文档库 最新最全的文档下载
当前位置:文档库 › 玻璃气泡产生原因分析、

玻璃气泡产生原因分析、

玻璃气泡产生原因分析、
玻璃气泡产生原因分析、

微气泡熔化泡直径较小0.2~1mm,接近圆形,部分有泡核,严重时形成银河状气泡带芒硝澄清时达不到1500℃,Na2SO4得不到完全分解,玻璃液粘度满足不了澄清要求,微气泡不能形成聚集性排出,大量微气泡含在玻璃液中正确引入Na2SO4澄清剂用量

水泡一般直径在1mm以上,椭圆形,又泡核,有二次变形圈,位置有规律深层水包或搅拌器漏水造成微量水进入玻璃液中,水爆产生的小蒸汽团混在玻璃液中,玻璃野受冷却水影响已无排泡能力,构成水泡制作水包和搅拌器时作气密性检验,最好用氩气进行检验,确保焊接点无微漏缺陷。遇水泡及时检查更换搅拌器或深层水包

缺陷类别缺陷名称缺陷特征主要来源产生机理可借鉴控制方法

微气泡污染泡直径1~5mm,长椭圆形,玻璃表面有明显变形,在玻璃带横向位置比较固定,有周期性,泡内有点状物质,破开有SO2气味窑末端或流道流槽冷却部末端或流道流槽调进金属物件,因硫化作用而产生气泡,在玻璃液温度<1250℃时,SO2气泡不能排除,则构成危害尽最大努力清除污染物,如不能清除可采取:提高污染点温度;提高流道温度;减少芒硝用量等措施

细小表面泡锡槽内H2燃烧泡直径约0.05mm,无核,在玻璃带的边部锡槽前端高温区因锡槽罩内罩外O2的分压值相差4.2×104倍,当操作打开边封或有泄漏孔时,罩内保护气体向外流泄时,罩外O2因高压告诉打入罩内,遇H2产生爆炸燃烧,气体分子团告诉打入玻璃液表面,形成细小气泡加强锡槽高温区的密封,尽量减少开孔操作

流槽内H2燃烧泡直径0.1mm 流槽 H2在流槽内燃烧对玻璃液形成击打条件的同时,还要带入SnO、SnS挥发气,所以气泡直径较大 1、加强流槽顶盖密封,减少O2进入流槽;2、加强流槽和锡槽的隔离,增加气体流挡墙和挡气砖;

3、在流槽与锡槽交接处加纯N2隔离箱,形成隔离气幕。N2用量≯40M3/H,过大会因气流冲击将污染积灰吹落,反而会增加对玻璃液的污染;

4、增加冷却部前端开放口的开放量,安全闸板口全部开放,以减弱熔化气流压入锡槽;

5、保护气体中的H2含量要适当,不得超量使用;

6、流道温度不宜过高,以满足成型工艺为准。

流槽气孔泡直径0.5mm左右,线状或带状排列流槽新流槽或新闸板在烘烤过程中,表面气孔和挥发积存赃物,当玻璃液通过时产生污染,形成表面细小泡流槽加温时间不宜过长,尽量减少表面挥发物的积落

气体夹杂物一次气泡圆环状未澄清好的玻璃液硅砂颗粒粗细不均,澄清剂用量不足配合料和碎玻璃投料温度太低,熔化和澄清温度低适当调整澄清温度和适当调整澄清剂用量

二次气泡同上平衡受到破坏的玻璃液降温后的玻璃液再次升温,熔化带之后芒硝未完全分解.窑压剧烈变化保证窑温窑压的稳定,澄清剂用量适宜.

外界空气气泡同上来自配合料和成型操作过程混合料中或操作时带入空气流保证混合料各点均匀性一致.绞绊器放置于玻璃液的一定深度.

耐火材料气泡圆环状,椭圆环状耐火材料与玻璃液接触层面耐火材料中铁对玻璃液中残余盐类分解起催化作用,耐火材料本身也存在气孔率保持稳定的熔窑作业制度,温度不宜过高

金属铁引起的气泡圆或椭圆环并着有棕黄色操作不慎使铁屑偶然落入玻璃液中铁屑难以溶化在玻璃液中产生气泡用铁制工具操作时小心谨慎,注意操作方法.

