文档库 最新最全的文档下载
当前位置:文档库 › 全站仪对向观测法三角高程在高速公路施工测量中的研究与应用教程文件

全站仪对向观测法三角高程在高速公路施工测量中的研究与应用教程文件

全站仪对向观测法三角高程在高速公路施工测量中的研究与应用教程文件
全站仪对向观测法三角高程在高速公路施工测量中的研究与应用教程文件

全站仪对向观测法三角高程在高速公路施工测量中的研究与应

全站仪对向观测法三角高程在高速公路施工测量中的

研究与应用

李瑞国

中交二航局福州分公司测试中心

摘要:全站仪三角高程测量可以不受地形限制,在地形起伏大的山区,无论是建立高程测量控制网或是日常施工测量放样,全站仪三角高程都具有几何水准测量无可比拟的优越性。本文从三角高程测量原理这一方面展开,根据误差传播定律,对三角高程测量误差来源及其测量精度进行分析,阐述在一定范围内合理利用全站仪对向观测三角高程测量,可以达到三、四等几何水准测量的要求,并能将其良好的运用于高速公路施工测量的工程实践中。

关键词:全站仪对向观测法三角高程高速公路研究与应用

1 引言

由于传统的几何水准测量确定地面点的高程精度高,已普遍应用于土木工程测量实践有一个多世纪之久,但随着高精度的全站仪的普及应用,在越来越多的工程实践中,全站仪已经展现出其测量的高精度性与便捷快速性。尤其在地形起伏较大、复杂多变的山区,几何水准测量受到限制,使用全站仪三角高程测量,可以节省大量时间,大量减少测量人员的劳动强度,提高作业效率,具有极强的可行性与优越性。全站仪进行三角高程测量时有单向观测、对向观测、中间点观测法等不同方法,不同的观测方法可以满足不同的高程测量的精度要求,本文从笔者在高速公路施工测量方面的日常工作出发,阐述全站仪对向观测法三角高程在高速公路施工测量中的研究与应用。

图1 全站仪三角高程测量原理图

2 全站仪对向观测法三角高程的原理

全站仪对向观测法三角高程原理与单向观测法三角高程原理相似,单向观测只需进行往测,而对向观测则需要进行往返观测。全站仪单向三角高程测量如图1所示,其中A 点为已知高程点,B 点为待测高程点,欲在A 、B 两点之间采用三角高程测量的方法测定高差AB h ,在A 点安置全站仪,测量其仪器高i ,在B 点安置棱镜,测量其棱镜高为v ,由A 点的仪器测量A 、B 两点间的斜距S 与A 至B 点的垂直角α。一般地,如果A 、B 两点距离较远时,必须考虑地球曲率和大气折光对其所测高差的影响,二者对高程测量的联合影响称为“两差影响”,也称为球气差。根据图1中A 、B 两点间的几何关系可得其两者间高差AB h 计算公式为:

r c v i S h AB -+-+?=αsin ……式(1)

式中:AB h 为A 、B 两点的高差,S 为斜距,α为垂直角,c 为地球地球曲率改正数,r 为大气折光系数改正数。

大气折光与地球曲率两者的联合影响为:

ααα222222cos 21cos 2cos 2S R

K R KS R S r c f -=-=-=……式(2) 式中:f 为大气折光与地球曲率两者联合影响,R 为地球半径,K 为大气折光系数,其他符号意义同前。

因此,将式(2)代入式(1)知全站仪单向三角高程测量的计算公式可转换为:

αα22cos 21sin S R

K v i S h AB -+-+?=…..式(3) 因此,当使用全站仪进行对向观测时,由式(3)可得直觇公式为: 往往往

往往往往αα22cos 21sin S R K v i S h AB -+

-+?=……式(4) 返觇公式为:

返返返返返返返αα22cos 21sin S R

K v i S h BA -+-+?=…….式(5) 式中:往S 、返S 、往α、返α分别为往返观测的斜距和垂直角;往i 、返i 、往v 、返v 分别为往返观测的仪器高和棱镜高;往K 、返K 分别为往返观测的大气折光系数。

外业操作中,当使用全站仪进行对向观测时,可认为往返观测是在同一时间段进行,故而其气象

条件应是相同的,因此往返观测时大气折光系数近似相同,即返往K K ≈;而往往

α22cos ?S 与返返α22cos ?S 为A 、B 两点间平距的平方,两者理论上相等,而实际操作中可忽略往返观测时对中整平与照准等系列误差,视两者近似相等。因此:

返返返往往往αα2222cos 21cos 21S R

K S R K -≈-…….式(6) 综上所述,当使用全站仪进行对向观测时,其平均高差的计算公式为:

()()往返返往返返往往v v i i S S h h h BA AB -+-+?-?=-=ααsin sin 2

121……式(7) 3 全站仪对向观测法三角高程的精度分析

当使用全站仪进行对向观测时,假设往返观测平均高差中误差为h m ,往返测斜距中误差分别为往S m 和返S m ,往返测垂直角中误差分别为往αm 和返αm ,往返测仪器高量取中误差分别为往i m 和返i m ,往返测棱镜高量取中误差分别为往v m 和返v m ,根据误差传播定律,对式(7)进行全微分,可得:

()()()

()

222222222222241sin sin 41cos cos 41返往返往返返往往返返返往往往v v i i S S h m m m m m m m S m S m ++++?+?+???????????? ????+???? ????=ααραρααα……式(8)

式中ρ为1弧度所对应的秒值,取206265,由于在户外进行对向观测操作时,视仪器与观测条件是相同,基于这个条件,则可设S S S m m m ==返往,αααm m m ==返往,m m m m m v v i i ====返往返往,ααα==返往,S S S ==返往。于是对式(8)简化并开方可得:

()()

22222sin 21cos 21m m m S m S h +?+???? ????=αραα……式(9) 4 全站仪对向观测法三角高程与二等、三等及四等水准测量闭合差比较论证

《工程测量规范》(GB50026-2007)中对二等、三等及四等水准测量的闭合差作出了规定,若以平地为测区对象,则三等水准闭合差为L 12,四等水准闭合差为L 20(各个闭合差的单位为mm ,各个闭合差中的L 为往返测段、附合或环线的水准路线长度,单位为km )。

为了对全站仪对向观测法三角高程的精度进行论证分析,本文以笔者在日常工程施工测量中常用的徕卡TS06全站仪为例(标称精度中测角精度为2''±=αm ,测距精度为()mm D m S 61025.1-?+±=,取仪器到待测点间的距离为1km 计算,则2''±=αm ,mm m S 5.3±=,而仪器高与棱镜高的量取误差按照人们日常经验选取mm m m v i 2±==。极限误差按照2倍的中误差计算,与三等及四等水准测量的闭合差进行比较分析,其计算数据如表1所示。

