文档库 最新最全的文档下载
当前位置:文档库 › 风光互补发电系统安装与调试模拟试题13

风光互补发电系统安装与调试模拟试题13

风光互补发电系统安装与调试模拟试题13
风光互补发电系统安装与调试模拟试题13

风光互补发电系统安装与调试

模拟竞赛任务书

A卷

工位号: 比赛时间:

2012年6月20日

选手须知:

(1)任务书共18页,如出现任务书缺页、字迹不清等问题,请及时向裁判示意,进行任务书的更换。

(2)竞赛现场提供风光互补发电系统实训教程。

(3)参赛团队应在6小时内完成任务书规定内容。选手在竞赛过程中根据任务书要求,将各系统的运行记录或程序文件存储到D盘目录及文件夹下,未存储到指定位置的运行记录或程序文件不予给分。

(4)选手提交的试卷不得写上姓名或与身份有关的信息,否则成绩无效。

(5)选手认定器件有故障可提出更换,器件经测定完好属选手误判时,每次扣5分。

(6)比赛过程中由于参赛选手人为原因造成的器件损坏,不予更换。比赛过程中由于参赛选手人为原因造成贵重器件损坏,停止该队比赛,比赛成绩作为零分。

(7)在竞赛过程中,参赛选手如有舞弊、不服从裁判判决、扰乱赛场秩序等行为,裁判长按照规定扣减相应分数。情节严重的取消竞赛资格,竞赛成绩记为零分。

一、竞赛设备及工艺过程描述

賽项设备以“KNT-WP01风光互补发电实训系统”为载体,该设备由光伏供电装置、光伏供电系统、风力供电装置、风力供电系统、逆变与负载系统和监控系统组成,如图1所示。

(a)(b)(c)(d)(e)(f)

图1 KNT-WP01风光互补发电实训系统

(a)光伏供电装置(b)风力供电装置(c)光伏供电系统

(d)风力供电系统(e)逆变与负载系统(f)监控系统

二、工作任务

任务一:光伏供电装置(10分)

1.器件安装

如图2所示,光伏供电装置的光伏电池组件偏移方向的定义和摆杆移动方向的定义已在图中标明。除了光伏电池组件、投射灯、摆杆支架和光线传感器之外,其他部件和设备已安装完成。

图2 光伏供电装置

要求:

将4块光伏电池组件、2盏投射灯、摆杆支架和光线传感器正确地安装在光伏供电装置上,紧固件不松动。靠近摆杆的投射灯定义为投射灯1(简称灯1),另1盏投射灯定义为投射灯2(简称灯2)。

2. 布线与接线

(1)将2盏投射灯的引线正确地连接在灯座上。

(2)将4块光伏电池组件组成并联,焊接连接线,并用胶带缠绕包扎。

任务二:光伏供电系统(36分)

1.器件安装

除了光伏供电控制单元外,其他部件和设备已安装完成。

要求:

将光伏供电控制单元安装在光伏供电系统的网孔板上。

2.布线与接线

光伏供电系统的光伏供电控制单元没有接线、西门子S7-200 CPU226PLC接线拆除(除了AC220V电源线)、继电器组接线拆除,其他部件和设备已完成接线(走线槽已经安装好)。

要求:

(1)完成光伏供电控制单元接线,接线要有合理的线标套管。线标套管号码从A01至A99排列,线标套管号码除了同1根导线两端一致外,不得与其他导线的线标套管号码重复命名,图3是线标套管号码示意图。

图3 线标套管号码示意图

在答题纸如表1所示的光伏供电控制单元接线表中标明结束端位置、起始端位置线标套管号码、结束端位置线标套管号码、线型和颜色。

表1 光伏供电控制单元接线

(2)表2是西门子S7-200 CPU226PLC的配置要求,根据该配置完成西门子S7-200 CPU226PLC的接线,接线要有合理的线标套管,线标套管号码要求与要求(1)相同。

表2 西门子S7-200 CPU226PLC的配置

(3)在答题纸如表3所示的S7-200 CPU226输入输出接线表中标明结束端位置、起始端位置线标套管号码、结束端位置线标套管号码、线型和颜色。

表3 S7-200 CPU226输入输出接线

3. 光伏电池组件的光源跟踪调试

根据光伏供电控制单元的按钮定义,操作光伏供电控制单元上的相关按钮,光伏电池组件、投射灯和摆杆作相应的动作。

要求:

(1)光伏供电控制单元的选择开关有两个状态,选择开关拨向左边时,PLC 处在手动控制状态,可以进行光伏电池组件跟踪、灯状态、摆杆运动操作。选择开关拨向右边时,PLC处在自动控制状态,按下启动按钮,PLC执行自动控制程序。

(2)PLC处在手动控制状态时,按下向东按钮,向东按钮的指示灯亮,光伏电池组件向东偏转3秒后停止偏转运动,向东按钮的指示灯熄灭。在光伏电池组件向东偏转的过程中,再次按下向东按钮或停止按钮,向东按钮的指示灯熄灭,光伏电池组件停止偏转运动。

按下向西按钮,向西按钮的指示灯亮,光伏电池组件向西偏转3秒后停止偏转运动,向西按钮的指示灯熄灭。在光伏电池组件向西偏转的过程中,再次按下向西按钮或停止按钮,向西按钮的指示灯熄灭,光伏电池组件停止偏转运动。

向东按钮和向西按钮在程序上采取互锁关系,太阳能电池有东西限位保护。

向北按钮和向南按钮的作用与向东按钮和向西按钮的作用相同。

(3)PLC处在手动控制状态时,按下灯1按钮,灯1按钮的指示灯亮,投射灯1亮。再次按下灯1按钮或停止按钮,灯1按钮的指示灯熄灭,投射灯1熄灭。

PLC处在手动控制状态时,按下灯2按钮,灯2按钮的指示灯亮,投射灯2亮。再次按下灯2按钮或停止按钮,灯2按钮的指示灯熄灭,投射灯2熄灭。

(4)PLC处在手动控制状态时,按下东西按钮,东西按钮的指示灯亮,摆杆由东向西方向连续移动,投射灯1、2点亮。在摆杆由东向西方向连续移动的过程中,再次按下东西按钮或停止按钮,东西按钮的指示灯熄灭,摆杆停止运动,投射灯1、2熄灭。若摆杆经过中间限位,需停留5秒,然后继续东西运动,摆杆由东向西方向移动处于极限位置时,东西按钮的指示灯熄灭,投射灯2熄灭,摆杆返回3秒停止移动,投射灯1熄灭。

如果按下西东按钮,西东按钮的指示灯亮,摆杆由西向东方向连续移动,投

射灯1、2点亮。在摆杆由西向东方向连续移动的过程中,再次按下西东按钮或停止按钮,西东按钮的指示灯熄灭,摆杆停止运动,投射灯1、2熄灭。若摆杆经过中间限位,需停留5秒,然后继续西东运动,摆杆由西向东方向移动处于极限位置时,西东按钮的指示灯熄灭,投射灯2熄灭,摆杆返回3秒停止移动,投射灯1熄灭。