分析钢化玻璃产生自爆的原因及降低钢化玻璃自爆的方法

钢化玻璃与平板玻璃相比有许多优点,如钢化玻璃的强度高,韧性好,抗热冲击性能优越,因此被广泛地应用于玻璃幕墙和门窗工程实践中。但是钢化玻璃也有缺点,如自爆。钢化玻璃在无荷载作用下发生的自发性炸裂称为钢化玻璃的自爆。自爆是钢化玻璃固有的特性之一,产生自爆的原因很多,简单地归纳为以下几种: 1.玻璃中有结石、气泡和杂质:玻璃是典型的脆性材料,其力学行为服从断裂力学。玻璃中的结石、气泡和杂质在玻璃中将会形成裂纹,是钢化玻璃的薄弱点,特别是裂纹尖端是应力集中处。如果结石、气泡或杂质处在钢化玻璃的张应力区,或在荷载作用下使其处于张应力,都可能导致钢化玻璃炸裂。 2.玻璃中含有硫化镍结晶物:硫化镍夹杂物一般以结晶体存在,室温下存在着相向相转变的倾向,并伴有一定量的体积膨胀。如果这些杂物在钢化玻璃受张应力的部位,或在荷载作用下使其处于张应力区,则体积膨胀会引起自发炸裂。由硫化镍粒子造成的钢化玻璃自爆其爆裂点裂纹形状往往与蝴蝶相似,被称为蝴蝶形裂纹,有些在爆裂点中部有一个有色颗粒,被认为是硫化镍粒子,这两个特性往往被用来作为钢化玻璃是否是自爆的判据。硫化镍粒子在钢化玻璃自爆前后的体积是不同的,爆裂前体积小,不易被看见;自爆后其体积增大,地点确定,很容易被看见,这也是钢化玻璃自爆不易预见的原因之一。 3.玻璃表面和边部在加工、运输、贮存和施工过程,可能造成有划痕、炸口和爆边等缺陷,易造成应力集中而导致钢化玻璃自爆。玻璃表面本来就存在大量的微裂纹,这也是玻璃力学行为服从断裂力学的根本原因。这些微裂纹在一定的条件下会扩展,如水蒸气的作用、荷载的作用等,都可能加速微裂纹的扩展。通常情况下微裂纹的扩展速度是极其缓慢的,表现为玻璃的强度是一恒定值。但是玻璃表面的微裂纹有一临界值,当微裂纹尺寸接近或达到临界值时,裂纹快速扩张,导致玻璃破裂。如果玻璃表面存在接近临界尺寸的微裂纹,如玻璃表面和边部在加工、运输、贮存和施工过程造成的划痕、炸口、爆边等缺陷尺寸就较大,玻璃可能在极小的荷载作用下就导致玻璃表面微裂纹快速扩张,最终导致玻璃破裂。 4.钢化玻璃在生产过程中需要对玻璃进行加热和冷却,玻璃在加热或冷却时沿玻璃板面方向不均匀和沿厚度方向的不对称,将导致钢化玻璃沿板面方向应力不均匀和沿厚度方向应力分布不对称,这些都有可能造成钢化玻璃自爆。钢化玻璃沿板面方向应力不均匀,可以造成玻璃局部处于张应力,如果这种张应力过大,超过玻璃的断裂强度,玻璃就会爆裂。玻璃板沿厚度方向应力分布应当是对称的,即上下两表面处于压应力,中间处于张应力,上下表面的压应力大小、应力层厚度和变化完全是对称的,玻璃板承受正负风压的能力是相同的。如果玻璃板沿厚度方向应力分布不对称,玻璃板承受正负风压的能力就不相同,一侧承受荷载的能力较强,另一侧较小,即玻璃可能在较小荷载作用下破损,严重时,玻璃板在无荷载作用下产生变形,造成幕墙玻璃影像畸变。 5.理论分析和工程实践证明,预应力越大,钢化程度越高,自爆量也越大。普通平板玻璃和半钢化玻璃几乎没有自爆现象,是因为钢化玻璃沿玻璃板厚度方向上下两表面处于压应力,中间层处于张应力。表面压应力越高,一般情况下钢化玻璃的强度也越高,但是中间层的张应力也越高,过大的张应力将会增加钢化玻璃的自爆。 6.我国钢化玻璃标准中对钢化玻璃的弓形弯曲度的要求过低,只有弓形弯曲度的相对值要求,没有绝对值要求,对于尺寸小的钢化玻璃可满足要求,而对于尺寸较大的钢化玻璃,尽管其弓形弯曲度的相对值满足要求,但其绝对值过大,致使钢化玻璃的装配应力较大,经一段时间使用后发生钢化玻璃自爆,这也是一些工程钢化玻璃在使用几年后发生自爆的原因。 针对以上钢化玻璃自爆的原因,提出以下几点降低钢化玻璃自爆的方法:

成型缺陷以及形成原因

成型缺陷以及形成原因 料头附近有暗区 1、表观在料头周围有可辨别的环形—如使用中心式浇口则为中心圆,如使用侧浇口则为同心圆,这是因为环形尺寸小,看上去像黯晕。这主要是加工高粘性(低流动性)材料时会发生这种现象,如PC、PMMA和ABS等。 物理原因如果注射速度太高,熔料流动速度过快且粘性高,料头附近表层部分材料容易被错位和渗入。这些错位就会在外层显现出黯晕。 在料头附近,流动速度特别高,然后逐步降低,随着注射速度变为常数,流动体前端扩展为一个逐渐加宽的圆形。同时在料头附近为获得低的流体前流速度,必须采用多级注射,例如:慢—较快—快。目的是在整个充模循环种获得均一的熔体前流速度。 通常以为黯晕是在保压阶段熔料错位而产生的。实际上,前流效应的作用是在保压阶段将熔料移入了制品内部。 与加工参数有关的原因与改良措施见下表: 1、流速太高采用多级注射:慢-较快-快 2、熔料温度太低增加料筒温度,增加螺杆背压 3、模壁温度太低增加模壁温度 与设计有关的原因与改良措施见下表: 1、浇口与制品成锐角在浇口和制品间成弧形 2、浇口直径太小增加浇口直径 3、浇口位置错误浇口重新定位 注塑成型缺陷之二:锐边料流区有黯区 1、表观成型后制品表面非常好,直到锐边。锐边以后表面出现黯区并且粗糙。 物理原因 如果注射速度太快,即流速太高,尤其是对高粘性(流动性差)的熔体,表面层容易在斜面和锐边后面发生移位和渗入。这些移位的外层冷料就表现为黯区和粗糙的表面。 与加工参数有关的原因与改良措施见下表: 1、流体前端速度太快采用多级注射:快-慢,在流体前端到达锐边之前降低注射速度 与设计有关的原因与改良措施见下表: 1、模具内锐角过渡提供光滑过渡 注塑成型缺陷之三:表面光泽不均 1、表观虽然模具具有均一的表面材质,制品表面还是表现为灰黯和光泽不均匀。 物理原因 注射成型生产的制品表面多少是模具表面的翻版。表面粗糙取决于热塑性材料本身,它的粘性、速度设置以及成型参数如注射速度、保压和模温。因而,由于仿制的表面粗糙度的原因,制品表面会出现为灰黯、较黯或光滑。 理论上说,当被点蚀或侵蚀过的模具表面已精确仿制,投射到制品表面的光线会发生漫反射。因此,表面会出现黯区。对具有较少精确仿制的表面,漫反射现象就会得到控制进而制品表面出现好的光泽效果 与加工参数有关的原因与改良措施见下表: 1、保压太低提高保压压力 2、保压时间太短提高保压时间 3、模壁温度太低提高模壁温度