二等光电测距三角高程测量技术(正文)

光电三角高程测量代替二等水准测量的尝试摘要:光电测距三角高程测量代替二等水准测量是目前国内测绘行业正在研究的问题。本文通过对武汉大学与铁四院在武广客专大瑶山隧道中成功应用的精密二等三角高程测量理论分析的基础上,提出一套适合工程施工单位使用的二等光电测距三角高程导线测量方法,并在向莆铁路二等水准复测中成功应用。实践证明:该套测量方法在保证测量精度的前提下,经济效益显著! 关键词:二等水准;高、低棱镜;光电三角高程导线;精度分析;效费比较 1、概述 随着我国新建铁路施工技术标准不断提高,对铁路施工测量精度的要求也越来越高。特别是客运专线无碴轨道线路水准基点测量已提高到二等水准测量要求。因此,配备DS 型以上水准仪及铟瓦钢尺进行二等水准测量将成为现阶段新 1 建高速铁路高程控制的普遍做法,但这种传统的水准测量方法在地形复杂的山区地带,将失去优势很难满足规范中的精度要求。 2、精密三角高程测量特点 针对以上情况,武汉大学与铁四院共同完成了“精密三角高程测量研究”课题,并在武广客专大瑶山隧道二等水准测量中成功应用,弥补了传统二等水准测量的不足。其主要原理是:采用在两台全站仪手柄上安装高、低棱镜对向观测的方法来避免量取仪器高、棱镜高及消除球气差的影响,从而提高测量精度达到二等水准测量的要求。其基本原理如图(一)所示。 3# 1、0#、4#站仪器为特制精密棱镜对中杆。每测段测站数均为奇数。 2、测段起、止点观测应为同一全站仪、棱镜杆,且距离大致相等。 图(一)精密测距三角高程测量原理 计算公式推导如下:

222 12214#0#1121122122122 23322332332432*1)1)1)2 2221)1)222D D D H H S Sin K I I S Sin K I I S Sin K I I R R R D D S Sin K I I S Sin K I I R R ααααα--------????????=-+-+-++-+--+-+-÷???? ? ??????????? ??????++-+--+-+-÷+?? ? ????????? 起起起镜(((((2322212210#11212122122 233223332432*1)2*1)1)1)222 2221)1)222*122D S Sin K I I R D D D H S Sin K I I S Sin K S Sin K I I R R R D D S Sin K S Sin K I I S Sin R R ααααααα--------??+-+-?? ??????=----+++-----+÷ ?????++-----+÷++- ??? 终终终镜起起起镜终终(((((((()()()()230#1121212212333243230#1121212212333242330#)2*222222**22**D K I I R H S Sin I S Sin S Sin I I S Sin S Sin I I S Sin I H S Sin I S Sin S Sin I I S Sin S Sin I I S Sin I H S Sin S ααααααααααααα--------+-=--+--+÷+--+÷++=--+-÷-++-÷+-++=-+终镜 起起终终起起终终起起()()()1212122333240#12121223332422**2*Sin S Sin S Sin S Sin S Sin H S Sin S Sin S Sin S Sin S Sin S Sin ααααααααααα---------÷+-÷+=-+-+-÷+终终起起终终 由公式最终推导结果可知:仪高、棱镜高、球气差均相互抵消,所以测量过程中不量取仪高、棱镜高是此套测量方法的最大特点。其主要优缺点如下: 优点: a 、测量速度快,精度高。特别适合于山区测量。 b 、原理简单、理论计算严密能够满足二等水准测量的要求。 c 、在地形复杂的山区中比二等水准测量更容易达到规范要求。 缺点: a 、价格昂贵,一次性投入大。按照这种测量方法的要求,需配备两台徕卡TCA2003全站仪、两套高、低棱镜组、对讲机等,折合人民币70万元左右。一般施工单位难以负担。 b 、此套方法仅能完成高程控制测量,不能与导线控制测量同时进行。 c 、高、低棱镜组加工误差及安装误差对测量精度产生一定影响。 图(二) 全站仪+高、低棱镜组安装图 综合以上因素此套方法对于设计部门在复杂山区定测阶段布设二等高程控

全站仪三角高程测量方法

应用全站仪进行三角高程测量的新方 在工程的施工过程中,常常涉及到高程测量。传统的测量方法是水准测量、三角高程测量。两种方法虽然各有特色,但都存在着不足。水准测量是一种直接测高法,测定高差的精度是较高的,但水准测量受地形起伏的限制,外业工作量大,施测速度较慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度较快。在大比例地形图测绘、线型工程、管网工程等工程测量中广泛应用。但精度较低,且每次测量都得量取仪器高,棱镜高。麻烦而且增加了误差来源。 随着全站仪的广泛使用,使用跟踪杆配合全站仪测量高程的方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。经过长期摸索,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 一、三角高程测量的传统方法 如图一所示,设A,B为地面上高度不同的两点。已知A点高程H A,只要知道A 点对B点的高差H AB即可由H B=H A+H AB得到B点的高程H B。 此主题相关图片如下: 图中:D为A、B两点间的水平距离 а为在A点观测B点时的垂直角 i为测站点的仪器高,t为棱镜高

HA为A点高程,HB为B点高程。 V为全站仪望远镜和棱镜之间的高差(V=Dtanа) 首先我们假设A,B两点相距不太远,可以将水准面看成水准面,也不考虑大气折光的影响。为了确定高差h AB,可在A点架设全站仪,在B点竖立跟踪杆,观测垂直角а,并直接量取仪器高i和棱镜高t,若A,B两点间的水平距离为D,则h AB=V+i-t 故 H B=H A+Dtanа+i-t (1) 这就是三角高程测量的基本公式,但它是以水平面为基准面和视线成直线为前提的。因此,只有当A,B两点间的距离很短时,才比较准确。当A,B两点距离较远时,就必须考虑地球弯曲和大气折光的影响了。这里不叙述如何进行球差和气差的改正,只就三角高程测量新法的一般原理进行阐述。我们从传统的三角高程测量方法中我们可以看出,它具备以下两个特点: 1、全站仪必须架设在已知高程点上 2、要测出待测点的高程,必须量取仪器高和棱镜高。 二、三角高程测量的新方法 如果我们能将全站仪象水准仪一样任意置点,而不是将它置在已知高程点上,同时又在不量取仪器高和棱镜高的情况下,利用三角高程测量原理测出待测点的高程,那么施测的速度将更快。如图一,假设B点的高程已知,A点的高程为未知,这里要通过全站仪测定其它待测点的高程。首先由(1)式可知: H A=H B-(Dtanа+i-t) (2) 上式除了Dtanа即V的值可以用仪器直接测出外,i,t都是未知的。但有一点可以确定即仪器一旦置好,i值也将随之不变,同时选取跟踪杆作为反射棱镜,假定t值也固定不变。从(2)可知: H A+i-t=H B-Dtanа=W(3) 由(3)可知,基于上面的假设,H A+i-t在任一测站上也是固定不变的.而且可以计算出它的值W。 这一新方法的操作过程如下: 1、仪器任一置点,但所选点位要求能和已知高程点通视。 2、用仪器照准已知高程点,测出V的值,并算出W的值。(此时与仪器高程测定有关的常数如测站点高程,仪器高,棱镜高均为任一值。施测前不必设定。)