东西按钮控制和西东按钮控制在程序上采取互锁关系。

(5)PLC处在自动控制状态,按下启动按钮,摆杆向东连续移动,到达摆杆极限位置时停止运动。2秒钟后,投射灯1点亮,光伏电池组件对光跟踪,对光跟踪结束2秒后,摆杆由东向西方向连续移动,光伏电池组件对光跟踪,10秒后,摆杆停止运动,投射灯2也点亮,5秒后,摆杆继续向西运动,光伏电池组件继续对光跟踪。当摆杆到达中间限位时,摆杆停止运动,光伏电池组件对光跟踪,对光跟踪结束5秒后,摆杆继续由东向西方向连续移动,光伏电池组件对光跟踪,10秒后,摆杆停止,投射灯2熄灭,2秒后,摆杆继续向西运动,光伏电池组件继续对光跟踪。当摆杆到达摆杆极限位置时,摆杆停止移动,光伏电池组件对光跟踪。对正2秒钟后,摆杆向东连续移动,10秒后,投影灯2再次点亮,光伏电池组件对光跟踪,到达垂直接近开关位置时,摆杆停止移动,对光跟踪结束5秒后,投射灯全部熄灭。2秒钟后,投射灯2亮5秒熄灭,3秒钟后,投射灯1亮5秒熄灭,自动控制程序结束。

在自动控制状态下,当按下停止按钮或急停按钮时,投射灯熄灭、摆杆和光伏电池组件停止运动。

4. 光伏组件的输出特性测试

将光伏供电控制单元的选择开关拨向左边时,PLC处在手动控制状态,调节光伏供电装置的摆杆处于垂直状态,调节光伏电池组件正对着投射灯。点亮投射灯1,检测光伏电池组件的输出特性。

要求:

(1)调节光伏供电系统的可调变阻器,阻值从0Ω逐渐变化到1000Ω。记录对应的电压、电流值,填写在答题纸如表4所示的光伏电池组件输出的电压、电流值表格中,每次记录的对应的电压值和电流值为一组,记录不少于12组。

(2)在答题纸如图4所示的光伏电池组件输出特性曲线坐标图上绘制光伏

电池组件输出特性曲线,并标明坐标的参数单位和计量单位。

表4 光伏电池组件输出的电压、电流值

组号电压U/V电流I/A组号电压U/V电流I/A

1 7

2 8

3 9

4 10

5 11

6 12

图4 光伏电池组件输出特性曲线

5. 绘制电路图

在手提计算机中绘制光伏供电主电路电气原理图。

要求:

(1)绘制的光伏供电主电路电气图保存在手提计算机的桌面,文件名为:光伏供电主电路。

(2)主电路按照工程要求绘制,主电路中的电气符号要符合国标。

6. 蓄电池的模拟充电

选择光伏模拟电压值和蓄电池的模拟电压值,用示波器测量充电波形。

要求

(1)光伏模拟电压值为13.5V,蓄电池的模拟电压选择为15V,用示波器测量充电波形,截图保存在手提计算机的桌面,文件名为:充电波形A。

(2)选择光伏模拟电压值为13.5V,蓄电池的模拟电压选择为9V,截图保存在手提计算机的桌面,文件名为:充电波形B。

(3)选择光伏模拟电压值为18V,蓄电池的电压选择为9V,截图保存在手提计算机的桌面,文件名为:充电波形C。

7. 分析题

在答题纸上回答下列问题:

(1)蓄电池充放电的工作原理?

(2)结合所绘制的输出功率特性曲线,说明太阳能电池的输出功率与那些因素有关?

(3)光伏电池发电原理?

任务三:风力供电装置(5分)

1.器件安装

如图5所示。风场运动机构箱运动方向的定义已在图中标明。除了叶片、轮毂、尾舵、侧风偏航机械传动机构之外,其他部件和设备已安装完成。

图5 风力供电装置

要求:

将叶片、导流罩、尾舵、侧风偏航机械传动机构正确地安装在风力发电机上。

2. 布线与接线

整理侧风偏航机械传动机构的引线并正确地与接插座连接。

任务四:风力供电系统(20分)

1. 器件安装

除了风力供电控制单元外,其他部件和设备已安装完成。

要求:

将风力供电控制单元安装在风力供电系统的网孔板上。

2.布线与接线

风力供电系统的风力供电控制单元没有接线、西门子S7-200 CPU224PLC接线拆除(除了电源线),其他部件和设备已完成接线(走线槽已经安装好)。

要求:

(1)完成风力供电控制单元接线,接线要有合理的线标套管。线标套管号码从B01至B99排列,线标套管号码除了同1根导线两端一致外,不得与其他导线的线标套管号码重复命名,图6是线标套管号码示意图。

图6 线标套管号码示意图

在答题纸如表5所示的光伏供电控制单元接线表中标明结束端位置、起始端位置线标套管号码、结束端位置线标套管号码、线型和颜色。

表5 风力供电控制单元接线

(2)表6是西门子S7-200 CPU224PLC的配置要求,根据该配置完成西门子S7-200 CPU224PLC的接线,接线要有合理的线标套管,线标套管号码要求与要求(1)相同。

表6 西门子S7-200 CPU224PLC的配置

在答题纸如表7所示的S7-200 CPU226输入输出接线表中标明结束端位置、起始端位置线标套管号码、结束端位置线标套管号码、线型和颜色。

表7 S7-200 CPU224输入输出接线

3. 调试

根据风力供电控制单元的按钮定义操作风力供电控制单元上的相关按钮,模拟风场和风力发电机作相应的动作。

要求:

(1)风力供电控制单元的选择开关有两个状态,选择开关拨向左边时,PLC 处在手动控制状态,可以进行风场运动机构箱的运动控制和侧风偏航控制。选择开关拨向右边时,PLC处在自动控制状态,按下启动按钮,PLC执行自动控制程序。

(2)PLC处在手动控制状态时,按下顺时按钮,顺时按钮的指示灯亮,风场运动机构箱顺时移动,运行10秒后,停止运动、指示灯熄灭,5秒后继续运行,指示灯点亮。当风场运动机构箱移动到限位开关时,顺时按钮的指示灯熄灭,风场运动机构箱返回3秒停止移动。风场运动机构箱在作顺时移动时,再次按下顺时按钮,顺时按钮的指示灯熄灭,风场运动机构箱停止移动。

如果按下逆时按钮,逆时按钮的指示灯亮,风场运动机构箱逆时移动,运行10秒后,停止运动、指示灯熄灭,5秒后继续运行。当风场运动机构箱移动到限位开关时,逆时按钮的指示灯熄灭,风场运动机构箱返回3秒停止移动。风场运动机构箱在作逆时移动时,再次按下逆时按钮,逆时按钮的指示灯熄灭,风场运

动机构箱停止移动。

顺时按钮控制和逆时按钮控制在程序上采取互锁关系。

(3)PLC处在手动控制状态时,按下偏航按钮,偏航按钮指示灯亮,风力发电机作侧风偏航动作,尾翼偏转到45°左右的位置,侧风偏航结束,偏航按钮指示灯熄灭。尾翼偏转到45°左右的位置停止后,再次按下偏风偏航按钮,风力发电机再次作侧风偏航动作,尾翼偏转到90°左右的位置,侧风偏航结束。风力发电机作侧风偏航的过程中(45°或90°),按下偏航按钮或停止按钮,侧风偏航结束,偏航按钮指示灯熄灭。侧风偏航结束时,按下恢复按钮,恢复按钮的指示灯亮,风力发电机撤销侧风偏航,在此过程中,再次按下恢复按钮,撤销侧风偏航动作停止,恢复按钮的指示灯熄灭。在撤销侧风偏航的过程中,当尾翼回到初始状态时,恢复按钮的指示灯熄灭。

(4)设置控制轴流风机的变频器参数,频率为0~40Hz。启动轴流风机旋转,轴流风机可作变速旋转。

(5)PLC处在自动控制状态时,启动轴流风机旋转,按下启动按钮,风场装置作顺时运动,当风场运动机构箱顺时移动到限位开关时,风场装置作逆时运动,当风场运动机构箱逆时移动到限位开关时,风场运动机构箱停止移动,自动运行程序结束。PLC处在自动控制状态,调节控制轴流风机的变频器的频率,当风速超过DSP控制器规定值时,风力发电机作侧风偏航,当风速低于DSP控制器规定值时,风力发电机撤销侧风偏航。

PLC处在自动控制状态时,按下启动按钮时,如果风力发电机处于侧风偏航状态,风力发电机则撤销侧风偏航。

风场运动机构箱作顺时运动和逆时运动在程序上采取互锁关系。

4.分析题

在答题纸上回答下列问题:

本实训装置是如何实现风速过高偏航控制的?