混凝土表面产生气泡的原因及预防措施

混凝土气泡成因及处理 一、产生原因 1、原材料方面 (1)、气泡与水泥品种有非常密切的关 在水泥生产过程中使用助磨剂(外掺专用助磨剂,厂家非常多,质量差异非常大,通常含有较多表面活性剂)的作用下,通常会产生气泡过多的情况,且水泥中碱含量过高,水泥细度太细,含气量也会增加。 (2)、外加剂类型和掺量对气泡的产生有很大影响 市场上常见的减水剂都具有一定的引气效果,不同的类型和掺量都会影响气泡的数量和大小,而且减水剂掺量越大影响越明显。例如聚羧酸减水剂,其减水组分本身就具有一定的引气效果,在混凝土中引入的气泡含量和质量是不稳定的,主要是一些大的有害的气泡会影响混凝土性能。只进行混凝土含气量测试不能对引入的气泡的数量和大小进行表证。当含气量满足要求时,引入的也可能是有害气泡,这对混凝土强度及耐久性反而不利。 (3)、掺合料也会直接影响气泡的数量 当混凝土中水泥的含量可以保证混凝土的强度时,用掺合料代替部分水泥,可以改善混凝土的和易性,活性料还对强度有一些提高,适量的掺合料能改善混凝土的和易性,形成的胶合料能填塞骨料间的空隙,减少气泡的产生。但掺加过量的掺合料会导致混凝土的粘度增加,影响气泡的排出,故混凝土中掺合料较多是导致气泡产生的原因。 (4)、混凝土的骨料级配不合理 根据粒料级配密实原理,在施工过程中.材料级配不合理,粗骨料偏多、大小不当,碎石中针片状颗粒含量过多,以及生产过程中实际使用砂率比试验室提供的砂率偏小,这样细粒料不足以填充粗粒料空隙,导致粒料不密实,形成自由空隙,为气泡的产生提供了条件。(5)、水灰比不合理 水灰比偏大时,会导致水泥浆浆体无法充分填充骨料件的空隙,在水泥用量太少的混凝土拌合物中,由于水化反应耗费用水较少,还会使得薄膜结合水、自由水相对较多,从而让气泡形成的几率增大,这就是用水量较大、水灰比较高的混凝土易产生气泡的原因所在。(6)、混凝土中砂所占比例不理想 混凝土中细砂的比例在35%~60%范围时,细砂含量越大,混凝土拌合物的抗分离性越差,振捣过程越易分层造成上部气泡集中。 (7)、坍落度过小或过大 应采用尽可能低的坍落度,坍落度一般为120~180mm,混凝土拌合物坍落度小于12cm 时,易形成粗骨料离析,同时不易振捣密实;坍落度大于22cm时,不易排气,同时在振捣过程易分层。 2、施工工艺方面 (1)、与混凝土生产搅拌及运输的设备形式和时间有关 搅拌时间不合理,搅拌时间短会导致搅拌不均匀,使气泡产生的密集程度不同。但搅拌时间过长又会使混凝土中引入更多的气泡。由于运距过长,混凝土运输车对混凝土的搅拌过程中也会引入过多的气泡。 (2)施工人员擅自往混凝土里加水