三角高程测量原理

§5.9 三角高程测量 三角高程测量的基本思想是根据由测站向照准点所观测的垂直角(或天顶距)和它们之间的水平距离,计算测站点与照准点之间的高差。这种方法简便灵活,受地形条件的限制较少,故适用于测定三角点的高程。三角点的高程主要是作为各种比例尺测图的高程控制的一部分。一般都是在一定密度的水准网控制下,用三角高程测量的方法测定三角点的高程。 5.9.1 三角高程测量的基本公式 1.基本公式 关于三角高程测量的基本原理和计算高差的基本公式,在测量学中已有过讨论,但公式的推导是以水平面作为依据的。在控制测量中,由于距离较长,所以必须以椭球面为依据来推导三角高程测量的基本公式。 如图5-35所示。设0s 为B A 、两点间的实测水 平距离。仪器置于A 点,仪器高度为1i 。B 为照准 点,砚标高度为2v ,R 为参考椭球面上B A ''的曲率半径。AF PE 、分别为过P 点和A 点的水准面。PC 是PE 在P 点的切线,PN 为光程曲线。当位于P 点的望远镜指向与 PN 图5-35

相切的PM 方向时,由于大气折光的影响,由N 点出射的光线正好落在望远镜的横丝上。这就是说,仪器置于A 点测得M P 、间的垂直角为2,1a 。 由图5-35可明显地看出,B A 、 两地面点间的高差为 NB MN EF CE MC BF h --++==2,1 (5-54) 式中,EF 为仪器高NB i ;1为照准点的觇标高度2v ;而CE 和MN 分别为地球曲率和折光影响。由 2 021s R CE = 2021s R MN ' = 式中R '为光程曲线PN 在N 点的曲率半径。设 ,K R R =' 则 2 0202.21S R K S R R R MN ='= K 称为大气垂直折光系数。 由于B A 、两点之间的水平距离0s 与曲率半径R 之比值很小(当km s 100=时,0s 所对的圆心角仅5'多一点),故可认为PC 近似垂直于OM ,即认为 90≈PCM ,这样PCM ?可视为直角三角形。则(5-54)式中的MC 为 2,10tan αs MC = 将各项代入(5-54)式,则B A 、两地面点的高差为 2 12 02,1022 01202,102,121tan 221tan v i s R K s v s R K i s R s h -+-+=--++ =αα 令式中 C C R K ,21=-一般称为球气差系数,则上式可写成

导线测量、三角高程、支导线计算说明

工地通路测 导线测量、三角高程、支导线计算 操作模式分为两种: 1、现场联机全站仪现场测量、记录、平差; 2、对已经有整理好的内业资料情况,提供数据导入功能,导入测量记录完成平差计算。 一、现场联机全站仪测量、记录、平差操作流程: 1、点击主界面导线平差,进入导线平差界面,点击底部按钮创建导线 2、输入导线的起终点闭合数据。起点后视点位起点测站的后视点,终点前视为终点测站的前视点。 3、添加测站,写入测站名称、后视名称、前视名称。 4、点击测站条目弹出测回列表对话框,点击添加测回按钮进入测量界面。 5、输入仪器高、前后视棱镜高。 6、连接全站仪后点击测量完成正镜后视、正镜前视、倒镜前视、倒镜后视测量,软件获取全站仪数据并记录(或者手工输入数据),点击确定按钮完成本测回测量。 7、逐个完成测站和对应的测回测量。 8、在导线测量界面点击右上角三个点导出测量记录和导线平差计算表。

二、导入已有的导线观测数据: 1、导入工地通路测导线观测文件 点击导线平差界面右上角三个点,点击导入工地通观测文件,弹出导入对话框,在手机存储目录中找到数据文件,点击完成导入。 2、导入附合导线进行平差计算并完成成果表

点击导线平差界面右上角三个点,点击附合导线平差计算按钮,弹出导入对话框,对话框中提示要导入的文件格式的内容,本文件在Excel编辑上按照要求编辑后,选择单元格右键复制,黏贴到一个TXT文件中,将这个TXT文件发送到手机上,在手机存储目录中找到数据文件,点击完成导入,软件同时完成附合导线简易平差计算,并生成计算表。 3、导入三角高程数据计算并完成成果表 点击导线平差界面右上角三个点,点击三角高程计算按钮,弹出导入对话框,对话框中提示要导入的文件格式的内容,本文件在Excel编辑上按照要求编辑后,选择单元格右键复制,黏贴到一个TXT文件中,将这个TXT文件发送到手机上,在手机存储目录中找到数据文件,点击完成导入,软件同时完成三角高程平差计算,并生成计算表。 4、导入支导线数据进行计算并完成成果表 点击导线平差界面右上角三个点,点击支导线计算按钮,弹出导入对话框,对话框中提示要导入的文件格式的内容,本文件在Excel编辑上按照要求编辑后,选择单元格右键复制,黏贴到一个TXT文件中,将这个TXT文件发送到手机上,在手机存储目录中找到数据文件,点击完成导入,软件同时完成支导线计算,并生成计算表。 说明: 1、当遇到闭合导线时,实际上闭合导线计算和附合导线计算原理是一致的,闭合点只需要 填写为原来的起算点。 2、遇到闭合三角高程时,只需要将附合点填写为闭合点。 3、观测时设置为水平角为左角,竖直角为天顶零。 ============================================== 工地通路测工作环境为android4.0以上智能手机和设备,主要用于公路、铁路、市政、地铁工程施工测量。包括路线坐标高程计算和放样,坐标里程反算,桥涵、路基挖填方及断面、隧道断面、隧道仰坡、锥坡测量,坐标里程批量正反算,面积测量、控制测量、指南针,利用GPS计算坐标、里程、偏距,地图导航,测量记录,通讯对讲,科学计算器、缓和曲线参数计算、角度单位转换、坐标正反算等功能;支持超高、加宽、路基边坡渐变、隧道断面渐变;软件可生成路线平面图、路基土石方断面图、隧道断面检测图。 软件可与各品牌全站仪、RTK通讯测量,包括徕卡、尼康、宾得、三鼎、索佳、南方、拓普康、中纬、天宝、科维、科力达、中翰、徕纳得等品牌,同时完成计算、绘图、记录,实现测量信息化。