任务五:逆变与负载系统(12分)

1.器件安装

除了逆变电源控制单元、逆变输出显示单元、逆变器、逆变器参数检测模块、发光管舞台灯光模块、接线排、断路器已安装完成外,其他部件和设备未安装。

要求:

将变频器、三相交流电机、警示灯安装在逆变与负载系统网孔板内。

2.布线与接线

逆变与负载系统除了变频器、三相交流电机、警示灯没有接线外,其他部件和设备已完成接线(走线槽已经安装好)。

要求:

(1)完成变频器接线,接线要有合理的线标套管。线标套管号码从C01至C99排列,线标套管号码除同1根导线两端一致外,其余不得重复命名,图7是线标套管号码示意图。

图7 线标套管号码示意图

(2)完成三相交流电机接线,接线要有合理的线标套管,线标套管号码要求与要求(1)相同。

(3)完成警示灯接线,接线要有合理的线标套管,线标套管号码要求与要求(1)相同。

3. 逆变与负载系统部分设备和器件的调试

要求:

(1)设置逆变与负载系统的变频器相关参数,操作变频器面板上的相应功能按钮,三相交流电机作变速旋转。

(2)警示灯闪烁。

(3)使用示波器测量逆变器的输出电压的频率,截图保存在手提计算机的桌面,文件名为:逆变电压频率。

4.分析题

结合图6-6、6-7输出电压波形,简述逆变器死区参数与逆变器输出电能质量的关系。

任务六:监控系统(12分)

功能要求

(1)设计监控系统的光源跟踪界面、风力供电系统界面和逆变与负载系统界面,分别显示各自的运行状态参数,参数单元应包含电压、电流等与系统相关的信息。

(2)设计监控系统的光伏发电采集报表,采集数据不少于8次,3分钟记录一次光伏输出电压、光伏输出电流。

(3)设计光伏电池组件输出特性曲线坐标图,实时输出相关曲线。

职业素养与安全意识评分表(共5分)

GZ-047-“风光互补发电系统安装与调试”赛项规程(高职组)

2016年全国职业院校技能大赛高职组 “风光互补发电系统安装与调试”赛项规程 一、赛项名称 赛项编号:GZ-047 赛项名称:风光互补发电系统安装与调试 英语翻译:Installation and Commissioning of Hybrid Wind/PV Power Generating System 赛项组别:高职组 赛项归属产业:制造 二、竞赛目的 通过竞赛,检验和展示高职院校能源产业、加工制造、信息技术等相关专业教学改革成果以及学生的通用技术与职业能力,引领和促进高职院校与本赛项相关专业的教学改革,激发和调动行业企业关注和参与教学改革的主动性和积极性,推动提升高职院校的人才培养水平。 三、竞赛内容 本竞赛由技能、综合素质二部分内容组成,其中技能部分占权重95%,职业素养部分占权重5%。竞赛时间为4小时。具体见表1。 表1 竞赛内容、时间与权重表

(一)技能竞赛内容 技能竞赛4小时,在KNT-WP01风光互补发电实训系统平台上进行。 竞赛内容涉及光伏供电装置、光伏供电系统、风力供电装置、风力供电系统、逆变与负载系统、监控系统的安装、接线、测试、编程、调试、故障排除、分析等实训考核以及职业素养考核。根据任务书,完成以下操作内容: (1)光伏电池组件、投射灯、光线传感器的安装。光伏电池伏安特性的测试。 (2)光伏供电系统的控制单元、接口单元、可编程序控制器、传感器、智能仪表、继电器等器件的安装、接线和测试。 (3)光伏电池组件对光跟踪的程序编制和测试。 (4)蓄电池组充放电工作参数的测试、保护电路测试。 (5)光伏供电系统相关电路的绘制与分析。 (6)风力供电系统的控制单元、接口单元、可编程序控制器、传感器、智能仪表、继电器等器件的安装、接线和测试。 (7)风力发电机的输出特性测试。 (8)逆变器工作参数测试。 (9)逆变系统相关电路的绘制与分析。 (10)逆变负载的组建。 (11)监控系统组态界面的设计与操作。 (12)通信系统的相关参数设置与测试。 (13)系统的故障排除。

风光互补发电系统技术方案

风光互补发电系统 技术方案

风光互补发电系统技术方案 五寨县恒鑫科技发展有限公司 04月20日

项目背景: 本项目产品小型风力发电机组是离网用户最佳的独立电源系统。 风光互补独立供电系统是当前最广泛应用独立电源系统。风光互补独立供电系统的广泛应用在于它的合理性。 太阳能是地球上一切能源的来源,太阳照射着地球的每一片土地。风能是太阳能在地球表面的另一种表现形式,由于地球表面的不同形态(如沙土地面、植被地面和水面)对太阳光照的吸热系数不同,在地球表面形成温差,地表空气的温度不同形成空气对流而产生风能。因此,太阳能与风能在时间上和地域上都有很强的互补性。白天太阳光最强时,风很小,晚上太阳落山后,光照很弱,但由于地表温差变化大而风能加强。在夏季,太阳光强度大而风小,冬季,太阳光强度弱而风大。太阳能和风能在时间上的互补性使风光互补发电系统在资源上具有最佳的匹配性,风光互补发电系统是资源条件最好的独立电源系统。单独的风机或太阳能发电系统由于受资源条件的限制,对蓄电池组充电时间较短,蓄电池组长时间处于亏电状态而导致蓄电池组的损坏。而风光互补发电系统充电时间较均衡,能够保证蓄电池组处于浮充状态,提高蓄电池组的充电质量并延长了蓄电池组的寿命。 风力发电机和太阳能电池的充电特性不一样,风机的充电特性较硬,而光伏电池的充电特性较软,风光互补电对激活离子运动,防止蓄电池极板硫化有好处,可延长蓄电池组的寿命。 风机和太阳能电池的储能和逆变系统能够共用,且风机的单位造价只有太阳能电池的三分之一左右,因此风光互补发电系统的整体造价能够降低。同时,由于风机和太阳能电池的发电时间上互补,能够减少储能的蓄电池组

KNT-WP01型 风光互补发电实训系统1解析

风光互补发电实训系统 技 术 方 案 南京康尼科技实业有限公司 2013年2月26日

第一部分:技术参数 KNT-WP01型风光互补发电实训系统 一、概述 2013年全国职业院校技能大赛高职组“风光互补发电系统安装与调试”赛项使用的大赛设备是由南京康尼科技实业有限公司研发生产的产品“KNT-WP01型风光互补发电实训系统”。 二、设备组成 KNT-WP01型风光互补发电实训系统主要由光伏供电装置、光伏供电系统、风力供电装置、风力供电系统、逆变与负载系统、监控系统组成,如图1所示。KNT-WP01型风光互补发电实训系统采用模块式结构,各装置和系统具有独立的功能,可以组合成光伏发电实训系统、风力发电实训系统。 (1)、设备尺寸:光伏供电装置1610×1010×1550mm 风力供电装置1578×1950×1540mm 实训柜3200×650×2000mm (2)、比赛场地面积:20平方米 图1 KNT-WP01型风光互补发电实训系统 三、各单元介绍 1、光伏供电装置 (1)、光伏供电装置的组成 光伏供电装置主要由光伏电池组件、投射灯、光线传感器、光线传感器控制盒、水平方