玻璃幕墙爆裂预案

玻璃爆裂应急预案

报告内容:在什么位置?发生了什么事(事故类型)?人员伤亡情况及目前现场的情况等。简单明了的重复两次。 应急预案的启动,应急预案启动后,根据事故现场的特点,及时向应急总指挥提供科学的工程技术方案和技术支持,有效地指导应急反应行动中的工程技术工作。应急指挥小组接到事故报告后,立即赶赴现场,了解和掌握事故情况,指挥抢救和维护现场秩序,保护事故现场,同时,立即把事故情况向分公司、公司应急救援领导小组汇报,以便领导了解和指挥事故抢救。 抢救:救援组应根据现场人员受伤情况,立即将伤者抬离危险区域,避免进一步的伤害。 1、去除伤员身上的用具和口袋中的硬物。 2、在搬运和转送过程中,颈部和躯干不能前屈或扭转,而应使脊柱伸直,绝对禁止一个抬肩一个抬 腿的搬法,以免发生或加重截瘫。 3、创伤局部妥善包扎,但对疑似颅底骨折和脑脊液漏患者切忌做填塞,以免导致颅内感染。 4、颌面部伤员首先应保持呼吸道畅通,撤除假牙,清除移位的组织碎片、血凝块、口腔分泌物等, 同时松解伤员的颈、胸部纽扣。 5、复合伤要求平仰卧位,保持呼吸畅通,解开衣领扣。 6、周围血管伤,压迫伤部以上动脉干至骨骼,直接在伤口上放置厚敷料,绷带加压包扎以不出血和 不影响肢体血循环为宜。当上述方法无效时可用止血带,原则上尽量缩短使用时间,一般不超过1小时为宜,作好标记,注明上止血带时间。 7、有条件时迅速给予静脉补液,补充血容量。 8、快速平稳地送医院救治。迅速移走周围可能继续产生危险的坠落物、障碍物,为急救医生留通道, 使其可以最快速度到达伤员处。 9、高空坠落不仅产生外伤,还产生内伤,不可急速移动或摇动伤员身体。 10、应多人平托住伤员身体,缓慢将其放至于平坦的地面上。 11、发现伤员呼吸障碍,应进行口对口人工呼吸。 12发现出血,应迅速采取止血措施,可在伤口近心端结扎,但应每半小时松开一次,避免坏死。动脉出血应用指压大腿根部股动脉止血。 13、抢救伤员时,无论哪种情况,都应减少途中的颠簸,也不得翻动伤员。 保护现场 现场总指挥在组织自救的同时,应派人保护现场,防止事态扩大,为今后的事故调查提供真实依据。 项目部的管理人员应立即在现场维持秩序,在现场周围设置警戒范围,劝阻无关人员离开现场,防止其它相关事件的发生。 在医护人员来到后,项目管理人员和班组长应协助救治伤员并派专人随救护车前往医院(提供受困人员方位,协助抢救),同时保护好现场。因抢救人员、防止事故扩大以及疏散人员等原因,需要

注塑件的气泡缺陷成因及对策分析

注塑件的气泡缺陷成因及对策分析 在注塑产品时,经常出现气泡缺陷,气泡可分为气泡和真空泡两种。一般来说,发生在透明制品上的气泡可以直接观察到,而发生在不透明制品上的气泡有时从外表无法看到,只有将其剖开或采用其他手段才能可能发现。气泡的产生一般是由于注射速度过快,塑胶流不能迫使模腔内的空气全部从排气槽排出,空气混入塑料内形成气泡。真空泡是由于产品的壁厚中心处由于冷却较慢,表面冷却迅速和收缩往往会将物料牵引过来,成型时体积收缩不均而引起厚度部分产生了空洞;原料有冷变热时出现的水分及含有的空气,速变成了气泡。 1)成型条件控制不当 许多工艺参数对产生气泡及真空泡都有直接的影响。设定注射压力太低,注射速度太快,注射时间和周期太短,加料量过多或过少,保压不足,冷却不均匀或冷却不足,以及料温及模温控制不当,都会引起塑件内产生气泡。特别是高速注射时,模具内的气体来不及排出,导致熔料内残留气体太多,对此,应适当降低注射速度。如果速度降得太多,注射压力小,则难以将熔料内的气体排尽,很容易产生气泡以及凹陷和欠注,因此,调整注射速度和压力时应特别慎重。 此外,可通过调节注射和保压时间,改善冷却条件,控制加料量等方法避免产生气泡及真空泡。如果塑件的冷却条件较差,可将塑件脱模后立即放入热水中缓冷,使其内外冷却速度趋于一致。 在控制模具温度和熔料温度时,应注意温度不能太高,否则会引起熔料降解分解,产生大量气体或过量收缩,形成气泡或缩孔;若温度太低,又会造成充料压实不足,塑件内部容易产生空隙,形成气泡。一般情况下,应将熔料温度控制得略为低一些,模具温度控制得略为高一些。在这样的工艺条件下,既不容易产生大量的气体,又不容易产生缩孔。在控制料筒温度时,供料段的温度不能太高,否则会产生回流返料引起气泡。 2)模具缺陷 如果模具的浇口位置不正确或浇口截面太小,主流道和分流道长而狭窄,流道内有贮气死角或模具排气不良,都会引起气泡或真空。因此,应首先确定模具缺陷是否产生气泡及真空泡的主要原因。然后,针对具体情况,调整模具的结构参数,特别是浇口位置应设置在塑件的厚壁处。 选择浇口形式时,由于直接浇口产生真空孔的现象比较突出,应尽量避免选用,这是由于保压结束后,型腔中的压力比浇口前方的压力高,若此时直接浇口处的熔料尚未冻结,就会发生熔料倒流现象,使塑件内部形成孔洞。在浇口形式无法改变的情况下,可通过延长保压时间,加大供料量,减小浇口锥度等方法进行调节。 浇口截面不能太小,尤其是同时成型几个形状不同的塑件时,必须注意各浇口的大小要与塑件重量成比例,否则,较大的塑件容易产生气泡。 此外,应缩短和加宽细长狭窄的流道,消除流道中的贮气死角,排除模具排气不良的故障。设计模具时,应尽量避免塑件形体上有特厚部分或厚薄悬殊太大。3)原料不符合使用要求 如果成型原料中水分或易挥发物含量超标,料粒太细小或大小不均匀,导致供料过程中混入空气太多,原料的收缩率太大,熔料的熔体指数太大或太小,再生料含量太多,都会影响塑件产生气泡及真空泡。对此,应分别采用预干燥原料,筛除细料,更换树脂,减少再生料用量等方法予以解决。

