而得到房间内速度、温度、湿度以及有害物浓度等物理量的详细分布情况。 进一步而言,对于室外空气流动以及其它设备内的流体流动的模拟预测,一般只有模型实验或CFD方法适用。表1的比较同样表明了CFD方法比模型实验的优越性。故此,CFD方法可作为解决暖通空调工程的流动和传热传质问题的强有力工具而推广应用。 表1四种暖通空调房间空气分布的预测方法比较 比较项目 1射流公式 2 ZONAL MODEL 3CFD 4模型实验 房间形状复杂程度简单较复杂基本不限基本不限 ?对经验参数的依赖性几乎完全很依赖一些不依赖

非对称液压缸的动态特性仿真研究_郝前华

第35卷第6期 2010年12月  广西大学学报:自然科学版J o u r n a l o f G u a n g x i U n i v e r s i t y :N a t S c i E d V o l .35N o .6D e c .2010 收稿日期:2010-07-22;修订日期:2010-08-29 基金项目:国家863项目资助课题(2003A A 430200) 通讯联系人:何清华(1946-),男,湖南岳阳人,中南大学教授,博士生导师;E -m a i l :h q h @m a i l .c s u .e d u .c n 。 文章编号:1001-7445(2010)06-0984-05非对称液压缸的动态特性仿真研究 郝前华1,何清华1,2,贺继林1,2,廖力达1,舒敏飞1 (1.中南大学机电工程学院,湖南长沙410083; 2.湖南山河智能机械股份有限公司,湖南长沙410100) 摘要:根据液流的连续性原理,通过对非对称液压缸进行受力分析,研究非对称液压缸的动态特性。在此基础 上,提出非对称液压缸的数学模型,得到了液压缸阻尼比、固有频率间的关系。根据其数学模型,运用M A T -L A B 软件对挖掘机铲斗液压缸动态特性进行仿真,得到了非对称液压缸的速度响应曲线和大腔的压力曲线, 直观地揭示了其动态特性。通过对影响铲斗液压缸动态特性的主要因素的分析,提出了加快其速度响应和改 善其运动平稳性的实用措施,指出降低铲斗液压缸的超调量与提高铲斗液压缸的响应速度存在矛盾,需要针 对具体情况协调考虑。 关键词:动态特性;非对称液压缸;仿真 中图分类号:T H 137 文献标识码:A S i m u l a t i o ns t u d y o nd y n a m i c c h a r a c t e r i s t i c s o f a s y m m e t r i c a l h y d r a u l i c c y l i n d e r H A OQ i a n -h u a 1,H EQ i n g -h u a 1,2,H EJ i -l i n 1,2,L I A OL i -d a 1,S H UM i n -f e i 1 (1.S c h o o l o f M e c h a n i c a l a n dE l e c t r i c a l E n g i n e e r i n g ,C e n t r a l S o u t hU n i v e r s i t y ,C h a n g s h a 410083,C h i n a ; 2.H u n a nS u n w a r dI n t e l l i g e n t M a c h i n e r y C o .L t d .,C h a n g s h a 410100,C h i n a )A b s t r a c t :O nt h eb a s i s o f c o n t i n u i t y p r i n c i p l eo f f l u i d s ,d y n a m i cc h a r a c t e r i s t i c s o f a s y m m e t r i c a l h y d r a u l i c c y l i n d e r a r e i n v e s t i g a t e db y m e a n s o f f o r c e e q u i l i b r i u m a n a l y s i s .B a s e d o nt h e p r o p o s e d m a t h e m a t i c a l m o d e l o f t h e c y l i n d e r ,r e l a t i o n s h i pb e t w e e nd a m p i n gr a t i o a n dn a t u r a l f r e q u e n c y i s o b t a i n e d a s w e l l a s t h e s i m u l a t i o nr e s u l t s o f d y n a m i cc h a r a c t e r i s t i c s o f h y d r a u l i cc y l i n d e r o f t h e b u c k e t o f a n e x c a v a t o r i n M A T L A B .T h e v e l o c i t y r e s p o n s e c u r v e a n d p r e s s c u r v e o f t h e l a r g e c h a m - b e r r e v e a l t h e d y n a m i c c h a r a c t e r i s t i c s v i s u a l l y .M e a s u r e s t oi n c r e a s e t h e v e l o c i t y r e s p o n s e a n dt o i m p r o v e t h e m o t i o n s t a b i l i t y o f t h e b u c k e t c y l i n d e r a r e p r o p o s e d b a s e d o n t h e a n a l y s i s o f t h e m a i n f a c t o r s i n f l u e n c i n gd y n a m i cc h a r a c t e r i s t i c s .T h ec o n t r a d i c t i o nb e t w e e nd e c r e a s i n go v e r s h o o t a n d i n c r e a s i n g r e s p o n s e s p e e d o f t h e c y l i n d e r n e e d s t o b e r e s o l v e d b y c o n s i d e r a t i o n s t o s p e c i f i c c i r c u m - s t a n c e s . K e y w o r d s :d y n a m i c c h a r a c t e r i s t i c s ;a s y m m e t r i c a l h y d r a u l i c c y l i n d e r ;s i m u l a t i o n 非对称液压缸具有结构紧凑、工作可靠及生产成本低等优点,因而广泛应用于车辆、工程机械、矿山机械等的液压系统中。非对称液压缸作为液压系统的主要执行元件,其动态特性是评价液压系统性能 的一个重要指标[1-3]。非对称液压缸在输入流量或负载发生变化时,输出压力会发生变化,活塞就会出