三角高程测量

§4-6 三角高程测量 一、三角高程测量原理及公式 在山区或地形起伏较大的地区测定地面点高程时,采用水准测量进行高程测量一般难以进行,故实际工作中常采用三角高程测量的方法施测。 传统的经纬仪三角高程测量的原理如图4-12所示,设A点高程及AB两点间的距离已知,求B点高程。方法是,先在A点架设经纬仪,量取仪器高i;在B点竖立觇标(标杆), 并量取觇标高L,用经纬仪横丝瞄准其顶端,测定竖直角δ,则AB两点间的高差计算公式为: 故(4-11) 式中为A、B两点间的水平距离。 图4-12 三角高程测量原理 当A、B两点距离大于300m时,应考虑地球曲率和大气折光对高差的影响,所加的改正 数简称为两差改正: 设c为地球曲率改正,R为地球半径,则c的近似计算公式为: 设g为大气折光改正,则g的近似计算公式为: 因此两差改正为:,恒为正值。 采用光电三角高程测量方式,要比传统的三角高程测量精度高,因此目前生产中的三角高程测量多采用光电法。

采用光电测距仪测定两点的斜距S,则B点的高程计算公式为: (4-12) 为了消除一些外界误差对三角高程测量的影响,通常在两点间进行对向观测,即测定hAB 和hBA,最后取其平均值,由于hAB和hBA反号,因此可以抵销。 实际工作中,光电三角高程测量视距长度不应超过1km,垂直角不得超过15°。理论分析和实验结果都已证实,在地面坡度不超过8度,距离在1.5km以内,采取一定的措施,电磁波测距三角高程可以替代三、四等水准测量。当已知地面两点间的水平距离或采用光电三角高程测量方法时,垂直角的观测精度是影响三角高程测量的精度主要因素。 二、光电三角高程测量方法 光电三角高程测量需要依据规范要求进行,如《公路勘测规范》中光电三角高程测量具体要求见表4-6。 表4-6 光电三角高程测量技术要求 往返各 注:表4-6中为光电测距边长度。 对于单点的光电高程测量,为了提高观测精度和可靠性,一般在两个以上的已知高程点上设站对待测点进行观测,最后取高程的平均值作为所求点的高程。这种方法测量上称为独立交会光电高程测量。 光电三角高程测量也可采用路线测量方式,其布设形式同水准测量路线完全一样。 1.垂直角观测 垂直角观测应选择有利的观测时间进行,在日出后和日落前两小时内不宜观测。晴天观测时应给仪器打伞遮阳。垂直角观测方法有中丝法和三丝法。其中丝观测法记录和计算见表4-7。表4-7 中丝法垂直角观测表 点名泰山等级四等 天气晴观测吴明 成像清晰稳定仪器Laica 702 全站仪记录李平 仪器至标石面高1.553m 1.554 平均值1.554m 日期2006.3.1

三角高程测量原理及应用

三角高程测量及其误差分析与应用 一、 三角高程测量的基本原理 三角高程测量是通过观测两点间的水平距离和天顶距(或高度角)求定两点间的高差的方法。它观测方法简单,不受地形条件限制,是测定大地控制点高程的基本方法。 如图1,所示,在地面上A,B 两点间测定高差h AB , A 点设置仪器,在B 点竖立标尺。量取望远镜旋转轴中心I 至地面点上A 点的仪器高i 1,用望远镜中的十字丝的横丝照准B 点标尺上的一点M ,它距B 点的高度称为目标高i 2,测出倾斜视线与水平线所夹的竖角为a ,若A,B 两点间的水平距离已知为S 0,则由图可得 图1 如图1,所示,在地面上A,B 两点间测定高差h AB , A 点设置仪器,在B 点竖立标尺。量取望远镜旋转轴中心至地面点上A 点的仪器高i ,用望远镜中的十字丝的横丝照准B 点标尺,它距B 点的高度称为目标高v ,测出倾斜视线与水平线所夹的竖角为a ,若A,B 两点间的水平距离已知为s ,则由图可得,AB 两点间高差的公式为: 若A 点的高程已知为H A ,则B 点的高程为: 但是,在实际的三角高程测量中,地球曲率、大气折光等因素对测量结果精度的影响非常大,必须纳入考虑分析的范围。因而, 出现了各种不同的三角高程AB h s tg i v α=?+-B A AB A H H h H s tg i v α=+=+?+-

测量方法,主要分为:单向观测法,对向观测法,以及中间观测法。 1.1 单向观测法 单向观测法是最基本最简单的三角高程测量方法,它直接在已知点对待测点进行观测,然后在①式的基础上加上大气折光和地球曲率的改正,就得到待测点的高程。这种方法操作简单,但是大气折光和地球曲率的改正不便计算,因而精度相对较低。 1.2 对向观测法 对向观测法是目前使用比较多的一种方法。对向观测法同样要在A点设站进行观测,不同的是在此同时,还在B点设站,在A架设棱镜进行对向观测。从而就可以得到两个观测量: 直觇: h AB= S往tanα往+i往-v往+c往+r往②反觇: h BA= S返tanα返+i返-v返+c返+r返③ S——A、B间的水平距离; α——观测时的高度角; i——仪器高; v——棱镜高; c——地球曲率改正; r——大气折光改正。 然后对两次观测所得高差的结果取平均值,就可以得到A、B两点之间的高差值。由于是在同时进行的对向观测,而观测时的路径也是一样的,因而,可以认为在观测过程中,地球曲率和大气折光对往返两次观测的影响相同。所以在对向观测法中可以将它们消除掉。 h=0.5(h AB- h BA) =0.5[( S往tanα往+i往-v往+c往+r往)-( S返tanα返+i返-v返+c返+r返)] =0.5(S往tanα往-S返tanα返+i往-i返+v返-v往) ④与单向观测法相比,对向观测法不用考虑地球曲率和大气折光的影响,具有明显的优势,而且所测得的高差也比单向观测法精确。 1.3 中间观测法