混凝土墙体表面气泡形成的原因与预防措施_1

混凝土墙体表面气泡形成的原因与预防措施 混凝土建筑墙体表面气泡的成因 引起混凝土结构表面气泡的原因较多,也较复杂,但经过归纳,在施工中产生气泡的最主要原因是由于材料、施工方法不当所造成的。 1.1 原材料使用不当 1.1.1 根据骨料级配密实原理,在施工过程中,如果使用材料本身级配不合理,粗骨料偏多,细骨料较少,碎石材料中针片状颗料含量过多,以及在生产过程中实际使用砂率比试验室提供的砂率要小,此时细粒料不足以填充粗集料之间的空隙,导致集料不密实,形成产生气泡的自由空隙。 1.1.2 水泥的多少和水灰比的大小,也是导致气泡产生的重要原因。在试验室试配混凝土时,考虑水泥用量主要是针对强度而言,如果在能够满足混凝土强度的前提下,一定限度内增加水泥用量,减少水的用量,气泡会减少。但如果不减少水的用量,气泡数量是否减少不确定,同时也增加了混凝土的粘度,影响了搅拌混凝土时产生气泡的排出,而水量较多也使自由水较多易形成气泡。在水泥用量太少的混凝土拌合物中,由于水化反应耗费用水较少,使得薄膜结合水、自由水相对较多,从而让气泡形成的几率增大,这就是用水量较大、水灰比较高的混凝土易产生气泡的原因所在。 1.1.3 掺合料也会直接影响气泡数量。当混凝土中水泥的含量可以保证混凝土的强度时,用掺合料代替部分水泥,可以改善混凝土的和易性,活性料还对强度有一些提高,适量的掺合料能改善混凝土的和易性,形成的胶合料能填塞骨料间的空隙,减少气泡的产生。但掺加过量的掺合料会导致混凝土的粘度增加,影响气泡的排出,故混凝土中掺合料较多是导致气泡产生的原因。 1.1.4 减水剂等外加剂对气泡的影响也不可忽视。不同的类型和掺量都会影响气泡的数量和大小。试验结果表明,减水剂ZB-1A掺量0.7%的混凝土表面气泡数量是不掺减水剂的混凝土的3.5倍,而且掺量越大影响越明显。 1.2 搅拌时间不合理 搅拌时间短会导致搅拌不均匀,气泡产生的密集程度就不同。但搅拌时间过长又会使混凝土中带进的空气气泡更多。 1.3 温度变化的影响 混凝土受水泥水化热作用、大气及周围温度、电气焊接等因素影响而冷热变化时,发生收缩和膨胀,能产生表面气泡。温度表面气泡区别其它表面气泡最主要特征是将随温度变化而扩张或合拢。其多发生在大体积混凝土表面或温差变化较大地区的混凝土结构中。这种表面气泡的产生通常无一定规律。 1.4 施工方法不当 《混凝土泵送技术规程》中规定“混凝土浇注分层厚度,宜为300~500mm”但是在实际施工时,往往浇注厚度都偏高,由于气泡行程过长,即使振捣的时间达到要求,气泡也不能完全排出,这样也会造成混凝土结构表面气泡。 振捣工艺不当。混凝土振捣不充分,混凝土里的气泡就没有时间排出。但如果过振,会使小气泡又出现破裂形成大气泡。由于设计断面尺寸比较小,截面变化处不容易振捣,气泡不易逸出。 墙体内大型预留洞口底模未设排气孔,混凝土对称下料时产生气囊,或钢制

预制混凝土构件表面气泡的产生原因及预防措施.doc

预制混凝土构件表面气泡的产生原因及预防措施1?预制混凝土构件气泡产生的原因 预制混凝土构件气泡的成因非常复杂,但通常离不开原材料及工艺原因,比如水泥品种、外加剂品种、外加剂掺量、骨料粗细、搅拌时间、脱模剂用法、振捣操作、施工温度等,下面就气泡产生的机理进行详细分析: 1.1原材料 对于用水量及水灰比偏高的混凝土产品,其气泡现象比较多发。在水泥生产时要添加一定的助磨剂,而助磨剂往往会诱发过多的气泡,同时水泥的碱度太高、颗粒过细,也会导致含气量的增加,继而使气泡产生的概率增大,这是由于混凝土中夹藏的水泡一经蒸发便会诱发气泡的产生。 若混凝土中出现较多的大气泡,一般是由减水剂中的引气成分所致。普通的减水剂尤其是聚羧酸系及磺化木质素系减水剂,其中会夹杂一些表面活性成分,具备较强的引气性,当使用的减水剂较多时,便会引发较多的气泡;此外,当使用松香类引气剂作为外加剂时,生成的气泡也会有所增加。 在混凝土构件的配制过程中,若材料配比不当、粗集料过多,或碎石料中含有较多的针片状料粒,会造成细料不足以填补粗料空隙,从而诱发气泡的产生。 1.2工艺