汽车液压减震器的设计与研究范本

汽车液压减震器的设计与研究

论文题目: 汽车液压减震器的设计与研究 Design and research of vehicle hydraulic shock absorber 指导教师签字: 答辩小组成员签字:

摘要 当前,汽车行业一直在快速的发展,这样情况也致使广大人民群众除了要求汽车要有最基本的安全,同时还对汽车的舒适度以及稳定性提出了更高的要求。人民所要求的汽车是要具有相正确稳定性以及舒适性,二者缺一不可。那么想要增加汽车乘坐的舒适度,汽车减震器则是汽车发展中不可或缺的零件,同时还能够在一定程度上保证汽车的舒适性和稳定性,除此之外,它还能够有效的避免其它零件的过度损坏,因此当前在汽车领域中对于减震器的研究是非常重要的内容。 关键词:汽车;液压减震器;设备控制

ABSTRACT At present, the auto industry has been rapid development, this situation has also led to the broad masses of people in addition to the requirements of automobile must have the most basic safety, but also put forward higher requirements on the vehicle comfort and stability, people's car just required a stable and relative comfort of vehicle vibration can effectively solution. The shock absorber is an integral part of the development of automobile, but also can ensure the vehicle comfort and stability in a certain extent, besides, it can also effectively avoid excessive damage to other parts, so the current in the automotive field for the study of shock absorber is very important. Key words: automobile; hydraulic shock absorber; equipment control

汽车减振器的选型设计

汽车减振器的选型设计

目录 一、汽车减振器的作用和功能---------------------------4 1、减振器的作用--------------------------------------4 2、减振器的功能--------------------------------------4 (1)对自然振动--------------------------------------4 (2)对强迫振动--------------------------------------6 二、汽车减振器选型设计的任务-------------------------8 三、汽车减振器额定阻力和工作缸直径的选择-------------9 1、线性减振器的阻尼特性------------------------------9 2、实际减振器的非线性--------------------------------9 3、减振器示功试验的标准规范-------------------------10 4、悬架系统相对阻尼系数与减振器阻尼系数的关系-------11 5、计算额定阻力-------------------------------------12 6、选择减振器工作缸直径-----------------------------13 四、验算悬架系统在各种工况下的振动特性--------------14 五、减振器行程和长度的确定--------------------------14 1、减振器最大压缩(上跳)行程-----------------------14

一维CFD模拟仿真设计

CFD simulation in Laval nozzle SIAE 090441313 Abstract We aim to simulate the quasi one dimension flow in the Laval nozzle based on CFD computation in this paper .We consider the change of the temperature ,the pressure ,the density and the speed of the flow to study the flow.The analytic solution of the flow in the Laval nozzle is provided when the input velocity is supersonic.We use the Mac-Cormack Explicit Difference Scheme to slove the question. Key words :Laval nozzle ,CFD,throat narrow. Contents Abstract .................................................. . (1) Introduction .............................................. .. (2) Simulation of one-dimensional steady flow (3)