三角高程测量

三角高程测量 ※内容概述: 本讲概述了三角高程测量原理,并进一步论述了三角高程测量的实施,包括三角高程测量的观测、计算及其精度的要求,简单介绍了三种精度估算:观察高差中误差、对向观测高差闭合差的限差、三角形高差闭合差。 ※教学目的: 1、了解三角高程测量的原理、及高程测量的基本测绘知识 2、掌握三角高程的测量和计算方法。 ※内容详述: §7.1 三角高程测量的原理 山地测定控制点的高程,若用水准测量,则速度慢,困难大,故可采用三角高程测量的方法。但必须用水准测量的方法在测区内引测一定数量的水准点,作为高程起算的依据。 图7-1 三角高程测量原理 三角高程测量是根据两点的水平距离和竖直角计算两点的高差。 当两点距离大于300m时,应考虑地球曲率和大气折光对高差的影响。三角高程测量,一般应进行往返观测(双向观测),它可消除地球曲率和大气折光的影响。 §7.2 三角高程测量的实施 一、三角高程测量的观测 在测站上安置经纬仪,量取仪器高iA;在目标点上安置标杆或觇牌,量取觇标高VB。iA和VB用小钢卷尺量2次取平均,读数至1mm。用经纬仪望远镜中丝瞄准目标,将竖盘水准管气泡居中,读竖盘读数,盘左盘右观测为一测回,此为中丝法。竖直角观测的测回数及限差规定见表7-1。

表7-1 竖直角观测测回数与现差 项目 一、二、三级导线 图根 导线 DJ2 DJ6 DJ 6 测回数 1 2 1 各测回竖直角互差 15" 25" 25" 各测回指标差互差 15" 25" 25" 如果用电磁波测距仪测定斜距D′,则按相应平面控制网等级的测距规定 二、三角高程测量的计算 三角高程测量——测量地面点高程的一种方法。在测站点上测定至照准点的高度角,量取测站点仪器高和照准点觇标高。若已知两点间的水平距离厅,根据三角学原理按下式求得两点间的高差为: h =S×tgα+仪器高一觇标高 由对向观测所求得往、返测高差(经球气差改正)之差f △h 的容许值为: f △h =±0.1 D (m) 式中:D 为两点间平距,以km 为单位。 图7-2所示为三角高程测量控制网略图,在A 、B 、C 、D 四点间进行三角高程测量,构成闭合线路,已知A 点的高程为234.88m ,已知数据及观测数据注明于图上,在表6.18中进行高差计算。本例水平距离D 为已知。 图7-2 三角高程测量实测数据略图 由对向观测所求得高差平均值,计算闭合环线或附合线路的高差闭合差的容许值为: 式中:D 以km 为单位。 三、 三角高程测量的精度 1、观测高差中误差 如何估算三角高程测量外业的精度,在理论上很难推导出一个普遍适用的精度估算公式。我国根据

全站仪高程测量新方法

全站仪高程测量新方法 [导读]:使用棱镜配合全站仪测量高程的方法越来越普及,传统的三角高程测量方法已经显示出了局限性。经过长期的工作实践,总结出一种新的方法进行三角高程测量。 摘要:使用棱镜配合全站仪测量高程的方法越来越普及,传统的三角高程测量方法已经显示出了局限性。经过长期的工作实践,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任意置站的特点,又减少了三角高程的误差来源,同时毎次测量时还不必量取仪器高、棱镜高。该法使三角高程测量精度进一步提高,施测进度更快。 关键词:全站仪测量三角高程新方法 1引言 在长江下游丘陵地区测量过程中,全站仪测量技术被广泛应用,全站仪三角高程测量也得到普遍应用。传统的测量方法是水准测量、三角高程测量。两种方法虽然各有特色,但都存在着不足。水准测量是一种直接测高法,测定高差的精度是校高的,但水准测量受地起伏的限制,外业工作量大,施测速度校慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度校快。在大比例地形图测绘、线型工程、管网工程等工程测量中广泛应用。但精度校低,且每次测量都得量取仪器高、棱镜高,比校繁锁,而且增加了误差来源。随着全站仪的广泛使用,使用棱镜配合全站仪测量高程的方法越来越普及,传统的三角高程测量方法已径显示出了局限性。我们经过长期实践和摸索,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任意置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。该方法使三角高程测量精度进一并提高,施测速度更快。 2三角高程测量的传统方法 设A、B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA+HAB得到B点的高程HB。 D为A、B两点间的水平距离;α为在A点观测,B点时的垂直角;i为测站点的仪器高;t为棱镜高;HA 为A点高程,HB为B点高程V为全站仪望远镜和棱镜之间的高差(V=Dtanα); 首先我们假设A、B两点相距不太远,可以将水准面看成水平面,也不考虑大气折光的影。为了确定高差HAB,可在A点架设全站仪、在B点竖立棱镜,观测垂直角α,并直接量取仪器高i和棱镜高t,若A、B两点间的水平距离为D,则HAB=V+i-t,故 HB=HA+Dtanα+i-t(1) 这就是三角高程测量基本公式,但它是以水平面为基准和视线成直线为前提的。因此,只有当A、B两点间的距离很短时,才比较准确。当A、B两点距离较远时,就必须考虑地球弯曲和大气折光的影响。这里不叙述如何进行球差和气差的改正,只就三角高程测量新方法的一般原理进行闸述。从传统的三角高程测量方法中我们可以看出,它具备以下两个特点:a全站仪必须架设在已知高程点上;b要测出待测点的高程,必须量取仪器高和棱镜高。 3三角高程测量的新方法 如果我们能将全站仪像水准仪一样任意置点,而不是将它置在已知高程点上同时又,在不量取仪器高和棱镜高的情况下,利用三角高程测量原理测出待测点的高程,那么施测的速度将更快。如图所示,假设B点的高程为已知,A点的高程为未知,这里要通过全站仪测定其他待测点的高程。首先由式(1)可知:HA=HB-(Dtanα+i-t)(2) 上式除了Dtanα即V的值可以用仪器直接测出外,i、t都是未知的。但有一点可以确定,即仪器一旦置好,i值也将随之不变,同时选取棱镜作为反射,假定t值也固定不变。从式(2)可知: HA+i-t=HB-Dtanα=W(3) 由式(3)可知,基于上面的假设,HA+i-t在任一测站上也是固定不变的,而且可以计算出它的值W。 这一新方法的操作过程如下: a、仪器任意置点,但所选点位要求能和已知高程点通视。 b、用仪器照准已知高程点,测出V的值,并算出W的值(此时与仪器高程测定有关的常数如测站点高程、仪器高、棱镜高均为任意什值。施测前不必设定)。 c、将仪器测站点高程重新设定为W、仪器高和棱镜高设为0即可。 d、照准待测点测出其高程。