工艺原因是导致表面气泡的主要原因,比如搅拌不匀的情况下, 局部外加剂偏多,该部位就会产生较多气泡;但过度搅拌又会造成内部气泡整体增多,同样会造成不利影响。 预制混凝土构件大都采用钢模成型,为方便进行脱模,通常向钢 模表面刷一些脱模剂,这样一来,在进行捣振操作时,由于水沿混凝土表面及上面游走,即便脱模剂是水性的,依旧会吸附较多的气泡,从而使振捣中产生的气泡不能及时沿表面排出,从而产生表面气泡。 在混凝土拌合浇筑时,通常会混入少量空气,这部分空气不能自行溢出只能通过振捣排出,因此振捣操作的好坏是影响气泡数量的重要因素。如果出现超振、欠振、漏振,均会导致表面气泡的增多。超振会造成内部的小气泡逐渐重组为大气泡,而欠振、漏振会导致混凝土分布不均、结构不密实,继而产生局部空洞或无规则的大气泡。 混凝土表面气泡的体积对温度的变化比较敏感,若处理不当就会 在混凝土表面留下较大的孔洞,特别是昼夜温度浮动较大时,附着在混凝土表面的气泡体积随环境温度的变化而变化,当混凝土浆体的强度较小时,包裹着气泡的浆体会随气泡而流动变形而混凝土浆体的强度达到一定程度,不再受气泡的影响,又恰逢气泡体积较大时,就会在混凝土表面产生较大的孔洞。 此外,脱模剂粘度对环境温度也比较敏感,当模具温度偏低时,脱模剂粘度降低,从模具表面向下流淌,使底层表面聚集了的大量脱模剂,阻碍了底层气泡的排出,造成较多的表面气泡。 2?预制混凝土构件表面气泡的预防措施2.1混凝土原材料方面

钢化玻璃自爆原因及解决办法

钢化玻璃自爆原因以及解决方法 1、自爆的定义及其分类: 钢化玻璃自爆可以定义为:钢化玻璃在无外部作用力直接作用与玻璃的情况下而玻璃本身自动发生裂纹、破碎的的自然现象。表现为玻璃在钢化加工、贮存、运输、搬运、安装、使用等过程中均可发生钢化玻璃自爆。 自爆按起因不同主要可分为两种: 一是:由玻璃中产生可见缺陷所引起的自爆现象,例如砂粒、结石、气泡、渗杂物、爆边、缺口、裂纹纹理、划伤等各种原因; 二是:由玻璃中内部硫化镍(NiS)杂质相变体积膨胀引起的自爆。 玻璃的这是两种不同类型的自爆现象,人们应明确分类,区别对待,采用相对应的方法来应对和处理,减少玻璃引自爆而产生的损失。 前者一般可见现象,在检测检验时注意观察即可相对容易发现,因此在生产的过程之中可以控制好玻璃的质量;后者主要表现由玻璃中存在着很多微小的硫化镍颗粒体积发生膨胀而引发的自爆现象,与前者不同,其是在检验检测时无法目测到,所以该现象无法控制。在实际运作和处理上,前者一般可以在安装前剔除,后者因无法检验而继续存在,成为使用中的钢化玻璃自爆的主要因素。由于硫化镍类引起的自爆后更换难度大,处理费用高,同时会伴随较大的质量投诉及经济损失等问题,造成业主的不满意甚至出现危机生命财产等更为严重的其他后果,所以硫化镍引发的自爆是我们讨论的重点。 二、钢化玻璃发生自爆现象机理 钢化玻璃内部的硫化镍膨胀是造成钢化玻璃自爆的主要原因。由于玻璃经过钢化处理后,玻璃表面层会形成压应力。内部板芯层则形成张应力,同时压应力和张应力共同构成一个平衡体。但是玻璃这种材料脆性很高,耐压型很强,但受拉性却很弱,因此玻璃破碎大多数是张应力的变化而引发的。 当钢化玻璃中硫化镍晶体(处在玻璃板芯张应力层)在发生相变时,其体积发生膨胀使钢化玻璃内部产生更大的张应力,张应力就会大于压应力,当张应力超过玻璃自身所能承受的极限时,压应力和张应力这对平衡体就会发生破坏,就会导致钢化玻璃自爆。 多年来国内外研究证明:制造玻璃主要原料石英砂或者砂岩带入镍,在生产

