文档库 最新最全的文档下载
当前位置:文档库 › 变压器的异常现象及其原因

变压器的异常现象及其原因

变压器的异常现象及其原因
变压器的异常现象及其原因

1.从变压器的异常声音判断故障

“吱吱”声。当分接开关调压之后,响声加重,以双臂电桥测试其直流电阻值,均超过出厂原始数据的2%,属接触不良,系触头有污垢而引起的。

处理方法:旋开分接开关的风雨罩,卸下锁紧螺丝,用搬手把分接开关的轴左右往复旋转10~15次,即可消除这种现象,修后立即装配还原。其次,终端杆引至跌落式熔断器的引下线采用裸铝或裸铜绞线,但张力不够,再加上瓷瓶扎线松驰所致。在黄昏和黎明时可见小火花发出“吱吱”声,这与变压器内部发出的“吱吱”声有明显区别。处理方法:利用节假日安排停电检修,将故障排除。

“噼啪”的清脆击铁声。这是高压瓷套管引线,通过空气对变压器外壳的放电声,是变压器油箱上部缺油所致。

处理方法:用清洁干燥的漏斗从注油器孔插入油枕里,加入经试验合格的同号变压器油(不能混油使用),补油量加至油面线温度+20℃为宜,然后上好注油器。否则,油受热膨胀会产生溢油现象。如条件允许,应采用真空注油法以排除线圈中的气泡。对未用干燥剂的变压器,应检查注油器内的排气孔是否畅通无阻,以确保安全运行。

沉闷的“噼啪”声。这是高压引线通过变压器油而对外壳放电,属对地距离不够(<30mm)或绝缘油中含有水份。

驱潮的方法:另从三相三线开关中接出三根380V的引线,分别接在配电变压器高压绕组A、B、C端子上,从而产生零载电流,该电流不仅流过高压线圈产生了铜损,同时也产生了磁通,磁通通过线圈芯柱、铁心上下轭铁、螺栓、油箱还产生了铁损,铜损和铁损产生的热能使变压器油、线圈、铁质部件的水份受到均匀加热而蒸发出来,均通过油枕注油器孔排出箱外。低压线圈中感应出25V的零载电压,作为油箱产生涡流发热的电源。从配电变压器的低压绕组a、b、c端子上,接出三根10~16mm2塑料铝芯线,分别在油箱外壳上、中、下缠绕三匝之后,均接于配电变压器低压绕组零线端子上,所产生的涡流发出的热能能使配电变压器油箱受到均匀加热,进一步提高配电变压器的干燥质量。注意,若焙烘的温度高于配电变压器的额定温度,去掉B相电源后即可降低干燥时的温度。

“吱啦吱啦”的如磁铁吸动小垫片的响声,而变压器的监视装置、电压表、电流表、温度计的指示值均属正常。这往往由于新组装或吊芯检修时的疏忽大意,没将螺钉或铁垫上紧或掉入小号铁质部件,在电磁力作用下所致。

处理方法:待变压器吊芯检修时加以排除。

特殊噪声。由于负载和周围环境温度的变化,使油枕的油面线发生变化,因此,水蒸气伴随空气一并被吸入油枕内,凝成水珠,促使内部氧化生锈,随着积聚程度加剧,会落到油枕的下部。铁锈通过油枕与油盖的连通管,堆积在部分轭铁上,从而在电磁力的作用下产生振动,发出特殊噪声。这还会导致变压器运行油机械杂质增多,使油质恶化。

处理方法:油枕与集泥器的清洁是同时进行的,应根据变压器的负荷情况,温升状况来决定。使用经验证明,两年清洁一次为好。

继续放电声。变压器的铁心接地,一般采用吊环与油盖焊死或用铁垫脚方法。当脱焊或接触面有油垢时,导致连接处接触不良,而铁心及其夹件金属均处在线圈的电场中,从而感应出一定电位,在高压测试或投入运行时,其感应电位差超过其问的放电电压时,即会产生断续放电声。

处理方法:吊芯检查。把接地脱焊面清除干净,重新电焊或把油泥消除至清洁为止,保持良好的接触状态。同时应以500V摇表测试,铁心与变压器外壳要接地良好。

2.油位显著下降及严重漏油

正常时的油位上升或下降是由温度变化造成的,变化不会太大。当油位下降显著,甚至从油位计中看不见油位,则可能是因为变压器出现了漏油、渗油现象。变压器运行中渗漏油

现象比较普遍,油位在规定的范围内,仍可继续运行或安排计划检修。

3. 变压器油温异常

变压器在负荷和散热条件、环境温度都不变的情况下,较原来同条件时的温度高,并有不断升高的趋势,也是变压器温度异常升高,与超极限温度升高同样是变压器故障象征。引起温度异常升高的原因有:

变压器匝间、层间、股间短路;

变压器铁芯局部短路;

因漏磁或涡流引起油箱、箱盖等发热;

长期过负荷运行,事故过负荷;

散热条件恶化等。

处理方法:运行时发现变压器温度异常,应先查明原因后,再采取相应的措施予以排除,把温度降下来,如果是变压器内部故障引起的,应停止运行,进行检修。

4.变压器油枕喷油爆炸

喷油爆炸的原因是变压器内部的故障短路电流和高温电弧使变压器油迅速老化,而继电保护装置又未能及时切断电源,使故障较长时间持续存在,使箱体内部压力持续增长,高压的油气从防爆管或箱体其它强度薄弱之处喷出形成事故。

绝缘损坏:匝间短路等局部过热使绝缘损坏;变压器进水使绝缘受潮损坏;雷击等过电压使绝缘损坏等导致内部短路的基本因素。

断线产生电弧:线组导线焊接不良、引线连接松动等因素在大电流冲击下可能造成断线,断点处产生高温电弧使油气化促使内部压力增高。

调压分接开关故障:配电变压器高压绕组的调压段线圈是经分接开关连接在一起的,分接开关触头串接在高压绕组回路中,和绕组一起通过负荷电流和短路电流,如分接开关动静触头发热,跳火起弧,使调压段线圈短路。