Basis equations ................................................. (3) Dimensionless .......................................... . (10) Mac -Cormack Explicit Difference Scheme (11) Boundary conditions ................................................ (13) Reference .............................................. (13) Annex .................................................. .. (14) Introduction Laval nozzle is the most commonly used components of rocket engines and aero-engine, constituted by two tapered tube, one shrink tube, another expansion tube. Laval nozzle is an important part of the thrust chamber. The first half of the nozzle from large to small contraction to a narrow throat to the middle. Narrow throat and then expand

液压减震器发展及工作原理之欧阳歌谷创作

一、减震器的发展历史 欧阳歌谷(2021.02.01) 减震器从出现到今天已经有了100多年的历史,最早车辆的减震系统由弹簧构成,虽然弹簧可以减轻路面冲击,性能较可靠,但它容易产生共振现象。在 1908年,世界第一台液压减震器研制成功,它用隔板将橡胶制成节流通道分为两部分,通过油液与节流通道摩擦,达到减震目的。之后,在20世纪30年代,摇臂式减震器得到普遍应用,工作压力在l0MPa 20MPa之间,但结构复杂、易损坏、体积大,最终被淘汰。二战之后,简式液压减震器取代了摇臂式减震器,其成本低,寿命长,但容易出现充油不及时的问题,若充油不及时,会影响减震效果,产生噪音与冲击。直到20世纪50年代,充气式减震器的出现解决了以上的问题,在双筒内充入低压0.4MPa~0.6MPa的氮气可以解决充油不及时的问题。同时单筒式充气减震器也开始发展,其采用浮动活塞的结构,使充入的氮气形成2.0MPa2.5MPa的高压气体,性能优于双筒式减震器,而且质量轻、性能好,但其成本较高。 油压减振器是铁道机车车辆上的一个重要部件。由于机车车辆的车轮与钢轨面之间是钢对钢的接触,因此,车轮表面的不规则和轨道的不平顺都直接经车轮传到悬挂部件上去,使机车车辆各部分高频和低频振动。如果这种振动不经过减振器来衰减,就会降低机械部件的结构强度和使用寿命,恶化运行品质。油压减

振器其性能优劣直接影响到行车的安全性和舒适性。尤其近年来我国铁路进入一个飞速发展时期,特别是在铁路跨越式发展政策的指引下,我国铁路将会进入一个全新的发展阶段。 二、减振器的基本结构大体相同,主要区别是: ( 1 )活塞的行程以及接头的安装尺寸不同; ( 2 )GS H、GYAW、G OH 3 种水平布置的减振器多了橡胶囊; ( 3 )GY AW、GOH的节流阀与另外3种不同。 基本结构见图 41、图 42 ,G S V、GS H、GYAW 图略。 1——上接头2——橡胶球较3——销轴4——防尘罩组成5——活塞杆6——防尘圈7——压盖;8——密封圈;9——油封圈;10——螺盖;11——0型密封圈 12——密封圈 13——活塞 14——节流阀弹簧 15——调节螺钉 16——压缩阀(一)17——压缩阀(二)18——回油阀片19——回油阀座20——底阀座21——弹簧螺盖22——底阀座弹簧23——底阀压缩阀24——油缸25——储油罐26——液压油27——拉伸阀(一)28——拉伸阀(二) 29——导承 图41 一系垂向简振器 1——上接头2——橡胶球较3——销轴4——防尘罩组成5——活塞杆 6——防尘圈 7——压盖 8——密封圈9——油封圈 10——螺盖11——0型密封圈 12——密封圈13——活塞 14——节流阀弹簧 15——调节螺钉 16——压缩阀(一) 17——压缩阀(二)18——回油阀片 19——回油阀座20——底阀座 21——弹