向和俯仰方向运动机构、摆杆、摆杆减速箱、摆杆支架、单相交流电动机、电容器、直流电动机、接近开关、微动开关、底座支架等设备与器件组成,如图2所示。 图2 光伏供电装置 4块光伏电池组件并联组成光伏电池方阵,光线传感器安装在光伏电池方阵中央。2盏300W的投射灯安装在摆杆支架上,摆杆底端与减速箱输出端连接,减速箱输入端连接单相交流电动机。电动机旋转时,通过减速箱驱动摆杆作圆周摆动。摆杆底端与底座支架连接部分安装了接近开关和微动开关,用于摆杆位置的限位和保护。水平和俯仰方向运动机构由水平运动减速箱、俯仰运动减速箱、直流电动机、接近开关和微动开关组成。直流电动机旋转时,水平运动减速箱驱动光伏电池方阵作向东方向或向西方向的水平移动、俯仰运动减速箱驱动光伏电池方阵作向北方向或向南方向的俯仰移动,接近开关和微动开关用于光伏电池方阵位置的限位和保护。 (2)、光伏电池组件 光伏电池组件的主要参数为: 额定功率 20W 额定电压 17.2V 额定电流 1.17A 开路电压 21.4V 短路电流 1.27A 尺寸 430mm×430mm×28mm 2、光伏供电系统 (1)、光伏供电系统的组成 光伏供电系统主要由光伏电源控制单元、光伏输出显示单元、触摸屏、光伏供电控制单

离网型风光储互补发电系统优化设计方法研究

第27卷第6期2010年12月 现 代 电 力 M odern Electric Pow er V o l 27 N o 6 Dec 2010文章编号:1007 2322(2010)06 0051 07 文献标识码:A 离网型风光储互补发电系统优化设计方法研究 李 品,刘永前,郭伟钊 (华北电力大学能源动力与机械工程学院,北京102206) Study on Optimal Design Method for Stand alone Wind/Solar/Battery Hybrid Power System Li Pin,Liu Yongqian,Guo Weizhao (Schoo l o f Ener gy ,Po wer and M echanical Eng ineering ,N or th China Electr ic Po wer U niversity,Beijing 102206,China) 摘 要:以解决风光储互补发电系统的合理配置问题,实现系统能独立为风光资源丰富的边远地区和海岛提供清洁、可靠及廉价的电力能源为目的,提出了一种基于全年负载缺电率(LPSP)和全寿命周期成本(LCC)为优化目标的风光储互补发电系统优化设计方法。为精确计算系统的运行状态,建立了基于小时时间尺度的风力机组发电量计算模型、光伏电板发电量计算模型和蓄电池组的表征组件特性的数学模型;为发挥风光互补系统发电量互补的优势,建立了风光储互补发电系统中光伏方阵倾角优化模型;以LPSP 和LCC 作为系统的优化指标,建立了LPSP 和LCC 计算模型;运用迭代算法计算各种可能出现配置下的LPSP 和LCC;通过LP SP 可靠性筛选和LCC 经济性优化,最终得到LCC 最小并能满足LPSP 要求的系统配置。该优化方法按照小时的尺度进行优化计算,优化结果精度高;LCC 经济性评价指标全面和客观;倾角优化发挥出系统发电量互补的优势。基金项目:国家高技术研究发展计划(863计划)(2007A A 05Z428) 关键词:风光储互补发电;优化设计;迭代算法;全年负载缺电率;全寿命周期成本 Abstract:In order to solve the assignment problem of the wind/PV/battery hybrid pow er system,and to achieve the aim of independently providing clean,reliable and economic pow er f or the area w hich is abundant in wind and solar re sources,the paper presents an optimal design method of hy brid system based on the w hole year s Loss of Pow er Supply Probability (LPSP)and the w hole Lif e Cycle Cost (LCC ).For the purpose of precise calculation of the system opera t ion condition,a m athematic model of calculating method has been built for electric energy production of w ind tur bine,PV arrays and storage battery s behavior regime on the time interval of hour.By taking advantage of hybrid sys t em,the optimal model to calculate the angle of PV arrays is also built.In addition,the model to calculate LPSP and LCC,w hich are taken as optimal index,is set up,and LPSP and LCC in all kinds of possible conf igurations are calculated based on iterative algorithm.The system configuration,which has minimum LCC and its reliability m eet the require m ent of LPSP,is obtained through reliability filtering of LPSP and economic optimization of LCC.This optimized design is calculated base on one-hour timescale,and result show s its high precision.LCC is taken as the economic index is feasible,and optimum angle of the PV arrays can play the key role of the system hybrid predomination. Key w ords:wind/solar/battery hybrid power systems;opti mal design;iterative algorithm;LPSP;LCC 0 引 言 环境污染、化石燃料枯竭,人们已将目光投向了可再生能源;随着技术的进步、成本的降低,风 能和太阳能已进入了可再生能源快速发展的历史时期;据有关部门统计[1],2009年中国的太阳能电池产量达到4382M W,估计超过全球的40%;组件成本下降到S |3 5/Wp,预计2020年光伏组件的价格将下降到S |1/Wp 以下;根据WWEA (世界风能协会)统计,2009年世界风电装机容量的装机量为157900MW,比2008年增加了30%。 风力发电和光伏发电由于受天气因素的影响,单独使用光伏发电或风力发电都存在供电不稳定的缺陷,造成供电可靠性较差;为了提高系统的可靠性,通常需要配置大量的蓄电池来调整电量的动态平衡,而目前电能储存费用的昂贵,造成系统成本的昂贵,上述原因限制了单独供电形式的推广使用。而太阳能和风能在昼夜、季节上互补性的特点,采

家用风光互补发电系统分析设计

1、风光互补发电技术 1.1风光互补发电系统的特点 风力发电系统利用风力发电机,将风能转换成电能,然而通过控制器对蓄电池充电,最后通过逆变器对负载供电。该系统具有日发电量较高,系统造价较低,运行维护成本低等优点。缺点是小型风力发电机可靠性低,常规水平轴风力发电机对风速的要求较高。光伏发电系统利用光电板将太阳能转换成电能,然后通过控制器对蓄电池充电,最后通过逆变器对负载供电。该系统的优点是系统供电可靠性高、资源条件好、运行维护成本低,缺点是系统造价高。发电与用电负荷的不平衡性是风电和光电系统共同存在的一个缺陷,它是由资源的不确定性造成的。风电和光电系统发出电能后都必须通过蓄电池储能才能稳定供电,但是每天的发电量受阳光、风力的影响很大,阳光、风力较弱会导致系统的蓄电池组长期处于亏电状态,这是引起蓄电池组使用寿命降低的主要原因。较风电和光电独立系统,风光互补发电系统具有以下特点:(1)风光互补发电系统弥补了风电和光电独立发电系统在资源上的缺陷,利用太阳能和风能的互补性,提供较稳定的电能; (2)在风光互补发电系统中,风电和光电系统可以共用一套蓄电池组和逆变环节,减少系统造价; (3)整个系统是两种发电系统进行互补运行,因此,在保证同等供电的情况下,可大大减少储能装置的容量; (4)风光互补发电系统可以根据用户需要合理配置系统容量,在不影响供电可靠性的情况下减少系统造价; (5)风光互补发电系统可以根据用户所在地的季节及天气变化情况优化系统设计方案,在满足用户要求的情况下节约资源。 1.2适合风光互补地区分析 太阳能和风能是最普遍的自然资源,也是取之不尽的可再生能源。图1为我国太阳能风能分部情况。