5.变压器油色异常

新变压器油呈微透明、淡黄色,运行一段时间后油色会变为浅红色。如油色变暗,说明变压器的绝缘老化;如油色变黑(油中含有碳质)甚至有焦臭味,说明变压器内部有故障(铁心局部烧毁、绕组相间短路等),这将会导致严重后果,应将变压器停止运行进行检修,并对变压器油进行处理或换成合格的新油。变压器油在变压器中起绝缘和冷却作用,若油质变坏就会起不到应有的作用。为防止因油质变坏而发生严重后果,应在变压器正常运行时,定期取油样进行化验,以便及时发现问题。

以上对变压器的声音、温度、油位、外观及其他现象对配电变压器故障的判断,只能作为现场直观的初步判断。因为,变压器的内部故障不仅是单一方面的直观反映,它涉及诸多因素,有时甚至会出现假象。必要时必须进行变压器特性试验及综合分析,才能准确可靠地找出故障原因及处理方法。据统计,大型电力变压器故障以临界性故障出现最多,灾难性故障出现率最低但危害程序最大,致命性故障出现率较高,轻度性故障率不高;严酷程度低的故障进一步发展可能级或越级成为严酷度高的故障,因而在变压器运行维护时要坚决杜绝(Ⅰ)类故障,加强防范(Ⅱ)类故障,密切注意(Ⅲ)类故障,时刻提防(Ⅳ)类故障。

大型电力变压器灾难性故障或致命性故障不仅给自身带来巨大的损失,同时也严重影响电网的安全运行。因此,对电力变压器应建立在线监测装置,密切注视其临界状态,以确定是否需要进行检修,能有效地防止故障状态的转化,减少或避免电力变压器故障发展带来的损失,提高电力变压器运行的可能性。

配电变压器损坏原因分析及对策(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 配电变压器损坏原因分析及对策 (标准版)

配电变压器损坏原因分析及对策(标准版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 1原因分析 在广大农村,配电变压器时常损坏,特别是在农村用电高峰期和雷雨季节更是时有发生,笔者通过长期跟踪调查发现导致配电变压器损坏的主要原因有以下几个方面。 1.1过载 一是随着人们生活的提高,用电量普遍迅速增加,原来的配电变压器容量小,小马拉大车,不能满足用户的需要,造成变压器过负载运行。二是由于季节性和特殊天气等原因造成用电高峰,使配电变压器过载运行。由于变压器长期过载运行,造成变压器内部各部件、线圈、油绝缘老化而使变压器烧毁。 1.2绕组绝缘受潮 一是配电变压器的负荷大部分随季节性和时间性分配,特别是在农村农忙季节配电变压器将在过负荷或满负荷下使用,在夜晚又是轻负荷使用,负荷曲线差值很大,运行温度最高达80℃以上,而最低温

度在10℃。而且农村变压器因容量小没有安装专门的呼吸装置,多在油枕加油盖上进行呼吸,所以空气中的水分在绝缘油中会逐渐增加,从运行八年以上的配电变压器的检修情况来看,每台变压器底部水分平均达100g以上,这些水分都是通过变压器油热胀冷缩的呼吸空气从油中沉淀下来的。二是变压器内部缺油使油面降低造成绝缘油与空气接触面增大,加速了空气中水分进入油面,降低了变压器内部绝缘强度,当绝缘降低到一定值时变压器内部就发生了击穿短路故障。 1.3对配电变压器违章加油 某电工对正在运行的配电变压器加油,时隔1h后,该变压器高压跌落开关保险熔丝熔断两相,并有轻微喷油,经现场检查,需要大修。造成该变压器烧毁的主要原因:一是新加的变压器油与该变压器箱体内的油型号不一致,变压器油有几种油基,不同型号的油基原则上不能混用;二是在对该配电变压器加油时没有停电,造成变压器内部冷热油相混后,循环油流加速,将器身底部的水分带起循环到高低压线圈内部使绝缘下降造成击穿短路;三是加入了不合格变压器油。 1.4无功补偿不当引起谐振过电压 为了降低线损,提高设备的利用率,在《农村低压电力技术规程》中规定配电变压器容量在100kVA以上的宜采用无功补偿装置。如果补

伺服电机损坏原因分析

伺服电机损坏原因分析 三相交流伺服电动机应用广泛,但通过长期运行后,会发生各种故障,及时判断故障原因,进行相应处理,是防止故障扩大,保证设备正常运行的一项重要的工作。 一、伺服电机通电后电动机不能转动,但无异响,也无异味和冒烟。1.故障原因①电源未通(至少两相未通); ②熔丝熔断(至少两相熔断);③过流继电器调得过小; ④控制设备接线错误。2.故障排除①检查电源回路开关,

熔丝、接线盒处是否有断点,修复;②检查熔丝型号、熔断原因,换新熔丝;③调节继电器整定值与电动机配合; ④改正接线。 二、通电后电动机不转有嗡嗡声1.故障原因①转子绕组有断路(一相断线)或电源一相失电;②绕组引出线始末端接错或绕组内部接反;③电源回路接点松动,接触电阻大;④电动机负载过大或转子卡住;⑤电源电压过低;⑥小型电动机装配太紧或轴承内油脂过硬;⑦轴承卡住。2.故障排除①查明断点予以修复;②检查绕组极性;判

断绕组末端是否正确;③紧固松动的接线螺丝,用万用表判断各接头是否假接,予以修复;④减载或查出并消除机械故障,⑤检查是否把规定的面接法误接;是否由于电源导线过细使压降过大,予以纠正,⑥重新装配使之灵活;更换合格油脂;⑦修复轴承。 三、伺服电机电动机起动困难,额定负载时,电动机转速低于额定转速较多1.故障原因①电源电压过低;②面接法电机误接;③转子开焊或断裂;④转子局部线圈错接、

接反;③修复电机绕组时增加匝数过多;⑤电机过载。2.故障排除①测量电源电压,设法改善;②纠正接法; ③检查开焊和断点并修复;④查出误接处,予以改正;⑤恢复正确匝数;⑥减载。 四、电动机空载电流不平衡,三相相差大1.故障原因①绕组首尾端接错;②电源电压不平衡;③绕组存在匝间短路、线圈反接等故障。2.故障排除①检查并纠正;②测量电源电压,设法消除不平衡;③消除绕组故障。