CFD仿真验证及有效性指南

CFD仿真验证及有效性指南 摘要 本文提出评估CFD建模和仿真可信性的指导方法。评估可信度的两个主要原则是:验证和有效。验证,即确定计算模拟是否准确表现概念模型的过程,但不要求仿真和现实世界相关联。有效,即确定计算模拟是否表现真实世界的过程。本文定义一些重要术语,讨论基本概念,并指定进行CFD仿真验证和有效的一般程序。本文目的在于提供验证和有效的重要问题和概念的基础,因为一些尚未解决的重要问题,本文不建议作为该领域的标准。希望该指南通过建立验证和有效的共同术语和方法,以助于CFD仿真的研究、发展和使用。这些术语和方法也可用于其他工程和科学学科。 前言 现在,使用计算机模拟流体的流动过程,用于设计,研究和工程系统的运行,并确定这些系统在不同工况下的性能。CFD模拟也用于提高对流体物理和化学性质的理解,如湍流和燃烧,有助于天气预报和海洋。虽然CFD模拟广泛用于工业、政府和学术界,但目前评估其可信度的方法还很少。这些指导原则基于以下概念,没有适用于所有CFD模拟的固定的可信度和精确度。模拟所需的精确度取决于模拟的目的。 建立可信度的两个主要原则是验证和有效(V&V)。这里定义,验证即确定模型能准确表现设计者概念模型的描述和模型解决方案的过程,有效即确定预期模型对现实世界表现的准确度的过程。该定义表明,V&V的定义还在变动,还没有一个明确的最终定义。通常完成或充分由实际问题决定,如预算限制和模型的预期用途。复合建模和计算模拟没有任何包括准确性的证明,如在数学分析方面的发展。V&V的定义也强调准确度的评价,一般在验证过程中,准确度以对简化模型问题的基准解决方法符合性确定;有效性时,准确度以对实验数据即现实的符合性确定。 通常,不确定性和误差可视为与建模和仿真准确度相关的正常损失。不确定性,即在任一建模过程中由于缺乏知识导致的潜在缺陷。知识缺乏通常是由对物理特性或参数的不完全了解造成的,如对涡轮叶片表面粗糙度分布的不充分描述。知识缺乏的另一个原因是物理过程的复杂性,如湍流燃烧。误差即在建模和

最新液压减震器结构分析(图)上课讲义

液压减震器主要有弹簧和阻尼器两个部分组成,弹簧的作用主要是支撑车身重量,而阻尼器则是起到减少震动的作用。 “阻尼”在汉语词典中的解释为:“物体在运动过程中受各种阻力的影响,能量逐渐衰减而运动减弱的现象”。阻尼器就是人造的物体运动衰减工具。 为了防止物体突然受到的冲击,阻尼在我们现实生活中有着广泛的应用,比如汽车的减震系统,还有弹簧门被打开后能缓缓地关闭等等。 阻尼器的种类很多,有空气阻尼器、电磁阻尼器、液压阻尼器等等。我们凯越车上使用的是液压阻尼器。 大家知道,弹簧在受到外力冲击后会立即缩短,在外力消失后又会立即恢复原状,这样就会使车身发生跳动,如果没有阻尼,车轮压到一块小石头或者一个小坑时,车身会跳起来,令人感觉很不舒服。有了阻尼器,弹簧的压缩和伸展就会变得缓慢,瞬间的多次弹跳合并为一次比较平缓的弹跳,一次大的弹跳减弱为一次小的弹跳,从而起到减震的作用。

为了了解减震器的工作原理,我们把防尘罩和弹簧去掉,直接看到阻尼器(见图一)。 液压阻尼器利用液体在小孔中流过时所产生的阻力来达到减缓冲击的效果。 红圈中是活塞,它把油缸分为了上下两个部分。当弹簧被压缩,活塞向下运行,活塞下部的空间变小,油液被挤压后向上部流动;反之,油液向下部流动。 不管油液向上还是向下流动,都要通过活塞上的阀孔。油液通过阀孔时遇到阻力,使活塞运行变缓,冲击的力量有一部分被油液吸收减缓了。

。 下面是压缩行程示意图,表示减震器受力缩短的过程。 图二为活塞向下运行,流通阀开启,油缸下部的油液受到压力通过流通阀向油缸上部流动。 图三为活塞向下运行,压力达到一定程度时,压缩阀开启,油缸下部的油液通过压缩阀流向油缸外部储存空间。 图中红色大箭头表示活塞运动方向,红色小箭头表示油液流动方向。

悬架用减振器设计指南设计

悬架用减振器设计指南 一、功用、结构: 1、功用 减振器是产生阻尼力的主要元件,其作用是迅速衰减汽车的振动,改善汽车的行驶平顺性,增强车轮和地面的附着力.另外,减振器能够降低车身部分的动载荷,延长汽车的使用寿命.目前在汽车上广泛使用的减振器主要是筒式液力减振器,其结构可分为双筒式,单筒充气式和双筒充气式三种. 导向机构的作用是传递力和力矩,同时兼起导向作用.在汽车的行驶过程当中,能够控制车轮的运动轨迹。 汽车悬架系统中弹性元件的作用是使车辆在行驶时由于不平路面产生的 振动得到缓冲,减少车身的加速度从而减少有关零件的动负荷和动应力。如 果只有弹性元件,则汽车在受到一次冲击后振动会持续下去。但汽车是在连 续不平的路面上行驶的,由于连续不平产生的连续冲击必然使汽车振动加剧, 甚至发生共振,反而使车身的动负荷增加。所以悬架中的阻尼必须与弹性元 件特性相匹配。 2、产品结构定义 ①减振器总成一般由:防尘罩、油封、导向座、阀系、储油缸筒、工作缸筒、活塞杆构成。 ②奇瑞现有的减振器总成形式:

二、设计目的及要求: 1、相关术语 *减振器 利用液体在流经阻尼孔时孔壁与油液间的摩擦和液体分子间的摩擦形成对振动的阻尼力,将振动能量转化为热能,进而达到衰减汽车振动,改善汽车行驶平顺性,提高汽车的操纵性和稳定性的一种装置。 *阻尼特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与位移(S)的关系为阻尼特性。在多种速度下所构成的曲线(F-S)称示功图。 *速度特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与速度(V)的关系为速度特性。在多种速度下所构成的曲线(F-V)称速度特性图。 *温度特性 减振器在规定速度下,并在多种温度的条件下,所测得的阻力(F)随温度(t)的变化关系为温度特性。其所构成的曲线(F-t)称温度特性图。 *耐久特性 减振器在规定的工况下,在规定的运转次数后,其特性的变化称为耐久特性。 *气体反弹力 对于充气减振器,活塞杆从最大极限长度位置下压到减振器行程中心时,气体作用于活塞杆上的力为气体反弹力。 *摩擦力

车流量仿真分析-Flotran CFD

2006年用户年会论文 基于ANSYS流体动力学的车流量仿真分析1 [刘长虹,郑杰,朱晓华,张海波,黄虎,陈力华] [上海工程技术大学汽车工程学院,上海,201600] [ 摘要 ] 将交通流比拟为管道流体模型并且利用有限元分析软件ANSYS中的FLOTRAN CFD流体分析模块对隧道口交通流进行比拟及仿真,得出相应交通流量模型和车辆流动模拟图。并对不同车速下 交叉道口的通行能力进行模拟,确定出最佳车速比。且对不同入口形状进行车流通畅度的 ANSYA软件比较模拟,通过模拟直观的展示出不同道路入口形状对车流和道路的影响。最后对 高峰路段路口设计提出有关建议。 [ 关键词]交通流,交通流模型,ANSYS,模拟 Simulating to Traffic Flux By the ANSYS Fluid Dynamic Analysis [Liu Changhong, Zheng Jie, Zhu Xiaohua, Zhang Haibo, Huang Hu, Chen Lihua] [Automobile College Shanghai University of Engineering Science, Shanghai 201600] [Abstract ] Firstly, based on the fluid dynamic mechanics of channel, a traffic flow model is built. Secondly, the traffic flow model on cross road is simulated with the finite element method software (ANSYS). Then according to the calculating results, the simulating traffic ability at the entrance of the roadl in different speed and the different entrance figures are calculated directly. Finally, some suggestions of designing the heavy road are given. [ Keyword ] traffic flow, traffic flow simulation, ANSYS, Simulation. 1.前言 当前,社会经济的迅速发展与交通建设的相对滞后,已经构成非常突出的世界性矛盾,在发展中国家尤其突出。在我国许多大城市中,交通堵塞,事故频繁,成了众所周知的“都市顽症”。以上海市为例,上世纪九十年代的资料表明,在交通高峰期,市中心机动车平均车速不到15km/h,最低的车速仅仅为4km/h,即低于正常的步行速度。解决这个矛盾的一个重要办法是大力进行市政交通建设,实现交通的立体化,现代化。同时还要保证建设道路的合理性。交通流理论是解决这类方法的一种理论方法[1,2],其中有根据流体动力学理 1上海市教委基金项目(041NE31)和上海市科委基金项目(04QMX1452)资助