风光互补发电系统现状及发展状况(可编辑修改word版)

风光互补发电系统现状及发展状况 高洁琼 (ft西大学 ft西·太原030013) 摘要:本文介绍了风光互补发电系统的结构、工作原理和优缺点,以及风光互补发电系统的发展过程及现状,同时说明其应用前景。太阳能和风能之间互补性很强, 由这两者结合而来的风光互补发电系统在资源上具有最佳的匹配性。 关键词: 风能太阳能风光互补系统 1.风光互补发电系统的结构、工作原理、基本要求以及优缺点 1.1风光互补发电系统的结构 风光互补发电系统主要由风力发电机组、太阳能光伏电池组、控制器、蓄 电池、逆变器、交流直流负载等部分组成。该系统是集风能、太阳能及蓄电池 等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。1.2风光互补发电系统的工作原理及运行模式 风力发电部分是利用风力机将风能转换为机械能,通过风力发电机将机械 能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电;光伏发 电部分利用太阳能电池板的光伏效应将光能转换为电能,然后对蓄电池充电, 通过逆变器将直流电转换为交流电对负载进行供电;逆变系统由几台逆变器组成,把蓄电池中的直流电变成标准的 220v 交流电,保证交流电负载设备的正常 使用。同时还具有自动稳压功能,可改善风光互补发电系统的供电质量;控制 部分根据日照强度、风力大小及负载的变化,不断对蓄电池组的工作状态进行 切换和调节:一方面把调整后的电能直接送往直流或交流负载。另一方面把多 余的电能送往蓄电池组存储。发电量不能满足负载需要时,控制器把蓄电池的 电能送往负载,保证了整个系统工作的连续性和稳定性;蓄电池部分由多块蓄 电池组成,在系统中同时起到能量调节和平衡负载两大作用。它将风力发电系 统和光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使用。 风光互补发电系统根据风力和太阳辐射变化情况,可以在以下三种模式下 运行:风力发电机组单独向负载供电;光伏发电系统单独向负载供电;风力发 电机组和光伏发电系统联合向负载供电。 1.3风光互补发电系统的优缺点

风光互补发电系统安装与调试(高职组) 答题纸(08)

2015年全国高职技能大赛 “康尼杯” 风光互补发电系统安装与调试赛项 答题纸(08卷) 工位号: 比赛时间: 2015年06月

2.光伏电池组件开路电压和短路电流的测量 表1 光伏电池组件开路电压和短路电流的测量数据 光伏电池组件 灯1和灯2亮灯1亮 灯1亮且摆杆向东偏移 处于限位位置 开路电压 (V) 短路电流 (A) 开路电压 (V) 短路电流 (A) 开路电压 (V) 短路电流 (A) 1块 2块并联 2串2并 4.简述问题 (1)厂商在销售光伏电池板时,一般给用户提供光伏电池板的哪几个主要电参数? (2)在正常的工作条件下,随工作温度变化的光伏电池U-I特性曲线和P-U特性曲线如图3所示,简述光伏电池的开路电压和短路电流与工作温度的关系。图3中的标幺值是物理量及参数的相对值即实际值与基准值之比;W/m2是光照度单位。 图3 相同光照度而不同工作温度的光伏电池组件特性(a)U-I特性;(b)P-U特性

2.绘制S7-200 CPU226输入输出接口图 图3 S7-200 CPU226输入输出接口图

7.光伏电池组件的输出特性测试 表5 摆杆垂直且灯1和灯2亮时的光伏电池组件输出电压和输出电流测量值 组号电压U/V电流I/A功率P/W 组号电压U/V电流I/A 功率P/W 1 7 2 8 3 9 4 10 5 11 6 12 表6 摆杆垂直且灯1亮时的光伏电池组件输出电压和输出电流的测量值 组号电压U/V电流I/A功率P/W 组号电压U/V电流I/A 功率P/W 1 7 2 8 3 9 4 10 5 11 6 12 表7 灯1亮且摆杆向东偏移处于限位位置时的光伏电池组件输出电压和输出电流的测量值组号电压U/V电流I/A功率P/W 组号电压U/V电流I/A 功率P/W 1 7 2 8 3 9 4 10 5 11 6 12

风光互补供电系统项目可行性研究报告

风光互补供电系统项目可行性研究报告 目录 第一章项目绪论 (7) 一、项目名称及建设性质 (7) 二、项目承办单位 (7) 三、项目建设选址及用地综述 (7) 四、项目土建工程建设指标 (8) 五、设备选型方案 (9) 六、主要能源供应及节能分析 (9) 七、环境保护及清洁生产和安全生产 (10) 八、项目总投资及资金构成 (11) 九、资金筹措方案 (11) 十、项目预期经济效益规划目标 (11) 十一、项目建设进度规划 (12) 十二、综合评价及 (13) 第二章报告编制总体说明 (16) 一、报告编制目的及编制依据 (16) 二、报告编制范围及编制过程 (18) 第三章项目建设背景及必要性 (21) 一、风光互补供电系统产业发展规划背景 (21) 二、项目建设背景 (22)

三、项目建设的必要性 (25) 第四章建设规模和产品规划方案合理性分析 (28) 一、建设规模及主要建设内容 (28) 二、产品规划方案及生产纲领 (29) 第五章项目选址科学性分析 (30) 一、项目建设选址原则 (30) 二、项目建设区概况 (30) 三、项目用地总体要求 (31) 第六章工程设计总体方案 (32) 一、工程地质条件 (32) 二、工程规划设计 (32) 三、建筑设计方案 (34) 四、辅助设计方案 (35) 五、防水和防爆及防腐设计 (36) 六、建筑物防雷保护 (37) 七、主要材料选用标准要求 (37) 八、采用的标准图集 (38) 九、土建工程建设指标 (38) 第七章原辅材料供应及成品管理 (40) 一、原辅材料供应及质量管理 (40) 二、原辅材料采购及管理 (41) 第八章工艺技术设计及设备选型方案 (42) 一、原料及成品路线原则及工艺技术要求 (42) 二、项目工艺技术设计方案 (43) 三、设备选型方案 (44)

别墅区风光储微电网发电系统方案

别墅区风光储微电网发电系统方案 中节能绿洲(北京)太阳能科技有限公司 2014年3月

目录 前言 (3) 1.项目概况 (4) 1.1项目地点 (4) 1.2项目地理位置 (4) 1.3太阳辐射条件 (4) 2系统设计 (7) 2.1项目建设规模及主要内容 (7) 2.2系统主要配置表 (7) 2.3主要产品介绍 (8) 3.效益分析 (17) 3.1项目发电量计算 (17) 3.2经济效益分析 (17) 附件:项目图 (18)

前言 光伏建筑一体化,是应用太阳能发电的一种新概念,简单地讲就是将太阳能光伏发电方阵安装在建筑的围护结构外表面来提供电力。由于光伏方阵与建筑的结合不占用额外的地面空间,是光伏发电系统在城市中广泛应用的最佳安装方式,因而倍受关注。随着其技术不断完善,采用太阳能建筑一体化设计的太阳能建筑将来必定成为我国今后几年里建筑业发展的主流方向,太阳能建筑一体化的大规模出现已经成为一种时代的必然。