变压器烧毁原因分析1

变压器烧毁原因分析 变压器烧毁原因 (1)配电变压器高、低压两侧无保险。有的虽然已经装上跌落式熔断器和羊角保险,但其熔丝多是采用铝或铜丝代替,致使低压短路或过载时,熔丝无法正常熔断而烧毁变压器。 (2)配电变压器的高、低熔丝配置不当。变压器上的熔丝普遍存在着配置过大的现象,从而造成了配电变压器严重过载时,烧毁变压器。 (3)由于农村照明线路较多,大多数又是采用单相供电,再加上施工中跳线的随意性和管理不到位,造成了配变负荷的偏相运行。长期使用,致使某相线圈绝缘老化而烧毁变压器。 (4)分接开关。 1)私自调节分接开关。由于冬夏两季的用电负荷差异大,电压的高低变化大。因而有些农村和企业的电工不经电力修试部门试验调整而私自调节分接开关,造成配变分接开关不到位,接触不良而烧毁。 2)分接开关质量差,结构不合理,压力不够,接触不可靠,外部字轮位置与内部实际位置不完全一致,引起星形动触头位置不完全接触,错位的动、静触头使两抽头之间的绝缘距离变小,并在两抽头之间的电势作用下发生短路或对地放电,短路电流很快就会把抽头线匝烧毁,甚至导致整个绕组损坏。 (5)渗油是变压器最为常见的外表异常现象。由于变压器本体内充满了油,各连接部位处都有胶珠、胶垫以防止油的渗漏。经过长时间的运行,会使变压器中的某些胶珠、胶垫老化龟裂而引起渗油,从而导致绝缘受潮后性能下降,放电短路,烧毁变压器。 (6)配电变压器的高、低压线路大多数是由架空线路引入,由于避雷器投运不及时或没有安装10kV避雷器,造成雷击时烧毁变压器。 (7)一些配电变压器没有配置一级保护,或者是配置了一级保护但其动作性、可靠性极低,有的甚至根本不能动作。 (8)铁心多点接地。 1)l0kV配电变压器铁心多点接地是很不容易被发现和测试的,这主要是因为变压器的铁心接地是在内部用一块很薄的紫色铜片一头夹在铁心(硅钢片)之间,另一头则压在铁心夹板上与变压器外壳直接连接。 2)铁心硅钢片之间涂有绝缘漆,但其绝缘电阻很小,只能隔断涡流而不能阻止高压感应电流。如果硅钢片表面上的绝缘漆因自然老化,会产生很大的涡流损耗,增加铁心的局部过热,损坏变压器。 (9)当配电变压器低压侧发生接地、相间短路时,将产生一个高于额定电流20-30倍的短路电流,这么大的电流作用在高压绕组上,线圈内部将产生很大的机械应力,这种机械应力将导致线圈压缩,短路故障解除后应力也随着消失,线圈如果重复受到机械应力的作用后,其绝缘胶珠、胶垫等就会松动脱落,铁心夹板螺丝也会稍微松弛,高压线圈畸变或崩裂。另外也会产生高出允许温升几倍的温度,从而导致变压器在极短的时间内烧毁。 (10)人为的损坏。 1)变压器的引出线是铜螺杆,而架空线一般多采用铝芯胶皮线,这样在空气中铜铝之间是很容易产生电化腐蚀的,在电离作用下,铜铝之间形成氧化膜,使其接触电阻增大,在引线处将螺杆、螺帽及引线烧坏或熔在一起。 2)套管闪络放电也是变压器常见的外表异常现象之一。空气中有导电性能的金属尘埃附吸在套管表面上,若遇上雨雪潮湿天气,电网系统谐振,遭受雷击过电压时,就会发生套管闪络放电或爆炸。 3)在紧固或松动变压器的引线螺帽时,用力不均使导电螺杆跟着转动,导致变压器内部高压线圈引线扭断或低压引出的软铜片相碰造成相间短路。 4)在吊芯检修时没有按检修规程及工艺标准进行,常常不慎将线圈、引线、分接开关等处的绝缘破坏或将工具遗忘在变压器内,轻则发生闪烁放电现象,重则短路接地,损坏变压器。 综上所述,配电变压器烧毁的原因是多方面的,有的是自然所致,有的则是人为所造成的。

变压器相间短路后备保护

第五节变压器(发变组)相间短路后备保护 1.概述 变压器(发变组)相间短路后备保护有过流保护、复合电压启动的过流保护、负序过流保护和单元件低压启动过流保护、阻抗保护。 1.1过流保护 用于降压变压器,动作电流应考虑电动机自启动和变压器可能出现的最大过负荷时不误动。 1.2复合电压启动(负序电压和线电压)的过流保护 用于升压变压器、系统联络变压器,当降压变压器的过流保护灵敏度不够时也可采用此后备保护。整定原则如下: (1)过电流元件动作电流按下式计算。 op I = re rel K K gn I 式中rel K -可靠系数,rel K =1.2。 re K -返回系数,re K =0.85~0.90。 gn I -发电机额定电流。 (2)负序电压元件动作电压按避越正常运行时最大负序不平衡电压整定,根据经验取 式中gn U -发电机额定电压。 (3)线电压元件动作电压按两条原则整定: 1) 电动机自启动时不应误动; 2) 发电机失磁时不应误动。 对于汽轮发电机,取op U =0.6gn U ; 对于水轮发电机,取op U =0.7gn U 。 1.3负序过流保护和单元件低压启动过流保护 对于5000KW 及以上的发电机,不对称短路后备保护采用负序过流保护,对称短路后备保护采用单相低压启动过流保护。 负序过流保护的动作电流的整定原则是:假定值班人员在120s 内可能采取措施来消除产生负序电流的根源,而120s 内负序电流对转子表层的过热作用以A t I =2 *2表示,对于间接冷却式发电机,A =30(汽轮发电机)或40(水轮发电机),*2I 为以gn I 为基值的负序电流标么值,为简化计,以2I 表示。以120s 内不损坏转子表层的负序电流2I 作为负序过流保护的动作电流,即5.0120.2≈= A I op (汽轮发电机)或6.0.2=op I (水轮发电机)。此外还应考 虑与相邻元件保护装置在灵敏度方面的配合来决定其延时大小。 如灵敏度不满足要求,可改用阻抗保护。 1.4阻抗保护 当其他后备保护不满足灵敏度要求时,不得不改用阻抗保护作为发-变组相间短路的后备保护。 2.原理及其微机实现 2.1四方 2.1.1发电机(变压器)复合电压过电流保护(电流可带记忆) 保护原理 保护反应发电机或变压器电压、负序电压和电流大小,保护设一段两时限,保护动作于发信或跳闸。 逻辑框图