RTM工艺过程缺陷产生机理分析

高国强 薛忠民 (北京玻璃钢研究设计院 102101) 摘要: 本文全面分析了R T M工艺过程中缺陷产生的原因,并讨论了如何根据缺陷的特征找出问题的根源。关键词: RT M 缺陷 1 概述 RTM工艺是一种采用对模制造聚合物基复合材料的工艺。将反应性的热固性液态树脂注入含有干纤维预成型体的模腔中,浸润纤维,同时将模腔中的空气排出。树脂充满模腔,开始固化。RT M工艺可用于生产轻质、高强和具有复杂几何形状的聚合物基复合材料制品,具有很大的发展潜力。 限制RTM工艺广泛应用的障碍之一是由于树脂注入过程中空气的陷入,导致难以连续一致地生产高强度和高表面质量的复合材料制品。缺胶、微孔和浸润不良使复合材料制品质量、性能下降。有资料表明,当微孔含量增加1%,机械性能如层间剪切强度、弯曲强度和弯曲模量下降将超过5%[1、2]。微孔还使复合材料的耐候性和疲劳性能下降,同时增加了材料对气候和潮湿的敏感性。因此控制微孔含量(孔隙率)是非常重要的。其它问题还包括制品尺寸不精确,芯材在模腔中的移动,富树脂区,以及表面质量不佳等等。影响缺陷产生的因素是多方面的,如原材料的性质、界面、温度、注射压力、真空条件等,有时候多种因素综合作用,使得很难查找产生缺陷的主要原因。 2 RT M工艺过程中缺陷产生原因的 调查 在问题调查之前,第一步是定义这个问题,在这个过程中要保证问题的真实性。问题通常用产品质量的变化来定义,虽然绝对质量水平没有变化,检查原则的改变可能会导致不同的结果。其它类型的问题也可能存在,如注射机的故障或模具的损坏。例如,如果具有连续流动速率的注射机器在使用,设备没有压力保护,树脂的粘度由于某种原因上升(或增强材料渗透率下降),机器仍以同样的速度注入树脂,可能会导致工艺时间不明显的改变或产品质量的变化。另一方面注入压力会升得很高,影响密封件的寿命,也许还会影响到树脂混合比例(如果密封开始泄露),或者导致纤维冲刷,在极端的情况下,使模具型面发生严重变形,模具被损坏。这时,检查工艺记录,几乎不可能发现问题的根源。但如果使用前检查了粘度(或测试了渗透率),并作了记录,这个问题就很容易判断。缺乏这些记录,诊断将非常困难。 2 1 缺陷产生原因调查的原则 首先检查所有的工艺记录,确认原材料性质、工艺条件是否发生了变化。从表象寻找根本原因需要许多证据,我们采取的解决办法是,保持足够的相关记录,包括使用的材料特性,工艺参数和要求的产品质量。这通常被认为是过于繁杂的作法,但非常简单的检查经常会得出有用的结论,例如落球式粘度计并不是高精密度的仪器,费用低,易操作,耗时少;杯式粘度计,使用也很简便,这些手段虽然简易,但非常能说明问题。再如,纤维的渗透率可以用靶环法来表征,所需设备简单,却可以直观的反映树脂在纤维中的渗透情况。 假设检查所有可用记录并未发现任何改变,可以考虑是工艺的改变导致产品质量变化。第二步将是严格监控操作工艺过程,使用作业指导书和过程控制文件为向导,提高其稳定性。在此之前,除非这些记录都可得到并且足够详细,否则问题的解决将十分困难。这种监测包括生产阶段的所有过程:增强材料的购进、贮存和准备,铺层,注射,固化,脱模和切除飞边。虽然,作业指导书的确反映了生产过程中的所有步骤,但值得注意的是,树脂注射过程中出现的问题不一定就是问题的根源。 最后,如果所有的工艺条件都符合要求,要考虑检查相关的生产设备,尤其是质量敏感部分。例如,在某一生产过程中,产品质量下降到一个不可接受的水平,在线研究表明,材料没问题,过程也同样正确。通过工艺研究,发现在较宽的范围内改变注射工艺参数,可以提高产品质量,但仍不能达到所要求的质量水平。问题最终追溯到模具的闭合,模腔内真空度的变化导致了质量问题。这个问题很容易改正,通过模具维护,更换真空检查设备和新的程序, FRP/CM 2001 No.2

层压后气泡原因分析

1.0绪论 太阳能组件在制作过程中,会有一些质量问题存在,包括电池片移位、气泡、背板褶皱、异物、汇流带弯曲等,本文将主要针对气泡问题展开总结。在介绍气泡产生的原因之前,先了解一下气泡现象会对组件产生何种影响及造成何种后果: 1、IEC61216中第7章严重外观缺陷中d)在组件的边缘和任何一部分电路之间形成连续的气泡或脱层通道中表明存在以上描述的现象,该组件实验将判断不通过。 2、有源器件表面产生的气泡,当存在该问题的组件安装于系统工程上后,受室外环境的影响,组件在发电过程中电池片表面温度约在室温~65℃间,在该种条件下,有源器件表面的气泡会游离、扩展,形成面积较大的脱层,当电池片与玻璃脱离后,受光率将严重受到影响,导致功率的急剧下降; 3、有源器件以外但与有缘器件未存在安全距离,该种气泡在在安装与系统工程之后,不良问题参照上述问题2; 2.0气泡产生的原因及解决方案 对于气泡产生的问题,从气泡出现的位置及表现出来的现象分析原因,气泡出现的位置(表现的现象)可分为一下几种: 1)组件内随即位置出现的气泡,个数较少,多半气泡旁夹带异物; A、异物引起的气泡且形成气泡通道,如图1

图1异物引起的气泡 解决措施:改善车间操作环境,加强层压前的检查。 B、排版时返修电池片,焊锡渣或残留物(EVA)产生的气泡解决措施:尽量减少在排版台上存在残留物,注意清理干净操作台面。 C:EVA失效(受潮或过期),如图2所示; 图2EVA失效引起气泡 2)组件内出现大面积气泡,数量较多: A、设备故障,层压时不抽真空或层压机橡胶板有破损或裂隙,如图3所示;

图3大面积气泡 解决措施:1.调整层压参数,重新层压。 2.每天当班做好点检; 3.定期做好设备的维修保养。 B、层压参数不合适 解决措施:针对EVA供应商提供的层压参数,需经过试验后,调整到合适的工艺参数。3)电池片上互联条旁,出现的气泡或气泡群: A、助焊剂残留在电池片的互联条两侧,层压时挥发后气体难排出,在互联条两侧产生气泡或气泡群。如图4所示。 电池片上互联条旁,出现的气泡或气泡群