三角高程测量

§4-6三角高程测量 一、三角咼程测量原理及公式 在山区或地形起伏较大的地区测定地面点高程时,采用水准测量进行高程测量一般难以进行,故实际工作中常采用三角高程测量的方法施测。 传统的经纬仪三角高程测量的原理如图4 —12所示,设A点高程及AB两点间的距离已知,求B点高程。方法是,先在A点架设经纬仪,量取仪器高i ;在B点竖立觇标(标杆),并量取觇标高L,用经纬仪横丝瞄准其顶端,测定竖直角3,则AB两点间的高差计算公式为: 故'「一「』十 A 十(4-11 ) 式中二为A、B两点间的水平距离 图4-12三角高程测量原理 当A、B两点距离大于300m时,应考虑地球曲率和大气折光对高差的影响,所加的改正数简称为两差改正: 设c为地球曲率改正,R为地球半径,则c的近似计算公式为:-

y ——0.014 —设g为大气折光改正,则g的近似计算公式为:’ 因此两差改正」为:2尺,孑恒为正值。 采用光电三角高程测量方式,要比传统的三角高程测量精度高,因此目前生产中的三角高程测量多采用光电法。 采用光电测距仪测定两点的斜距S,则B点的高程计算公式为: 12) - 二_ 匚I _ ' ---------- -- (4 - 为了消除一些外界误差对三角高程测量的影响,通常在两点间进行对向观测,即 测定hAB和hBA,最后取其平均值,由于hAB和hBA反号,因此」可以抵销 实际工作中,光电三角高程测量视距长度不应超过1km,垂直角不得超过15°。理论分析和实验结果都已证实,在地面坡度不超过8度,距离在1.5km 以内,采取一定的措施,电磁波测距三角高程可以替代三、四等水准测量。当已知地面两点间的水平距离或采用光电三角高程测量方法时,垂直角的观测精度是影响三角高程测量的精度主要因素。 二、光电三角高程测量方法 光电三角高程测量需要依据规范要求进行,如《公路勘测规范》中光电三角高程测量具体要求见表4-6 表4-6光电三角高程测量技术要求

三角高程测量的计算公式

三角高程测量的计算公式 如图6.27所示,已知A点的高程H A,要测定B点的高程 H B,可安置经纬仪于A点,量取仪器高i A;在B点竖立标杆,量取其高度称 为觇 B 标高v B;用经纬仪中丝瞄准其顶端,测定竖直角α。如果已知AB两点间的水平距离D (如全站仪可直接测量平距),则AB两 点间的高差计算式为: 如果当场用电磁波测距仪测定两点间的斜距D′,则AB两点间的高差计算式为: 以上两式中,α为仰角时tanα或sinα为正,俯角时为负。求得高差h AB以后,按下式计算B 点的高程: 以上三角高程测量公式(6.27)、(6.28)中,设大地水准面和通过A、B点的水平面为相互平行的平面,在较近的距离(例如200米)内可 以认为是这样的。但事实上高程的起算面——大地水准面是一曲面,在第一章1.4中已介绍了水准面曲率对高差测量的影响,因此由三 角高程测量公式(6.27)、(6.28)计算的高差应进行地球曲率影响的改正,称为球差改正f1,如图6.28(见课本)所示。按(1.4)式: 式中:R为地球平均曲率半径,一般取R=6371km。另外,由于视线受大气垂直折光影响而成为一条向上凸的曲线,使视线的切线方向向 上抬高,测得竖直角偏大,如图6.28所示。因此还应进行大气折光影响的改正,称为气差改正f2,f2恒为负值。 图6.23 三角高程测量

图6.24 地球曲率及大气折光影响 设大气垂直折光使视线形成曲率大约为地球表面曲率K倍的圆曲线(K称为大气垂直折光系数),因此仿照(6.30)式,气差改正计算公式 为:

球差改正和气差改正合在一起称为球气差改正f,则f应为: 大气垂直折光系数K随气温、气压、日照、时间、地面情况和视线高度等因素而改变,一般取其平均值,令K=0.14。在表6.16中列出水 平距离D=100m-200m的球气差改正值f,由于f1>f2,故f恒为正值。 考虑球气差改正时,三角高程测量的高差计算公式为: 或 由于折光系数的不定性,使球气差改正中的气差改正具有较大的误差。但是如果在两点间进行对向观测,即测定h AB及h BA而取其平均 值,则由于f2在短时间内不会改变,而高差h BA必须反其符号与h AB取平均,因此f2可以抵消,f1同样可以抵消,故f的误差也就不起 作用,所以作为高程控制点进行三角高程测量时必须进行对向观测。

应用全站仪进行三角高程测量的新方法

应用全站仪进行三角高程测量的新方法 摘要:使用对中杆配合全站仪测量高程的方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。经过长期摸索,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。关键词:全站仪三角高程测量新方法 一、前言 在工程的施工过程中,常常涉及到高程测量,传统的测量方法是水准测量、三角高程测量。两种方法虽然各有特色,但都存在着不足。水准测量是一种直接测高法,测定高差的精度是较高的,但水准测量受地形起伏的限制,外业工作量大,施测速度较慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度较快。在大比例地形图测绘、线型工程、管网工程等工程测量中广泛应用。但精度较低,且每次测量都得量取仪器高,棱镜高,麻烦并且增加了误差来源。特别随着全站仪的广泛使用,使用对中杆配合全站仪测量高程的方法越来越普及,使用传统的三角高程测量方法已经显示出了它的局限性。经过长期摸索,笔者总结出了一种新的方法进行三角高程测量,这种方法既结合了水准测量的任意置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。二、三角高程测量的传统方法如图1所示,设A,B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA+HAB得到B点的高程HB。 图(1) 图(1)中: D为A、B两点间的水平距离 а为在A点观测B点时的垂直角 i为测站点的仪器高,t为棱镜高 HA为A点高程,HB为B点高程。 V为全站仪望远镜和棱镜之间的高差(V=Dta nа) 首先我们假设A,B两点相距不太远,可以将水准面看成水平面,也不考虑