配电变压器烧毁的原因及防范措施示范文本

配电变压器烧毁的原因及防范措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

配电变压器烧毁的原因及防范措施示范 文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1 10KV配电变压器烧毁的原因 在我从事十年的配电线路工作中,我遇到烧毁的配电 变压器多达13台,其中只有1台属于厂家质量问题,其余 12台都是人为因素造成的烧毁。人为因素主要是管理不到 位,工作人员责任心不强,工作不全面不完善所导致,下 面我就具体原因做如下介绍: 配电变压器高低压两侧无熔断器或熔断器熔丝选择过 大,与配电变压器容量不匹配或更换熔丝时随手用铜线(铝 线)代替熔丝,在超负荷下长时间严重过载运行都无法熔 断,熔断器形同虚设造成配电变压器烧毁。 配电变压器的高、低压线路大多数是由架空线路引

入,由于防雷装置的接地电阻不合格,接地线被盗未及时发现和处理;避雷器装置位置距变压器过远,超出10米保护范围;冬季撤出运行的避雷器在来年雷雨季节前未恢复投运,在雷雨季节遭受雷击过电压而烧毁变压器。 负荷管理不到位,三相负荷不均衡及严重超负荷。 农村除排灌专用变压器外,大多变压器采用单相供电,照明线路较多,再加上施工中按区域排线分负荷,接电随意性和管理不到位,造成三相负荷不均衡引起中性点飘移,严重时相电压将高出额定相电压很多,增加配电变压器损耗,铁芯发热,又因为变压器是按三相均衡负荷设计制造的,长期偏相重负荷运行使某相绕组不堪重负绝缘老化造成单相或两相绕组烧毁。 配电变压器日负荷变化大,在夏季干旱时,排灌用电剧增,特别是高温季节风扇、空调用电剧增,用电时间加长,使原来负荷不满的配电变压器超负荷运行,造成变压

汽轮鼓风机主油泵联轴器膜片频繁损坏的原因分析及处理

汽轮鼓风机主油泵联轴器膜片频繁损坏的原因分析及处理 摘要:分析了现场汽轮鼓风机主油泵联轴器膜片频繁损坏的原因。针对运行环境特点及汽轮鼓风机的具体情况,对故障的原因进行了详细的分析,提出消除此类故障措施,对防止同类的事故再次发生提出建议。 关键词:汽轮鼓风机主油泵联轴器膜片分析及处理 1.现状 莱钢能源动力厂银前3#汽轮鼓风机主油泵声音异常,对主油泵振动跟踪监测如表1: 从上表数据分析主油泵振动有劣化趋势遂对主油泵解体,检查发现联轴器膜片断裂,弹性垫片磨损严重,联轴器套筒中间弹性垫片与轴头接触面有明显磨损,不能正常使用。 为了彻底查找原因,对主油泵中心进行复查,发现泵轴比主轴低0.52mm,超差0.47 mm(高速旋转设备的联轴器中心标准数值为0.05 mm以内);解体检查齿轮箱,发现轴瓦与主从动齿轮轮齿面均有磨损现象,且比较严重。针对此次情况,调配一套备件,对膜片、泵轴、齿轮、轴瓦全部进行了更换,并重新调整中心,中心数据为泵轴高0.05mm,上开口0.04mm,右边开口0.035mm。 检修完毕开机动态试验,一个月后,在定修时停机检查,发现主油泵两片膜片又严重损坏,损坏程度比表1的程度有所减轻,汽轮机轴头和主油泵轴头与联轴器之间接触的弹性垫片磨损严重,复查中心,发现中心变化不大。 2.原因分析 2.1.联轴器中心改变。汽轮机在开停机时在重复发生热胀冷缩的过程,由于汽轮机的热膨胀与车头箱相对不同步、主油泵底部接触支撑面偏小且有微量变形,中心出现偏差,使主油泵在相对汽轮机的膨胀时轴向伸缩发生卡涩出现相对死点,造成主油泵振动增大。 2.2.汽轮机转子的轴向热膨胀使转子与主油泵车头箱相对位置发生变化。综合联轴器加工安装后的累积误差,造成主油泵联轴器轴向相对位置改变,使汽轮机转子轴头与主油泵传动轴头突出至联轴器连接法兰端面以外,汽轮机轴头、主油泵轴头与联轴器间的弹性垫片之间产生冲击力增大,联轴器所受轴向推力增大,导致弹性膜片因受到过大拉力和轴向窜动推力而断裂。 2.3.联轴器膜片疲劳损坏。膜片联轴器是由几组膜片(不锈钢薄扳)用螺栓交错地与两半联轴器联接,每组膜片由数片叠集而成,借鉴随机资料膜片参数,断定损坏的联轴器膜片单片厚度偏厚,导致膜片组刚性偏大韧性不足,不能充分

变压器烧毁的原因与解决措施

编号:SM-ZD-11603 变压器烧毁的原因与解决 措施 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

变压器烧毁的原因与解决措施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 配电变压器在运行一段时间后总会出现这样那样的问题,重要的如何减少配电变压器的故障时间和延长配电变压器的运行时间,因此,对变压器烧毁的原因进行分析是十分重要也是有意义的,还有就是要求管理人员工作要认真细致,这样就一定能有效避免变压器烧毁事故的发生。下面主要从变压器烧毁的原因以及解决方法进行分析。 1、变压器烧毁的原因 (1) 配电变压器高、低压两侧无熔断器。有的虽然已经装上跌落式熔断器和羊角保险,但其熔断件多是采用铝或铜丝代替,致使低压短路或过载时,熔断件无法正常熔断而烧毁变压器。 (2) 配电变压器的高、低压熔断件配置不当。变压器上的熔断件普遍存在着配置过大的现象,严重过载时,烧毁变压器。

配电变压器损坏原因分析及对策

编号:SM-ZD-70030 配电变压器损坏原因分析 及对策 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

配电变压器损坏原因分析及对策 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1 原因分析 在广大农村,配电变压器时常损坏,特别是在农村用电高峰期和雷雨季节更是时有发生,笔者通过长期跟踪调查发现导致配电变压器损坏的主要原因有以下几个方面。 1.1 过载 一是随着人们生活的提高,用电量普遍迅速增加,原来的配电变压器容量小,小马拉大车,不能满足用户的需要,造成变压器过负载运行。二是由于季节性和特殊天气等原因造成用电高峰,使配电变压器过载运行。由于变压器长期过载运行,造成变压器内部各部件、线圈、油绝缘老化而使变压器烧毁。 1.2 绕组绝缘受潮 一是配电变压器的负荷大部分随季节性和时间性分配,特别是在农村农忙季节配电变压器将在过负荷或满负荷下使用,在夜晚又是轻负荷使用,负荷曲线差值很大,运行温