1.项目概况 1.1项目地点 北京市昌平区拉菲特城堡某别墅 1.2项目地理位置 本项目位于北京市。北京是中华人民共和国的首都,简称京,位于华北地区,面积 1.68 万平方公里,东南部为平原,西北部为燕山、太行山山地。北京位于北纬 39°56′,东经 116°20′;西北毗临山西,内蒙古高原,南与华北大平原相接,东近渤海。市中心海拔43.71 米。属于北温带亚湿润气候。 1.3太阳辐射条件 北京的气候为典型的暖温带半湿润大陆性季风气候,夏季高温多雨,冬季寒冷干燥,春、秋短促。2010年为例,全年平均气温14.0℃(北京市气象局)。1月-7至-4℃,7月25至26℃。极端最低-27.4℃,极端最高42℃以上。全年无霜期180至200天,西部山区较短。2010年平均降雨量369毫米,为华北地区降雨最多的地区之一。降水季节分配很不均匀,全年降水的80%集中在夏季6、7、8三个月,7、8月有大雨。 北京市主要气象要素特征值 项目单位 北京市主要气象要素特征值 指标发生时间 气温多年平均℃12.15 1951—2009年多年极端高℃41.9 1999年 多年极端低℃-27.4 1966年

风光互补发电系统

风光互补发电系统 第一章绪论 1.1 能源与环境问题 能源是是国民经济发展与社会文明进步的基石,能源可持续发展是人类社会可持续发展的重要保障之一。从原始社会开始,化石能源逐步成为人类所用能源的主要来源,这种状况一直延续至科技发达的现代社会。随着人类对能源需求的日益增加,化石能源的储量正日趋枯竭。此外,大量使用化石燃料己经为人类生存环境带来了严重的后果,全世界每天产生约1亿吨温室效应气体,己经造成极为严重的大气污染、温室效应、酸雨等环境影响。开发利用可再生新能源以实现能源可持续发展是人类应对能源问题的有力方法之一。 1.2 新能源发展现状 当前,世界各国普遍重视能源技术创新,技术研发与制度创新越来越受到推崇。美提出培育世界领先水平的科技人员,建设世界一流的能源科技基础设施,整合基础研究和应用研究,加快研究电力储备、智能电网、超导输电、二氧化碳捕获、先进电池、纤维素乙醇、氢燃料以及清洁煤、核能、太阳能和风能等先进发电技术。日本也提出了引导未来能源技术的战略,从2050年、2100年超长期视点出发,展望未来能源技术,制定2030年科技战略。我国也看到新能源发展的紧迫性,加快建立法律法规,积极扶持新能源发展,新能源在我国的发展速度很快。 在新能源体系中,可再生能源是自然界中可以不断再生、永续利用的资源,它对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用,主要包括风能、太阳能、水能、生物质能、地热能、海洋能等。 1.3 互补发电的概念 很多可再生新能源因其资源丰富、分布广泛,而且在清洁环保方面具有常规能源所无 法比拟的优势,因而获得了快速的发展。尤其是小规模的新能源发电技术,可以很方便地就地向附近用户供电,非常近合在无电、少电地区推广普及。不过由于风能、太阳能等可再生新能源本身所具有的变化特性,所以独立运行的单一新能源发电方式很难维持整个供电系统的频率和电压稳定。 考虑到新能源发电技术的多样性,以及它们的变化规律并不相同,在大电网难以到达的边远地区或隐蔽山区,一般可以采用多种电源联合运行,让各种发电方式在个系统内互为补充,通过它们的协调配合来提供稳定可靠的、电能质量合格的电力,在明显提高可生能源可靠性的同时,还能提高能源的综合利用率。这种多种电源联合运行的方式,就称为互补发电。

风光互补发电系统

风光互补供电系统: :风光互补发电是一种将光能和风能转化为电能的装置。该系统无空气污染、无噪音、不产生废弃物。因此风光互补发电系统是一种自然、清洁的能源。目前在世界范围内风力发电和太阳能发电发展非常迅猛,其中丹麦和德国的风力发电已经成为主要的电能来源。人类为使居住环境不再受污染,风能和太阳能将是今后世界能源的必然选择。让太阳照亮夜晚,让清风吹亮公园,美丽的环境增添优雅的风车景观,加上象征太空技术的蔚蓝色的太阳能电池板,相信一定会使世界更加怡人! 优势: 由于太阳能与风能的互补性强,风光互补发电系统在资源上弥补了风电和光电独立系统在资源上的缺陷。同时,风电和光电系统在蓄电池组和逆变环节是可以通用的,所以风光互补发电系统的造价可以降低,系统成本趋于合理。 ::风光互补供电系统可以根据用户的用电负荷情况和资源条件进行系统容量的合理配置,即可保证系统供电的可靠性,又可降低发电系统的造价。无论是怎样的环境和怎样的用电要求,都可作出最优化的系统设计方案来满足用户的要求。应该说,风光互补发电系统是最合理的独立电源系统。这种合理性表现在资源配置最合理,技术方案最合理,性能价格最合理。正是这种合理性保证了风光互补发电系统的高可靠性。 性能: :风光互补发电系统由太阳能发电板、小型风力发电机组、系统控制器、蓄电池组和逆变器等几部分组成,发电系统各部分容量的合理配置对保证发电系统的可靠性非常重要,供电系统为了满足广大用户的用电要求、为用户提供可靠的电力,会认真分析用户的用电负荷特征以及用户所处区域的太阳能和风能资源状况针对不同用户配置适合用户的一整套系统。 保护和控制,包括过充、过放、过载、过温、短路、反接;对风力发电机实行强风自动限速;对市电进行旁路自动切换;对输出实行多路控制;对负载增加节电控制等等,使保护和控制动作十分安全可靠与稳定。 风光互补发电原理图如下:

风光储联合发电系统调频控制策略研究

第41卷第1期2013年1 月Vol.41No.1 Jan.2013 风光储联合发电系统调频控制策略研究 李鹏,黄越辉,许晓艳,刘德伟,马烁 (中国电力科学研究院,北京100192) 摘要:针对风光储联合发电系统的运行特点,基于分段调频控制的理念,提出了一种风光储联合发电系统参与电力系统二次调频的控制策略。该控制策略根据区域控制偏差ACE就调频控制的紧急程度进行划分,在不同控制区域使用不同的有功控制方式,实现对联合发电系统出力的精细化控制,最大程度利用风电及光伏发电,保障储能电池SOC运行在合理范围。仿真分析验证了所提调频控制策略的可行性、有效性及经济性。关键词:风光储联合发电系统;调频控制策略;充放电控制;有功功率 作者简介:李鹏(1985-),男,硕士,工程师,研究方向为新能源发电调度运行与控制技术。 中图分类号:TM761文献标志码:A文章编号:1001-9529(2013)01-0144-04 基金项目:国家科技支撑计划项目(2011BAA07B03);国家电网公司科技项目 Research of Frequency Control Strategy for Wind-PV-Storage Power Generation System LI Peng,HUANG Yue-Hui,XU Xiao-Yan,LIU De-Wei,MA Shuo (China Electric Power Research Institute,Beijing100192,China) Abstract:This paper proposes a control strategy of the wind-PV-storage power generation system taking part in second control of power system based on partition frequency control considering operating characteristics of the wind-PV-stor-age power generation system.This control strategy distinguishes different emergency degree of frequency control ac-cording to area control error(ACE),utilizes different active power control mode in different control area,exerts de-tailed control on the joint generating system,reduces the limitation on wind power and solar power and guarantees the SOC operating within reasonable limits.Simulation analysis verifies the feasibility,effectiveness and economy of the proposed strategy. Key words:wind-PV-storage power generation system;frequency control;strategy;charge and discharge control;ac-tive power Foundation items:The National Key Technology R&D Program of the Ministry of Science and Technology (2011BAA07B03) 目前,对于风电、光伏发电以及储能技术已有较多研究[1-7],但就以上3个单元的联合运行控制技术的研究才刚刚起步。 储能技术能够改善风电及光伏发电等间歇式能源的出力特性,使得联合发电系统的出力具有较强的可控性,发挥近似于常规发电机组的调节作用。而关于风光储联合发电系统参与电力系统调频的控制技术鲜有研究。为此,本文在分析风光储联合发电系统运行特点的基础上,基于分段调频控制理论,提出联合发电系统调频控制策略。并以张北风光储示范电站参与华北电网调频控制为例进行仿真分析,验证了所提方法的可行性、有效性及经济性。1电力系统调频控制 电力系统频率是电能质量的三大标准之一,它反映了发电有功功率与负荷之间的平衡关系。我国电力系统频率的标准为50Hz,当系统频率产生偏差时,会对电网中的电气设备产生严重影响,导致其不能正常工作或损坏。因此,电力系统发电设备输出的有功功率要时刻保持与负荷的动态平衡,尽可能地将系统频率稳定在50Hz。 电力系统的调频分为一次、二次及三次调频,其中一次调频是指利用系统固有的负荷频率特性,以及发电机组的调速器的作用,来阻止系统频率偏离标准;由于一次调频是有差调节,一次调频不能保证系统频率稳定在扰动前的运行点;二次