减震器的设计原理

减震器的设计原理 摩托车是现代化的交通运输工具,型式与种类很多,使用场合各不相同。为保证它的良好的使用性能,在结构上,它必须装备减震器。减震器是摩托车悬架的一个重要组成部分,它是摩托车行驶系的一个重要总成。 什么叫减震器 以液压节流方式起阻尼作用的部件叫减震器。 2 、减震器的作用 A 、支承车身。 B 、传递路面对车身的各种反力。 c 、缓和车身冲击,减弱车身振动。 D 、抑制车辆跳动,改善轮胎对地面的接地性,保证车辆的安全性。 3 、减震器的设计原理 A.液体通过阻尼孔形成紊流,产生液体紊流阻尼力。 B.减震器的基本特性,为其速度特性: P =C·Vn C:减震器的阻尼系数;V :减震器的工作速度;n :减震器的阻尼特性指数 上式中: 减震器弹簧悬架产生的阻力:P =K·S K :弹簧悬架刚度;S :减震器位移 减震器作为悬架系统,K 、C 的取值比较关键,最终使整车的振动频率达到接近人类步行的固有频率较为理想:l~2ZHz 。 前减震器结构前减震器的典型结构,主要有双筒式前减震;三筒式前减震器;倒置式前减震器,如图( ZSZOOGS 为例): 4 、减震器的工作原理 减震器在上下运动过程中,其型腔间的压差△ P ,迫使减震油液通过阻尼孔或阀系,产生阻尼力,起到减震的作用。 5 、为充分匹配整车的使用性能,以及减震器的不断向前发展,逐步开发和研究出倒置式前减、油气分离式后减。在高压气室的作用下,防止阻尼特性的空程和畸变,充分发挥其减震性能。 减震器的质量控制 1 、减震器的关重性能---示功特性的控制。示功图形圆滑、丰满,不得有畸变、空程、忽大忽小现象,满足整车乘骑的舒适性。 2 、减震器强度指标的控制 减震器作为一个性能件,同时也是一个安全件,主要控制各零件强度和焊接强度。 3 、减震器油品质量控制 减震器油品必须充分适应外界环境,其适用环境温度在-40 ℃~+120 ℃,具有抗泡、抗氧化、抗剪切、高润滑性等特点。

汽车减振器阻尼特性的仿真分析(精)

第18卷增刊2 系 统仿真学报? Vol. 18 Suppl.2 2006年8月 Journal of System Simulation Aug., 2006 汽车减振器阻尼特性的仿真分析 任卫群1, 赵峰1, 张杰1,2 (1.华中科技大学CAD中心, 湖北武汉 430074; 2.万向集团技术中心, 浙江杭州311215) 摘要:采用系统仿真方法及MATLAB软件,建立汽车减振器的详细模型,并进行仿真研究。模型能反映减振器的详细物理结构,如考虑油液特性影响、阀片刚度影响、摩擦力影响等。模型经试验校验/阻尼特性计算精度达90%,模型精度能满足实际工程问题的需要。经二次开发形成一套能进行参数化自动建模和仿真分析的软件系统,最终在汽车减振器设计过程中形成一套阻尼特性研究的系统完整的方法。 关键词:系统仿真;汽车减振器;阻尼特性中图分类号:TP 391.77 文献标志码:A 文章编号:1004-731X (2006) S2-0957-04 Simulation on Damping Behavior of Vehicle Shock Absorber REN Wei-qun1, ZHAO Feng1, ZHANG Jie1,2 (1. CAD Center, Huazhong University of Science and Technology, Wuhan 430074, China; 2. Wanxiang Group Technical Center, Hangzhou 311215, China) Abstract: The system simulation method and the MATLAB software were used to build a detailed model of a vehicle shock absorber. The detailed structure includes in the model, such as the hydraulic properties, the valve stiffness and the friction force. The absorber model was validated using test data and the precision is above 90%, which can fulfill the engineering requirement. An automated modeling and simulation software package based on MATLAB was developed, which could support a systematic research of vehicle shock absorbers in its design. Key words: system simulation; vehicle shock absorbers; damping behavior 汽车双向筒式液压减振器的仿真模型分为两类,一类是反映减振器外部特性的黑箱模型[1-2],包括恢复力映射方法、神经网络方法等,黑箱模型不能细致地反映减振器具体结构(如阀片具体参数)调整对性能的直接影响,不能完全满足减振器模型作为性能预测工具的需要。另一类是基于内部结构机理建模的详细物理模型[3-4],包含压力模型和阀片压力-流速特性,其中压力模型用一阶非线性微分方程表达流体可压缩性模型、确定不同的内部腔体压力,阀片的压力-流速特性可采用测力计试验辨识阀片参数后解析地确定、或由试验直接测定得到压力-流速