高弹性联轴器损坏原因

高弹性联轴器损坏原因 来源:作者:日期:2011-6-18 10:50:59 浏览次数:0 高弹性联轴器,用于动力机械主从轴系的弹性联接。周向均列的弹性元件1联接于联轴器的主从毂体4、5,由多股钢丝绞合线经金属夹板固联成的弹性元件的螺旋环状弹性体构成了联轴器主从毂体间环形自由变形空间,联轴器主从毂体在轴向、径向和轴倾角等方向通过环形自由变形空间构成弹性位移补偿特征。适用于船用主、辅机,内燃机,柴油机,电动机和液压马达等驱动的各类(特别是设有单层或双层弹性隔振基础)动力装置的轴系联接。最近到船上进行扭振测试,从测试结果看联轴器的扭振特性相对于许用值很小,但联轴器却连续发生损坏,在排除自身质量问题和扭振外,一般还有哪些因素可以导致联轴器损坏? 1、原理:高弹性联轴器的主要弹性元件是扭转承载的橡胶组件,橡胶组件可设计成单排或多排,各橡胶组件又有多种标准刚度可供选择,可极大范围地满足扭振计算所确定的刚度要求。在船舶动力系统中使用高弹性联轴器的主要目的是传递功率和扭矩,补偿径向,轴向和角向对中误差,补偿旋转动量的振荡。调整系统自振频率。高弹性联轴器具有重量轻,安装方便,各向位移补偿量大,阻尼大,吸振能力及调频能力强等特点,能较好地保护主机、齿轮箱和轴系。 2、原因分析: 1)主机弹性减振器下沉,造成轴系不对中,而产生附加转矩!对新船舶这种可能很大。 2)高弹性联轴器橡胶元件发热断裂事故; 3)匹配问题:只有轴系中的各个设备,如柴油机、高弹性联轴器、齿轮箱、轴系其它部件、螺旋桨等均

有良好的设计和互相补充和支持,均各自提高设计制造水平,这样设计出来的船舶才是真正意义上的高质量的船舶。 4)原因是复杂的,还要具体情况具体分析! 上一条新闻:如何润滑保养联轴器下一条新闻:各式联轴器特点及使用场合

变压器相间短路后备保护

第五节 变压器(发变组)相间短路后备保护 1.概述 变压器(发变组)相间短路后备保护有过流保护、复合电压启动的过流保护、负序过流保护和单元件低压启动过流保护、阻抗保护。 1.1 过流保护 用于降压变压器,动作电流应考虑电动机自启动和变压器可能出现的最大过负荷时不误动。 1.2 复合电压启动(负序电压和线电压)的过流保护 用于升压变压器、系统联络变压器,当降压变压器的过流保护灵敏度不够时也可采用此后备保护。整定原则如下: (1) 过电流元件动作电流按下式计算。 op I = re rel K K gn I 式中 rel K -可靠系数,rel K =1.2。 re K -返回系数,re K =0.85~0.90。 gn I -发电机额定电流。 (2) 负序电压元件动作电压按避越正常运行时最大负序不平衡电压整定,根据经验取 gn op U U )12.0~06.0(.2= 式中 gn U -发电机额定电压。 (3) 线电压元件动作电压按两条原则整定: 1) 电动机自启动时不应误动; 2) 发电机失磁时不应误动。 对于汽轮发电机,取op U =0.6gn U ; 对于水轮发电机,取op U =0.7gn U 。 1.3 负序过流保护和单元件低压启动过流保护 对于5000KW 及以上的发电机,不对称短路后备保护采用负序过流保护,对称短路后备保护采用单相低压启动过流保护。 负序过流保护的动作电流的整定原则是:假定值班人员在120s 可能采取措施来消除产生负序电流的根源,而120s 负序电流对转子表层的过热作用以A t I =2 *2表示,对于间接冷却式发电机,A =30(汽轮发电机)或40(水轮发电机),*2I 为以gn I 为基值的负序电流标么值,为简化计,以2I 表示。以120s 不损坏转子表层的负序电流2I 作为负序过流保护的动作电流,即5.0120.2≈= A I op (汽轮发电机)或6.0.2=op I (水轮发电机)。此外还应考 虑与相邻元件保护装置在灵敏度方面的配合来决定其延时大小。 如灵敏度不满足要求,可改用阻抗保护。 1.4 阻抗保护 当其他后备保护不满足灵敏度要求时,不得不改用阻抗保护作为发-变组相间短路的后备保护。 2.原理及其微机实现 2.1四方 2.1.1 发电机(变压器)复合电压过电流保护(电流可带记忆) 2.1.1.1 保护原理 保护反应发电机或变压器电压、负序电压和电流大小,保护设一段两时限,保护动作于发信或跳闸。 2.1.1.2 逻辑框图

配电变压器烧毁原因及对策

配电变压器烧毁原因及对策 摘要:针对农村配电变压器烧毁故障率高的现象,着重分析了配电变压器烧毁故障的几种类型及主要原因,提出了一些具体的判断方法和防范措施,为防止和减少配电变压器烧毁故障提供借鉴。 关键词:配电变压器故障短路 在电力系统中,配电变压器是供电部门管理数量最大的设备之一,与用电客户关系最为密切,由于配电变压器的安装配置点多面广,基本上都安装在室外和野外,因此对配电变压器的日常管理主要靠周期巡视检查和检修,工作量大而繁琐,如果管理不到位,就会引发设备事故和人身触电事故,而且还会造成一定的社会影响。本文对配电变压器烧毁故障的类型和原因深入分析,并提出一些预防措施,供今后在配电变压器的运行管理中参考。 1配电变压器烧毁原因 配电变压器烧毁在各供电公司都是比较常见的设备事故。大部分烧毁原因分为3大类:一是雷击过电压;二是低压短路;三是配电变压器过负荷。我局2008年结合安全大巡查活动,对造成配电变压器烧毁的情况进行了深入分析。通过对烧毁配电变压器现场测试并进行技术分析,得出如下原因: 1.1 配电变压器保护配置不合适 配电变压器高、低压侧无熔断器,有的虽装上跌落式熔断器,但采用铝丝或铜丝替代熔线,致使低压短路或过载时熔丝无法正常熔断而烧毁配电变压器。配电变压器的高、低压熔体配置容量过大,从而造成配电变压器严重过载时烧毁配电变压器。 1.2 负荷管理不到位 由于农村照明线路偏多,大多采用单相供电,加上施工中接电随意性和管理不到位,造成配电变压器负荷不平衡,长期运行使某相绕组绝缘老化而烧毁。 1.3 绝缘胶垫老化 由于配电变压器中的绝缘胶珠、胶垫老化龟裂而引起渗油,长时间的运行导致绝缘受潮后其性质下降而放电短路,烧毁配电变压器。 1.4 短路故障 无论是单相接地短路还是相间短路,由于配电变压器低压绕组阻抗很小,将会产生很大的短路电流。特别是近距离短路故障,短路电流数值可达配电变压