风光互补发电系统方案

风光互补发电系统 方案

光伏发电系统在别墅中的应用方案 1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在别墅屋顶上,用于演示光伏发电系统在别墅中应用的情况,为日后大面积推广提供参考。 1.2光伏发电系统的要求 本项目设计一个5kWp的小型系统,平均每天发电25kWh,可供一个1kW的负载工作25小时。能够满足别墅正常见电的需要(一般家庭每天用电量在10kWh左右)。 2.系统方案 2.1现场资源和环境条件 长春北纬43 °05’~45 °15’;东经124 °18’~127 °02’。长春市年平均气温 4.8°C,最高温度39.5°C,最低温度-39.8°C,日照时间2,688小时。夏季,东南风盛行,也有渤海补充的湿气过境。年平均降水量522至615毫米,夏季降水量占全年降水量的60%以上;最热月(7月)平均气温23℃。秋季,可形成持续数日的晴朗而温暖的天气,温差较大,风速也较春季小。 2.2太阳能光伏发电系统原理 太阳能光伏发电是一种新型的发电方式, 基本原理是光生伏特

效应原理, 也就是当太阳光照射在某些特殊材料上, 会引起材料中电子的移动, 形成电势差, 从而由太阳光能直接转换为电能。这其中的特殊材料也就是光伏发电的的最基本元件被称为太阳电池半导体, 即太阳能电池(片), 它包括有单晶硅、多晶硅、非晶硅和薄膜电池等。光伏发电系统主要由太阳能电池阵列、蓄电池、逆变器、控制器等几大部分组成, 由这些电子元器件构成的系统, 安装维护简便, 运行稳定可靠。白天太阳能电池组件将太阳辐射出的光线转变为电能, 储存在蓄电池里, 在夜间或需要时, 从蓄电池里将电能释放出来, 用于照明和其它用途。太阳能电池组件是发电设备, 蓄电池是储能设备, 控制器、逆变器是充放电控制保护和直交流变换设备。 2.3太阳能光伏发电主要部件 (1) 太阳能电池板: 太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量和成本将直接决定整个系统的质量和成本。 (2) 太阳能控制器: 太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其它附加功能如光控开关、时控开关都应当是控制器的可选项。

风光互补发电

风光互补发电系统 概述 能源是国民经济发展和人民生活必须的重要物质基础,在过去的200多年里,建立在煤炭、石油、天然气等化石燃料基础上的能源体系极大的推动了人类社会的发展。但是人类在使用化石燃料的同时,带来了严重的环境污染和生态系统破坏。近年来,世界各国逐渐认识到能源对人类的重要性,更认识到常规能源利用过程中对环境和生态系统的破坏,各国纷纷开始根据国情,治理和缓解已经恶化的环境,并把可再生、无污染的新能源的开发利用作为可持续发展的重要内容。风光互补发电系统是利用风能和太阳能资源的互补性,具有较高性价比的一种新型能源发电系统,具有很好的应用前景。 风光互补发电系统的发展过程及现状 最初的风光互补发电系统,就是将风力机和光伏组件进行简单的组合,因为缺乏详细的数学计算模型,同时系统只用于保证率低的用户,导致使用寿命不长。 近几年随着风光互补发电系统应用范围的不断扩大,保证率和经济性要求的提高,国外相继开发出一些模拟风力、光伏及其互补发电系统性能的大型工具软件包。通过模拟不同系统配置的性能和供电成本可以得出最佳的系统配置。其中colorado state university和national renewable energy laboratory合作开发了hybrid2应用软件。 hybrid2本身是一个很出色的软件,它对一个风光互补系统进行非常精确的模拟运行,根据输入的互补发电系统结构、负载特性以及安装地点的风速、太阳辐射数据获得一年8760小时的模拟运行结果。但是hybrid2只是一个功能强大的仿真软件,本身不具备优化设计的功能,并且价格昂贵,需要的专业性较强。 在国外对于风光互补发电系统的设计主要有两种方法进行功率的确定:一是功率匹配的方法,即在不同辐射和风速下对应的光伏阵列的功率和风机的功率和大于负载功率,只要用于系统的优化控制;另一是能量匹配的方法,即在不同辐

SG-T11风光互补发电实训系统

KH-T11风光互补发电实训系统 一、概述: KH-T11风光互补发电实训系统主要由光伏供电装置、风力供电系统、逆变与负载系统、监控系统组成,风光互补发电实训系统采用模块式结构,各装置和系统具有独立的功能,可以组合成光伏发电实训系统、风力发电实训系统。 二、设备参数 KH-T11风光互补发电实训系统主要由光伏供电装置、光伏供电系统、风力供电装置、风力供电系统、逆变与负载系统、监控系统组成,如图1所示。MY-PV25 风光互补发电实训系统采用模块式结构,各装置和系统具有独立的功能,可以组合成光伏发电实训系统、风力发电实训系统。 1、设备尺寸:光伏供电装置1610×1010×1550mm 风力供电装置1578×1950×1540mm 实训柜 3200×650×2000mm 2、场地面积:20平方米 三、设备组成: 1、光伏供电装置 (1)、光伏供电装置的组成 光伏供电装置主要由光伏电池组件、投射灯、光线传感器、光线传感器控制盒、水平方向和俯仰方向运动机构、摆杆、摆杆减速箱、摆杆支架、单相交流电动机、电容器、直流电动机、接近开关、微动开关、底座支架等设备与器件组成, 光伏供电装置 设备由4块光伏电池组件并联组成光伏电池方阵,光线传感器安装在光伏电池方阵中央。2盏300W的投射灯安装在摆杆支架上,摆杆底端与减速箱输出端连接,减速箱输入端连接单相交流电动机。电动机旋转时,通过减速箱驱动摆杆作圆周