汽车减震器毕业设计

汽车减震器毕业设计 篇一:减震器毕业设计论文 毕业设计(论文) 减震器设计 摘要:在钻井作业中,由于井底凹凸不平造成钻头频繁跳转,如果钻头与钻铤直接连接,则整个钻蛀将于钻头一起加速上下运动,产生强烈的震动,破坏最优钻井条件,降低钻头和钻具寿命。甚至破坏钻井设备。液压减震器不同于单纯以硅油等液体为工作介质的液压减震器,亦不同于单纯采用减震弹簧作为弹性元件的机械减震器。该减震器是在二者的基础上,克服了单向减震器的缺点,集成二者的优点而研发的新型井下工具。它具有弹性刚度自动调节.连件强度高.性能稳定.工作可靠.工作寿命长等有点。 本文研究的主要主要内容有:对液压减震器的结构设计,结构设计主要是确定减振器的类型、布置形式、安装角度和选用数量,这是进行尺寸设计的基础。对液压减震器的尺寸设计,尺寸设计的过程主要包括相对阻尼系数以及最大卸荷力的确定,减振器工作缸、活塞、以及相关零部件的尺寸计算完成结构设计与尺寸设计后应对减振器的强度和稳定性进行校核,校核的结果应符合国家相关技术标准。本文的研究成果对减振器的进一步研究有重要的理论和实际应用意义.

关键词:液压式;减振器;液压缸 毕业设计(论文) Shock absorber design Abstract: In the drilling operation, due to the bottom hole uneven causing frequent jumps of the drill bit, drill bit and drill collars are directly connected, the entire borer will drill with accelerated up and down movement, produced a strong shock, destruction of the optimum drilling conditions, reduce drill and drill life. Even destruction of the drilling equipment. Hydraulic mechanical drill string shock absorber is different from the pure liquid silicone oil as the working medium hydraulic shock absorber, mechanical shock absorbers are also different from the simple shock absorber spring as an elastic element. The shock absorber is on the basis of the two, to overxxe the shortxxings of the one-way shock absorber, to integrate the advantages of both the research and development of new down hole tools. It has automatic adjustment of the elastic stiffness. Even pieces intensity. Stable performance and reliable work. Long working life a little.

实验(II) 油压减振器性能测试

实验(II)液压减振器性能测试 一、实验目的 (1) 了解液压减振器的具体结构,增加感性认识。 (2) 求得液压减振器的实际阻力特性,巩固所学理论知识。 (3)掌握新造或检修后液压减振器的性能试验。 二、实验内容 (1) 熟悉解体的液压减振器各零部件的结构、形状.大小尺寸等。 (2)掌握SFK型液压减振器拉压行程的特性,测定阻力系数。 三、液压减振器试验台简介 在理论分析中常把油压减振器当作线性阻尼看待, 即阻力与速度成正比,F=-CV,并把减振器设计的名义阻力系数C 当作计算的参数。每一个新造或修竣的减振器均在专门的试验台上测定其性能参数。 试验台由电机经三角皮带.蜗轮蜗扦带动偏心连杆机构1,使减振器3缸筒作上下运动,减振器下端装在偏心连杆机构的滑块上,上端固定在曲拐上,曲拐装在一根测力扭杆上,利用扭杆的变形测量减振器阻力的大小。当偏心轮转动时,带动滑块2怍上下往复运动,减振器活塞上下运动时,产生阻力,这阻力迫使B点跟着上下运动.A点位移与偏心轮的运动有关,而B点的位移与减振器所产生的阻力有 关.A点与B点的位移之差,就是减振器上下两端的相对 位移.扭杆的作用就好象在B点的上方有—个假想的测力 弹黄,根据B点位移的大小就可以反映减报器在运动过程 中所产生的阻力.实际上扭杆受力是反映在扭杆变形上, 这变形通过绘图臂而得到放大,所以绘图臂下端的记录笔 在左右方向的偏移量即表示扭扦扭力的大小,也就是减振 器阻力的大小.记录笔本身不作上下移动,而记录板跟A 一起作上下移动这样记录笔所记录的图形在上下方向表 示活塞的位移,记录下的倾斜椭圆图形,其面积就是减振 器上下一次所消耗的功,此即减振器示功图(见图1,x轴 表示减振器的阻力,y轴表示活塞的上下位移). 图1 液压减振器试验原理

相关文档
相关文档 最新文档