变压器7种常见故障解析

变压器7种常见故障解析 变压器是输配电系统中极其重要的电器设备,根据运行维护管理规定变压器必须定期进行检查,以便及时了解和掌握变压器的运行情况,及时采取有效措施,力争把故障消除在萌芽状态之中,从而保障变压器的安全运行。 1、绕组故障 主要有匝间短路、绕组接地、相间短路、断线及接头开焊等。产生这些故障的原因有以下几点: ①在制造或检修时,局部绝缘受到损害,遗留下缺陷; ②在运行中因散热不良或长期过载,绕组内有杂物落入,使温度过高绝缘老化; ③制造工艺不良,压制不紧,机械强度不能经受短路冲击,使绕组变形绝缘损坏; ④绕组受潮,绝缘膨胀堵塞油道,引起局部过热; ⑤绝缘油内混入水分而劣化,或与空气接触面积过大,使油的酸价过高绝缘水平下降或油面太低,部分绕组露在空气中未能及时处理。 由于上述种种原因,在运行中一经发生绝缘击穿,就会造成绕组的短路或接地故障。匝间短路时的故障现象使变压器过热油温增高,电源侧电流略有增大,各相直流电阻不平衡,有时油中有吱吱声和咕嘟咕嘟的冒泡声。轻微的匝间短路可以引起瓦斯保护动作;严重时差动保护或电源侧的过流保护也会动作。发现匝间短路应及时处理,因为绕组匝间短路常常会引起更为严重的单相接地或相间短路等故障。 2、套管故障 这种故障常见的是炸毁、闪落和漏油,其原因有: ①密封不良,绝缘受潮劣比,或有漏油现象; ②呼吸器配置不当或者吸入水分未及时处理; ③变压器高压侧(110kV及以上)一般使用电容套管,由于瓷质不良故而有沙眼或裂纹; ④电容芯子制造上有缺陷,内部有游离放电; ⑤套管积垢严重。 3、铁芯故障 ①硅钢片间绝缘损坏,引起铁芯局部过热而熔化; ②夹紧铁芯的穿心螺栓绝缘损坏,使铁芯硅钢片与穿心螺栓形成短路; ③残留焊渣形成铁芯两点接地; ④变压器油箱的顶部及中部,油箱上部套管法兰、桶皮及套管之间。内部铁芯、绕组夹件等因局部漏磁而发热,引起绝缘损坏。 运行中变压器发生故障后,如判明是绕组或铁芯故障应吊芯检查。首先测量各相绕组的直流电阻并进

干式变压器烧损原因分析及改造建议

干式变压器烧损原因分析及改造建议 针对一台单相干式变压器烧损情况,经过现场调查、报警信息、试验数据以及电压电流等进行综合分析,结果表明变压器一次侧匝间绝缘存在问题,导致变压器烧损,并结合设备运行情况提出预防干式变压器烧损的改造建议。 标签:干式变压器、匝间绝缘、改造建议 1.前言 目前干式变压器广泛应用于铁路、电力、工厂等电气系统中,干式变压器的结构简单,主要由硅钢片组成的铁芯和环氧树脂浇筑的线圈组成,铁芯和绕组不浸渍在绝缘油中,采用自然空气冷却或强迫空气冷却,具有体积小、噪音低、运行效率高,便于人员维护等优点。干式变压器已经成为电力系统中重要设备之一,安全可靠运行对于安全供电具有重要意义。但是干式变压器也出现过多起自燃烧损的案例,下面结合一起实际案例进行分析说明,并针对干式变压器燃烧的预防改进措施进行交流。 2.一起干式变压器烧损案例及原因分析 2017年09月01日发现铁路变电所亭内一台运行的单相干式变压器烧损,自用电系统已倒切至备用变压器运行。该干式变压器型号是DC9-30/27.5,投入运行时间11年,未进行过大修。对事故现场进行调查分析: 变压器本体现象:发现该干式变压器X端高压线圈的上半部分碳化较严重,下半部分完好,用锤子敲打碳化表面,碳化层即脱落,露出绕组发现导线已熔断,未发现强烈放电击穿痕迹。X端低压线圈上半部分出现火燎痕迹和碳化现象,下半部分完好,用锤子敲打碳化层表面,碳化层脱落后未露出绕组,绕组表面仍有绝缘层,也未发现强烈放电痕迹。A端高压线圈的上半部分靠X端侧存在火燎痕迹并明显碳化,其他侧无碳化现象,用锤子敲掉碳化层后未出现绕组,绕组表面仍有绝缘层。变压器连接设备现象:该干式变压器高压侧熔断管未熔断,测试状态正常,容量为5A。对变压器器身及周边进行检查,未发现动物攀爬痕迹,所以排除了动物短接引线的可能性。对变压器一二次引线及电缆进行检查,未发现短路现象。报警信息及电压电流情况:调取该变压器进线电压曲线,电压值正常,无明显波动;调取交流柜监测装置报文,发现在6时10分33秒849毫秒出现交流I路过电压(交流I路指的是该干式变压器低压馈出);6时11分22秒147毫秒交流I路过电压复归;6时11分22秒148毫秒交流I 路停电;6时11分22秒149毫秒交流I路停电复归;6时11分22秒724毫秒交流I路停电;6时11分22秒724毫秒交流I路停电复归;6时11分22秒724毫秒交流I路过电压;6时11分24秒938毫秒交流II路运行。 通过现场调查掌握的信息,进行该干式变压器烧损的原因分析:运行环境分析:现场环境温湿度是20℃35%,天气晴朗,运行环境满足干式变压器正常运行环境要求,也不存在雷击情况。进线电源分析:事故发生前后,该干变压器一次侧电压正常,不存在一次侧电压异常波动对变压器的影