摆动。摆杆底端与底座支架连接部分安装了接近开关和微动开关,用于摆杆位置的限位和保护。水平和俯仰方向运动机构由水平运动减速箱、俯仰运动减速箱、直流电动机、接近开关和微动开关组成。直流电动机旋转时,水平运动减速箱驱动光伏电池方阵作向东方向或向西方向的水平移动、俯仰运动减速箱驱动光伏电池方阵作向北方向或向南方向的俯仰移动,接近开关和微动开关用于光伏电池方阵位置的限位和保护。 (2)、光伏电池组件 光伏电池组件的主要参数为: 额定功率 20W 额定电压 17.2V 额定电流 1.17A 开路电压 21.4V 短路电流 1.27A 尺寸 430mm×430mm×28mm 2、光伏供电系统 (1)、光伏供电系统的组成 光伏供电系统主要由光伏电源控制单元、光伏输出显示单元、触摸屏、光伏供电控制单元、DSP控制单元、接口单元、西门子S7-200PLC、继电器组、接线排、蓄电池组、可调电阻、断路器、12V开关电源、网孔架等组成。如图3所示。(2)、控制方式 光伏供电控制单元的追日功能有手动控制盒自动控制两个状态,可以进行手动或自动运行光伏电池组件双轴跟踪、灯状态、灯运动操作。 (3)、DSP控制单元和接口单元 蓄电池的充电过程及充电保护由DSP控制单元、接口单元及程序完成,蓄电池的放电保护由DSP控制单元、接口单元及继电器完成,当蓄电池放电电压低于规定值,DSP控制单元输出信号驱动继电器工作,继电器常闭触点断开,切断蓄电池的放电回路。 (4)、蓄电池组 蓄电池组选用4节阀控密封式铅酸蓄电池,主要参数: 容量 12V 18Ah/20HR 重量 1.9kg 尺寸 345mm×195mm×20mm 3、风力供电装置 (1)、风力供电装置的组成 风力供电装置主要由叶片、轮毂、发电机、机舱、尾舵、侧风偏航控制机构、直流电动机、塔架和基础、测速仪、测速仪支架、轴流风机、轴流风机支架、轴流风机框罩、单相交流电动机、电容器、风场运动机构箱、护栏、连杆、滚轮、万向轮、微动开关和接近开关等设备与器件组成。

风光互补发电系统技术方案

风光互补发电系统技术方案 五寨县恒鑫科技发展有限公司 2017年04月20日

项目背景: 本项目产品小型风力发电机组是离网用户最佳的独立电源系统。 风光互补独立供电系统是目前最广泛应用独立电源系统。风光互补独立供电系统的广泛应用在于它的合理性。 太阳能是地球上一切能源的来源,太阳照射着地球的每一片土地。风能是太阳能在地球表面的另一种表现形式,由于地球表面的不同形态(如沙土地面、植被地面和水面)对太阳光照的吸热系数不同,在地球表面形成温差,地表空气的温度不同形成空气对流而产生风能。因此,太阳能与风能在时间上和地域上都有很强的互补性。白天太阳光最强时,风很小,晚上太阳落山后,光照很弱,但由于地表温差变化大而风能加强。在夏季,太阳光强度大而风小,冬季,太阳光强度弱而风大。太阳能和风能在时间上的互补性使风光互补发电系统在资源上具有最佳的匹配性,风光互补发电系统是资源条件最好的独立电源系统。单独的风机或太阳能发电系统由于受资源条件的限制,对蓄电池组充电时间较短,蓄电池组长时间处于亏电状态而导致蓄电池组的损坏。而风光互补发电系统充电时间较均衡,可以保证蓄电池组处于浮充状态,提高蓄电池组的充电质量并延长了蓄电池组的寿命。 风力发电机和太阳能电池的充电特性不一样,风机的充电特性较硬,而光伏电池的充电特性较软,风光互补电对激活离子运动,防止蓄电池极板硫化有好处,可延长蓄电池组的寿命。 风机和太阳能电池的储能和逆变系统可以共用,且风机的单位造价只有太阳能电池的三分之一左右,所以风光互补发电系统的整体造价可以降低。同时,由于风机和太阳能电池的发电时间上互补,可以减少储能的蓄电池组容量,使发电系统造价降低。经济上更趋于合理,随着我国4G通信网的开通,可实现大范围的无线传输图像资料,风光互补监控系统将在森林防火、防盗猎监控、城市乡村的防犯罪监控、古墓群的防盗墓监控、边防地区的防偷渡监控、生态保护区的防盗猎监控、旅游地区的安全监控和矿产资源的防乱开采监控等领域得到广泛的应用,这种监控系统体系不仅能大大降低管理成本,而且能实现有效及时和安全的防护体系。对降低森林火灾,减少资源破坏,提高破案率都有非常极的意义。技术的进步可以促进社会管理手段的进步,同时,新技术的广泛应用才能进一步促进新技术产业的发展。

风光互补发电系统设计

5.3.1风光互补发电系统设计 风能和太阳能都具有能量密度低、稳定性差的弱点,并受到地理分布、季节变化、昼夜交替等影响.然而太阳能与风能在时间上和地域上一般都有一定的互补性,白天太阳光最强时,风较小,晚上太阳落山后,光照很弱,但由于地表温差变化大而风能加强.在夏季,太阳光强度大而风小;冬季,太阳光强度小而风大。太阳能发电稳定可靠,但目前成本较高,而风力发电成本较低,随机性大,供电可靠性差。若将两者结合起来,可实现昼夜发电.在合适的气象资源条件下,风光互补发电系统能提高系统供电的连续性、稳定性和可靠性,在很多地区得到了广泛的应用.如图5.1为某地10 月份某日典型的太阳能和风资源分布,因此采用风光互补发电系统,可以弥补风能和太阳能间歇性的缺陷。 图5.1 某地10 月份典型日太阳能和风能资源分布图风光互补发电的优势: (1)利用风能和太阳能的互补性,弥补了独立风电和独立光伏发电系统的不足,可以获得比较稳定的和可靠性高的电源。 (2)充分利用土地资源。 (3)保证同样供电的情况下,可大大减少储能蓄电池的容量。 (4)对系统进行合理的设计和匹配,可以基本上基本上由风光互补发电系统供电,获得较好的经济效益。 5)大大提高经济效益。

风光互补发电系统主要组成部分(1)发电部分:由一台或者几台风力发电机和太阳能电池阵列构成风—电、光—电发电部分,发电部分输出的电能通过充电控制器与直流中心完成蓄电池组自动充电工作。 (2)蓄电部分:蓄电部分主要作用是将风电或光电储存起来,稳定的向电器供电。蓄电池组在风光互补发电系统中起到能量调节和平衡负载两大作用。 (3)控制及直流中心部分:控制及直流中心部分由风能和太阳能充电控制器、直流中心、控制柜、避雷器等组成,完成系统各部分的连接、组合及对蓄电池组充放电的自动控制。控制及直流中心具体构成参数由最大用电负荷与日平均用电量决定。 (4)供电部分:供电部分不可缺少的部分是逆变器,逆变器把蓄电池储存的直流电转换为交流电,保证交流负载的正常使用。同时,还有稳压功能,以改善风光互补系统的供电质量。 图5.2 风光互补发电系统 设计一个完善的风光互补发电系统需要考虑多种因素.如各个地区的气候条件,当地的太阳辐照量情况,太阳能方阵及风力发电机功率的选用,作为储能装置蓄电池的特性等.因此,必须选择建立一些先进的数学模型进行多种计算,确定合理的太阳能电池方阵和风力发电机容量,使系统设计最优化. 数学模型计算 1.蓄电池容量计算 蓄电池的容量C 通常按照保证连续供电的天数来计算:

相关文档
相关文档 最新文档