三角高程测量原理及应用上课讲义

三角高程测量原理及 应用

三角高程测量及其误差分析与应用 一、 三角高程测量的基本原理 三角高程测量是通过观测两点间的水平距离和天顶距(或高度角)求定两点间的高差的方法。它观测方法简单,不受地形条件限制,是测定大地控制点高程的基本方法。 如图1,所示,在地面上A,B 两点间测定高差h AB , A 点设置仪器,在B 点竖立标尺。量取望远镜旋转轴中心I 至地面点上A 点的仪器高i 1,用望远镜中的十字丝的横丝照准B 点标尺上的一点M ,它距B 点的高度称为目标高i 2,测出倾斜视线与水平线所夹的竖角为a ,若A,B 两点间的水平距离已知为S 0 ,则由图可得 图1 如图1,所示,在地面上A,B 两点间测定高差h AB , A 点设置仪器,在B 点竖立标尺。量取望远镜旋转轴中心至地面点上A 点的仪器高i ,用望远镜中的十字丝的横丝照准B 点标尺,它距B 点的高度称为目标高v ,测出倾斜视线与水平线所夹的竖角为a ,若A,B 两点间的水平距离已知为s ,则由图可得,AB 两点间高差的公式为: 若A 点的高程已知为H A ,则B 点的高程为: AB h s tg i v α=?+-B A AB A H H h H s tg i v α=+=+?+-

但是,在实际的三角高程测量中,地球曲率、大气折光等因素对测量结果精度的影响非常大,必须纳入考虑分析的范围。因而,出现了各种不同的三角高程测量方法,主要分为:单向观测法,对向观测法,以及中间观测法。 1.1 单向观测法 单向观测法是最基本最简单的三角高程测量方法,它直接在已知点对待测点进行观测,然后在①式的基础上加上大气折光和地球曲率的改正,就得到待测点的高程。这种方法操作简单,但是大气折光和地球曲率的改正不便计算,因而精度相对较低。 1.2 对向观测法 对向观测法是目前使用比较多的一种方法。对向观测法同样要在A点设站进行观测,不同的是在此同时,还在B点设站,在A架设棱镜进行对向观测。从而就可以得到两个观测量: 直觇: h AB= S往tanα往+i往-v往+c往+r往②反觇: h BA= S返tanα返+i返-v返+c返+r返③ S——A、B间的水平距离; α——观测时的高度角; i——仪器高; v——棱镜高; c——地球曲率改正; r——大气折光改正。 然后对两次观测所得高差的结果取平均值,就可以得到A、B两点之间的高差值。由于是在同时进行的对向观测,而观测时的路径也是一样的,因而,可以认为在观测过程中,地球曲率和大气折光对往返两次观测的影响相同。所以在对向观测法中可以将它们消除掉。 h=0.5(h AB- h BA) =0.5[( S 往tanα往+i往-v往+c往+r往)-( S返tanα返+i返-v返+c返+r 返)] =0.5(S 往tanα往-S返tanα返+i往-i返+v返-v往) ④

新方法进行三角高程测量的原理

精密三角高程测量 一、 精密三角高程测量的原理 如图1,为了测量点A 到点B 的高差,在O 处安置全站仪、A 处安置棱镜,测得OA 的距离A S 和垂直角A α,从而计算O 点处全站仪中心的高程O H o H =A H +A L -A h ? (1) 然后再在过度点1I 处安置棱镜,测得O 1I 的距离1S 和垂直角1α,从而计算1I 点处高程1H 1 H =0H +1h ?-1L (2) 点A 和点1I 高差为1o h 1o h =0H +1h ?-1L -(o H -A L +A h ?) =1h ?-A h ?+A L -1L (3) 图 1

然后在下一个转点1O I 处架设仪器,将原A 点的棱镜架设到2I ,1I 处的棱镜旋转与1O 处的全站仪对准。同理可计算出1I 和2I 两点高差12h 12h =2h ?-' ?1h +1L -2L (4) 同理可得第I 点与B 点的高差为iB h iB h =B h ?-' ?i h +i L -B L (5) 点A 和点B 高差AB ?H 为 AB ?H =1o h +12h +…+iB h =1h ?-A h ?+2h ?-'?1h +…+B h ?-'?i h +A L -B L (6) 从上式可看出,欲求的点A 和点B 的高差中已消去了个转点棱镜高, 并且与仪器高无关,也就不存在量取仪器高,只需精确量取起点和终点的棱镜高。从而大大减小了量取仪器高和棱镜高而引起的误差。 二、三角高程测量的精度分析 1.单向观测三角高程测量高差的计算公式为 v i R s k s -+?-+=?2cos )1(sin h 22α α (7) 式中,h ?为三角高程测量的高差,s 为仪器到棱镜的斜距; α为垂直角,k 为大气垂直折光系数,k=1.14,R 为地球平均曲率半径,R = 6 370 km; i 为仪器高;v 为规牌高或棱镜高。 三、单向观测三角高程测量高差的误差公式为 222 2 22222cos )(sin v i k s h m m m R s m s m m ++???????+????? ?+=?ρααα (8)

2018年度年量测继续教育习地的题目

量测专业考试试卷 66 1.单项选择题(每题1分,共40分) (1)用2"级全站仪测量水平角,不同方向的2c互差应不大于( ) √13"15"9"6" (2)Gps的测量精度受多种因素的影响,但下述中的( )不是影响因素 √系统本身的误差照准误差信号传播误差接收和观测中的误差 (3)采用滑动式垂向测斜仪监测分层水平位移,对测斜管埋设,下列说法不正确的是( ) 测斜管应竖向埋设测斜管埋设深度应超过最深变形带 测斜管导槽位置应与预计位移的方向一致√测斜管顶部应与地表在同一高程而上 (4)在1:500比例尺测图时,具有实际意义的量距取位为( ) √0.05m O.1m0.15m0.2m (5)确定洞室掘进的坡度称为给( ) 水平线方向线腰线√中线 (6)坝基渗流压力观测横断面的选择,主要取决于地层结构、地质构造情况,断面数一般不少于( )个,并宜顺流线方向布置或与坝体渗流压力观测断面相重合。 2√34 5 (7)设M点的高程为1021.0 m,MN的水平距离为50.0 m,M点至N点的坡度为+2%,则N点的高程为( ) 1020.01021.0√1022.01023.0 (8)围成汇水面积的边界线是( ) 等高线√山脊线山谷线示坡线 (9)对高程放样中误差要求不超过±5mm~±10 mm的部位,宜采用( ) 光电测距三角高程测量法√水准测量法经纬仪测量法