配电变压器烧毁的原因及预防措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 配电变压器烧毁的原因及预防措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2035-82 配电变压器烧毁的原因及预防措施 (正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1 烧毁的原因 配电变压器高、低压两侧无熔断器,有的虽然已经装上跌落熔断器和羊角保险,但其熔断件多是采用铝或铜丝代替,致使低压短路或过载时,熔断件无法正常熔断而烧毁变压器。 配电变压器的高、低压熔断件配置不当。变压器上的熔断件普遍存在着配置过大的现象,从而造成配电变压器严重过载烧毁变压器。 由于农村照明线路较多,大多数又是采用单相供电,再加上施工中跳线的随意性和管理上的不到位,造成配变负荷的偏相运行。长期的使用,致使某相线圈绝缘老化而烧毁变压器。 私自调节分接开关。由于冬夏两季的用电负荷差

异大,电压的高低变化大,因而有些农村和企业的电工不经电力修试部门试验调整而私自调节分接开关,造成配变分接开关不到位,接触不良而烧毁。 分接开关质量差,结构不合理,压力不够,接触不可*,外部字轮位置与内部实际位置不完全一致,引起星形动触头位置不完全接触,错位的动、静触头使两抽头之间的绝缘距离变小,并在两抽头之间的电势作用下发生短路或对地放电,短路电流很快就会把抽头线匝烧毁,甚至导致整个绕组损坏。 渗油是变压器最为常见的外表异常现象。由于变压器本体内充满了油,各连接部位处都有胶珠、胶垫防止油的渗漏。经过长时间的运行,会使变压器中的某些胶珠、胶垫老化龟裂而引起渗油,从而导致绝缘受潮后性能下降,放电短路,烧毁变压器。 配电变压器的高、低压线路大多数是由架空线路引入,由于避雷器投运不及时或没有安装10kV避雷器。造成雷击时烧毁变压器。 一些配电变压器没有配置一级保护,或者是配置

变压器烧毁事故的分析

对变压器中性点直接接地装置烧毁事故的分析 唐海军 ANALYSIS OF BURN-OUT ACCIDENT OCCURRING AT DIRECT NEUTRAL GROUNDING DEVICE OF TRANSFORMER TANG Hai-jun (Changde Electric Power Bureau,Changde 415001,Hunan Province,China) 摘要:通过调查两起变压器中性点接地装置烧断、烧毁事故,从设计选型角度入手,采用电力系统短路故障计算方法,并结合继电保护配置及整定值,对故障现象及可能造成的保护误动和拒动以及供电可靠性进行了分析,建议采取用微机保护缩短故障切除时间、及时进行设备热稳定校验等措施。 关键词:变压器;中性点接地;接地装置烧毁;继电保护;电力系统 1 引言 近年来随着电力系统的发展,电网结构越来越复杂,规模也越来越庞大,发生复杂故障的机率逐渐增长,系统短路水平不断抬高,原有设备的抗故障能力却相对下降,很有必要对其进行计算校核;新投运设备的设计和选型计算俞显重要。对于大电流接地系统,由于变压器中性点经接地装置直接接地(如图1所示),变压器中性点的接地数目和分布决定了整个系统的零序电流分布和大小,中性点接地的好坏对电网的运行和系统稳定有着举足轻重的作用。笔者从对大量运行变压器的中性点引线、接地刀闸的调查了解到:这些接地装置大部分在设计选型时采用了估算值、经验值,并没有进行深入细致的计算;投入运行后,由于该回路正常没有电流流过,存在的隐患常常不易被发现,也往往不被运行和检修人员重视,对于腐蚀、锈蚀、压接不紧等情况也未及时进行处理,使得系统故障时经常有引线烧断、刀闸触头烧坏、连接软铜线(刀闸辨子线)烧断、连接接头处发热、发红等现象。本文通过调查两起变压器中性点接地装置烧断、烧毁事故,从设计选型角度入手,采用电力系统短路故障计算方法,并结合继电保护配置及整定值,对故障现象及可能造成的保护误动和拒动以及供电可靠性进行了分析。 图1变压器中性点接线 2 两次中性点接地装置烧断、烧毁事故情况 (1)铁山变电站。2001年8月28日9:10,雷雨天气,发现某市的铁山变电站的2号主变110kV 中性点引线(见图2)、5?26刀闸连接软铜线烧断。经检查发现110kV系统中其它地方有接地故障。由于该变电站只有一台主变,只得强迫停运,随后启用“特殊运行方式”,并对用户造成了100MW的送电损失。处理办法是更换同样规格的引线(LJ-120)和软铜线。 (2)德山变电站。2004年6月27日15:28,雷雨大风天气,发现某市的德山变电站的1号主变110kV侧5?16刀闸接线夹内铝导线(LJ-120)起弧烧坏(见图3),刀闸动触头烧坏(见图4),经检查铝导线靠线夹处有锈蚀情况;110kV系统德东线、德乾线、德永线均有接地故障,其系统接线如图5所示。随后被迫改变运行方式,1号主变停运,2号主变运行。

变压器烧毁的原因与解决措施

编号:SY-AQ-06657 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 变压器烧毁的原因与解决措施 Causes and solutions of transformer burnout

变压器烧毁的原因与解决措施 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 配电变压器在运行一段时间后总会出现这样那样的问题,重要 的如何减少配电变压器的故障时间和延长配电变压器的运行时间, 因此,对变压器烧毁的原因进行分析是十分重要也是有意义的,还 有就是要求管理人员工作要认真细致,这样就一定能有效避免变压 器烧毁事故的发生。下面主要从变压器烧毁的原因以及解决方法进 行分析。 1、变压器烧毁的原因 (1)配电变压器高、低压两侧无熔断器。有的虽然已经装上跌落 式熔断器和羊角保险,但其熔断件多是采用铝或铜丝代替,致使低 压短路或过载时,熔断件无法正常熔断而烧毁变压器。 (2)配电变压器的高、低压熔断件配置不当。变压器上的熔断件 普遍存在着配置过大的现象,严重过载时,烧毁变压器。 (3)由于农村照明线路较多,大多数又是采用单相供电,再加上

施工中跳线的随意性和管理上的不到位,造成了配变负荷的偏相运行。长期的使用,致使某相线圈绝缘老化而烧毁变压器。 (4)分接开关: ①私自调节分接开关,造成配变分接开关不到位,接触不良而烧毁。 ②分接开关质量差,引起星形触头位置不完全接触,发生短路或对地放电。 (5)渗油是变压器最为常见的外表异常现象。由于变压器本体内充满了油,各连接部位都有胶珠、胶垫防止油的渗漏。经过长时间的运行,会使变压器中的某些胶珠、胶垫老化龟裂而引起渗油。从而导致绝缘受潮后性能下降,放电短路,烧毁变压器。 (6)配电变压器的高、低压线路大多数是由架空线路引入,由于避雷器投运不及时或没有安装10kV避雷器。造成雷击时烧毁变压器。 (7)铁芯多点接地。 (8)当配电变压器低压侧发生接地、相间短路时,将产生一个高

防止大型变压器损坏措施(通用版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 防止大型变压器损坏措施(通用 版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

防止大型变压器损坏措施(通用版) 1、对运行中的设备,应防止变压器、互感器进水或空气受潮。加强运行巡视,应特别注意变压器冷却器潜油泵负压区出现的渗漏油。防止套管、引线、分接开关引起事故。套管的伞裙间距低于标准的,应采取加硅橡胶伞裙套等措施,防止雨闪事故。 2、潜油泵的轴承,应采用E级或D级,禁止使用无铭牌、无级别的轴承。油泵应选用转速不大于1000r/min的低速油泵。为保证冷却效果,风冷却器应定期进行水冲洗。 3、运行中的变压器轻、重瓦斯保护应可靠地投入,不允许将无保护的变压器投入运行。重瓦斯保护与差动保护不得同时停用。重瓦斯保护退出时,需经公司生产副经理或总工批准。 4、对220kV及以上电压等级变电设备,每月进行一次测温,另外还需每年进行至少一次红外成像测温检查。

5、加强变电设备技术管理工作,尽可能防止或减少变压器的出口短路,改善变压器的运行条件。变压器在遭受近区突发短路后,应做好汇报联系工作,并做低电压短路阻抗测试或用频响法测试绕组变形,并与原始记录比较,判断变压器无故障后,方可投运。 6、在套管渗漏油时,应及时处理,防止内部受潮而损坏。 7、加强对充油套管油位的检查,如发现充油套管中缺油时,应查找原因并进行补油,对有渗漏油的套管应及时处理。 8、运行中的变压器应检查和部位渗油现象,变压器本体无积水,以防止水分和空气进入变压器引起变压器绝缘损坏 9、变压器的呼吸器的油封应保持一定油位并保持畅通,干燥剂保持干燥,保证吸湿效果良好,如发现硅胶变色时应及时更换。 10、定期检查保证变压器的防爆膜、安全释压阀完好,防止与空气直接连通,造成变压器的油中水份含量增大,使油的绝缘性能变坏。 11、在给变压器补油时,应注意储油柜中的油质合格,防止补油而引起油质恶化,并且禁止由变压器的底部给油箱补油,防止空

西安330KV变压器烧毁事故调查报告

2016年6月18日凌晨,陕西西安330千伏南郊变(110千伏韦曲变)发生主变烧损事故。公司领导高度重视,舒印彪董事长作出重要批示,栾军副总经理作出工作部署。当日一早,公司安全副总监尹昌新、安质部主任张建功赶到现场。在初步了解事故情况后,公司决定成立以尹昌新安全副总监为组长,总部安质部、西北分部、陕西公司负责人为副组长,下设综合、电网、设备、电缆、直流、应急六个工作组的事故调查组(附件1),迅速开展事故调查工作,有关情况报告如下。 一、事故基本情况 (一)事故前运行方式 陕西电网全网负荷为1264万千瓦,西安地区负荷331万千瓦,各控制断面潮流均满足稳定限额要求。 330千伏南郊变主接线为3/2接线,共6回330千伏出线,3台容量为240兆伏安的主变(#1、#2、#3主变),110千伏主接线为双母线带旁母接线。共址建设的110千伏韦曲变有两台50兆伏安主变(#4、#5主变)及一台31.5兆伏安移动车载变(#6主变),其中#4、#5主变接于南郊变110千伏母线,#6主变接于南郊变110千伏旁母,#6主变10千伏母线与#4、#5主变10千伏母线无电气连接。 330千伏南郊变#1、#2、#3主变负荷分别为11万千瓦、11万千瓦、10万千瓦,110千伏韦曲变#4、#5、#6主变负荷分别为1.5万千瓦、1.5万千瓦、1.2万千瓦。 (二)事故发生经过

6月18日0时25分,西安市长安区凤栖路与北长安街十字路口(距330千伏南郊变约700米)电缆沟道井口发生爆炸;随即,110千伏韦曲变#4、#5主变及330千伏南郊变#3主变相继起火;约2分钟后,330千伏南郊变6回出线(南寨I,南柞I、II,南上I、II、南城I)相继跳闸。 (三)事故处置过程 0时28分,陕西电网调度自动化系统相继推出330千伏南寨I,南柞I、II,南上I、II、南城I线故障告警信息,同时监控系统报出上述线路跳闸信息。 0时29分,陕西省调通知省检修公司安排人员立即查找故障。 0时38分,330千伏南郊变现场人员确认全站失压,站用电失去,开关无法操作。 0时40分,西安地调汇报省调,110千伏锦业路变、文体变、瓦胡同变、长安西变、韦曲变、兰川变、葛牌变、尧柏变(用户变)共8座110千伏变电站失压。 0时55分-1时58分,西安地调陆续将除韦曲变外的7座失压变电站倒至其他330千伏变电站供电。韦曲变所供12000户用户陆续转带恢复,至12时,除700户不具备转带条件外的,其他全部恢复。 1时20分,站内明火全部扑灭,陕西省调要求现场拉开所有失压开关,并检查站内一二次设备情况。 2时55分,经检查确认,110千伏韦曲变#4、#5主变烧损,330千伏南郊变#3主变烧损,#1、#2主变喷油,均暂时无法恢复。

相关文档
相关文档 最新文档