(10)采用测距三角高程方法测得某点的平距为637.100m、垂直角为00,量得仪器高、目标高分别为1.500m、1.200m,设地球半径、大气垂直折光系数分别为6371km、0.14,可求得高差为( ) 0.300m0.304m√0.327m0.331m (11)正垂线( ) 下端悬挂重锤是为了垂线长度不变可用于工程建筑物的垂直位移监测 √是一条平面位置不变的垂线可用于工程建筑物的水平位移监测 (12)依据监测点的变形过程线,( ) 可以直观认识监测点的变形过程可以分析作用因素与变形结果之间的内在联系 可以进行变形量的预报√可以对建筑物的安全性进行评价 (13)在导线测量中,导线全长闭合差fD的产生原因为( ) 水平角测量误差√边长测量误差水平角与边长测量均有误差 坐标增量计算误差 (14)利用全站仪测量边长,应考虑仪器( )误差对所测边长的改正 对中整平i角√加、乘常数 (15)对工程建筑物变形监测,下列说法不正确的是( ) 基准点应远离变形区测点应离开变形体 监测仪器应定期检校√监测周期应相对固定 (16)放样主体工程基础轮廓点时,平面位置误差应不大于( ) 25mm√50mm75mm100mm (17)布设GPS网时,应与施工平面控制网中的已有控制点(尤其是起算点)进行联测,联测点数不得少于( )个(中、小建筑物GPS控制网点联测数不少于2个),且最好能均匀分布于测区中 √234 5

2021年全站仪三角高程测量【全站仪三角高程测量新方法】

全站仪三角高程测量【全站仪三角高程测量新方法】 全站仪进行三角高程测量的新方法摘要:使用跟踪杆配合全站仪测量高程的新方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程测量的误差,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 关键词:全站仪三角高程新方法精度在工程的施工过程中,常常涉及到高程测量。传统的测量方法是水准测量、三角高程测量。两种方法虽然各有特色,但都存在着不足。水准测量是一种直接测高法,测定高差的精度是较高的,但水准测量受地形起伏的限制,外业工作量大,施测速度较慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度较快。在大比例地形图测绘、线型工程、管网工程等工程测量中广泛应用,但精度较低,且每次测量都得量取仪器高,棱镜高,麻烦而且增加了误差。这种新方法既结合了水准测量的任一置站的特点,又减少了三角高程测量的误差,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 一、三角高程测量的传统方法如图所示,设A,B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA HAB得到B点的高程HB。

图中:D为A、B两点间的水平距离а为在A点观测B点时的垂直角 i为测站点的仪器高,t为棱镜高 HA为A点高程,HB为B点高程。 V为全站仪望远镜和棱镜之间的高差(V=Dtanа)首先我们假设A,B两点相距不太远,可以将水准面看成水平面,也不考虑大气折光的影响。为了确定高差hAB,可在A点架设全站仪,在B点竖立跟踪杆,观测垂直角а,并直接量取仪器高i和棱镜高t,若A,B 两点间的水平距离为D,则hAB=V+ i-t 故 HB=HA+Dtanа+i-t (1)这就是三角高程测量的基本公式,但它是以水平面为基准面和视线成直线为前提的。因此,只有当A,B两点间的距离很短时,才比较准确。当A,B两点距离较远时,就必须考虑地球曲率和大气折光的影响。这里不叙述如何进行球差和气差的改正,只就三角高程测量新法的一般原理进行阐述。我们从传统的三角高程测量方法中可以看出,它具备以下两个特点: 1、全站仪必须架设在已知高程点上 2、要测出待测点的高程,必须量取仪器高和棱镜高。 二、三角高程测量的新方法如果我们能将全站仪象水准仪一样任意置点,而不是将它置在已知高程点上,同时又在不量取仪器高和棱镜高的情况下,利用三角高程测量原理测出待测点的高程,那么施测的速度将更快。如上图,假设B点的高程已知,A点的高程为,

全站仪三角高程测量新方法

全站仪进行三角高程测量的新方法 摘要:使用跟踪杆配合全站仪测量高程的新方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程测量的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 关键词:全站仪三角高程新方法精度 在工程的施工过程中,常常涉及到高程测量。传统的测量方法是水准测量、三角高程测量。两种方法虽然各有特色,但都存在着不足。水准测量是一种直接测高法,测定高差的精度是较高的,但水准测量受地形起伏的限制,外业工作量大,施测速度较慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度较快。在大比例地形图测绘、线型工程、管网工程等工程测量中广泛应用,但精度较低,且每次测量都得量取仪器高,棱镜高,麻烦而且增加了误差来源。这种新方法既结合了水准测量的任一置站的特点,又减少了三角高程测量的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 一、三角高程测量的传统方法 如图所示,设A,B为地面上高度不同的两点。已知A点高程H A,只要知道A点对B点的高差 H A B即可由H B=H A H A B得到B点的高程H B。 图中:D为A、B两点间的水平距离 а为在A点观测B点时的垂直角 i为测站点的仪器高,t为棱镜高 H A为A点高程,H B为B点高程。 V为全站仪望远镜和棱镜之间的高差(V=D tanа) 首先我们假设A,B两点相距不太远,可以将水准面看成水平面,也不考虑大气折光的影响。为了确定高差

hAB,可在A点架设全站仪,在B点竖立跟踪杆,观测垂直角а,并直接量取仪器高i和棱镜高t,若A,B两点间的水平距离为D,则hAB=V+ i-t 故 H B=H A+Dtanа+i-t (1) 这就是三角高程测量的基本公式,但它是以水平面为基准面和视线成直线为前提的。因此,只有当A,B两点间的距离很短时,才比较准确。当A,B两点距离较远时,就必须考虑地球曲率和大气折光的影响。这里不叙述如何进行球差和气差的改正,只就三角高程测量新法的一般原理进行阐述。我们从传统的三角高程测量方法中可以看出,它具备以下两个特点: 1、全站仪必须架设在已知高程点上 2、要测出待测点的高程,必须量取仪器高和棱镜高。 二、三角高程测量的新方法 如果我们能将全站仪象水准仪一样任意置点,而不是将它置在已知高程点上,同时又在不量取仪器高和棱镜高的情况下,利用三角高程测量原理测出待测点的高程,那么施测的速度将更快。如上图,假设B点的高程已知,A点的高程为未知,这里要通过全站仪测定其它待测点的高程。首先由(1)式可知: H A=H B-(Dtanа+i-t) (2) 上式除了Dtanа=V的值可以用仪器直接测出外,i,t都是未知的。但有一点可以确定即仪器一旦置好,i值也将随之不变,同时选取跟踪杆作为反射棱镜,假定t值也固定不变。从(2)可知: H A+i-t=H B-Dtanа=W?(3) 由(3)可知,基于上面的假设,HA +i-t在任一测站上也是固定不变的,而且可以计算出它的值W。 这一新方法的操作过程如下: 1、仪器任一置点,但所选点位要求能和已知高程点通视。 2、用仪器照准已知高程点,测出V(V值可以直接读出)的值,并算出W的值。(此时与仪器高程测定有关的常数如测站点高程,仪器高,棱镜高均为任一值。施测前不必设定。) 3、将仪器测站点高程重新设定为W,仪器高和棱镜高设为0即可。 4、照准待测点测出其高程。

相关文档
相关文档 最新文档