中空玻璃自爆的原因

中空玻璃自爆的原因 建筑物的室内外热交换,窗户和玻璃幕墙是主要热传导部分,所以冬天的取暖和夏日的空调需用量的大小,取决于窗户和玻璃幕墙的隔热性能好坏。中空玻璃有优良的绝热性能,在某些条件下,中空玻璃绝热性有时可能优于混凝土墙。中空玻璃也有较好的隔音性能,一般可使嗓音下降39~44分贝,可降低交通噪声30~40分贝。 中空玻璃是用两片或多片玻璃与周边用铝合金间隔分开一定距离,并用二次密封胶密封,使之形成两玻璃间有干燥气体空气的玻璃。中空玻璃间隔密封胶第一道胶为丁基胶,丁基胶密封性能很好,但强度很低,只起密封作用,不承受力;第二道密封胶一般为聚硫胶,聚硫胶强度高,在受力时能保持中间玻璃间隔不变,但该胶怕太阳紫外线照射。用于有框玻璃幕墙时,聚硫胶被铝合金型材槽镶嵌在内,太阳照射不到聚硫胶。但用于隐框玻璃幕墙,太阳就可能直接照射到聚硫胶,因此在隐框或半隐框玻璃幕墙中空玻璃的第二道密封胶必须用中空玻璃结构胶,不怕太阳紫外线照射。中空玻璃结构胶也不同于一般结构胶,其变位能力一般为5%左右,这样能保证中空玻璃的两片玻璃间距不变,而一般结构胶变位能力为土25~50%。 各种玻璃上墙后的自爆,因各种玻璃性能不同,地区不同,安装方法不同,自爆原因也很复杂。因此对不同地区玻璃的自爆,均要根据实际情况仔细分析,找出原因,才能避免大面积玻璃的自爆。我们认为单片镀膜玻璃上墙后的自爆,多要从安装上找原因。中空玻璃上墙后自爆要从制作中空玻璃和安装上双方面找原因。总起来讲:白色浮法透明玻璃的自爆率低于带色透明玻璃的自爆率,所有带色透明玻璃的自爆率低于镀膜玻璃的自爆率,隐框幕墙的镀膜玻璃的自爆率低于有框玻璃幕墙的自爆率,单片玻璃上墙后的自爆率低于中空玻璃上墙后的自爆率。

混凝土表面产生气泡的原因及预防措施

混凝土表面产生气泡的原因及预防措施 一、产生原因 1、原材料方面 (1)气泡与水泥品种有非常密切的关系 在水泥生产过程中使用助磨剂(外掺专用助磨剂,厂家非常多,质量差异非常大,通常含有较多表面活性剂)的作用下,通常会产生气泡过多的情况,且水泥中碱含量过高,水泥细度太细,含气量也会增加。(2)外加剂类型和掺量对气泡的产生有很大影响 市场上常见的减水剂都具有一定的引气效果,不同的类型和掺量都会影响气泡的数量和大小,而且减水剂掺量越大影响越明显。例如聚羧酸减水剂,其减水组分本身就具有一定的引气效果,在混凝土中引入的气泡含量和质量是不稳定的,主要是一些大的有害的气泡会影响混凝土性能。只进行混凝土含气量测试不能对引入的气泡的数量和大小进行表证。当含气量满足要求时,引入的也可能是有害气泡,这对混凝土强度及耐久性反而不利。 (3)掺合料也会直接影响气泡的数量 当混凝土中水泥的含量可以保证混凝土的强度时,用掺合料代替部分水泥,可以改善混凝土的和易性,活性料还对强度有一些提高,适量的掺合料能改善混凝土的和易性,形成的胶合料能填塞骨料间的空隙,减少气泡的产生。但掺加过量的掺合料会导致混凝土的粘度增加,影响气泡的排出,故混凝土中掺合料较多是导致气泡产生的原因。 (4)混凝土的骨料级配不合理 根据粒料级配密实原理,在施工过程中.材料级配不合理,粗骨料偏多、大小不当,碎石中针片状颗粒含量过多,以及生产过程中实际使用砂率比试验室提供的砂率偏小,这样细粒料不足以填充粗粒料空隙,导致粒料不密实,形成自由空隙,为气泡的产生提供了条件。 (5)水灰比不合理 水灰比偏大时,会导致水泥浆浆体无法充分填充骨料件的空隙,在水泥

压铸件气泡产生的原因和解决办法

压铸件气泡产生的原因和解决办法 压铸件气泡产生的原因和解决办法锌合金压铸件表面经常出现大小不等的气泡,请 问原因是什么,该如何解决?解决压铸件气孔的办法: 先分析出是什么原因导致的气孔,再来取相应的措施。 (1)干燥、干净的合金料。 (2)控制熔炼温度,避免过热,进行除气处理。 (3)合理选择压铸工艺参数,特别是压射速度。调整高速切换起点。 (4)顺序填充有利于型腔气体排出,直浇道和横浇道有足够的长度(>50mm),以利于 合金液平稳流动和气体有机会排出。可改变浇口厚度、浇口方向、在形成气孔的位置设置 溢流槽、排气槽。溢流品截面积总和不能小于内浇口截面积总和的60%,否则排渣效果差。 (5)选择性能好的涂料及控制喷涂量。 -------------------压铸件气孔分析------------------- 压铸件缺陷中,出现最多的是气孔: 气孔特征:有光滑的表面,表现形式可以在铸件表面、或皮下针孔、也可能在铸件内部。(铸件壁内气孔) 一般呈圆形或椭圆形,具有光滑的表面,一般是发亮的氧化皮,有 时呈油黄色。(表面气孔) 气泡可通过喷砂发现,内部气孔气泡可通过X 光透视或机械加工发现气孔气泡在X 光底片上呈黑色. 气体来源 (1)合金液析出气体—a 与原材料有关 b与熔炼工艺有关 (2)压铸过程中卷入气体? —a 与压铸工艺参数有关 b与模具结构有关 (3)脱模剂分解产生气体? —a 与涂料本身特性有关 b与喷涂工艺有关 >原材料及熔炼过程产生气体分析 铝液中的气体主要是氢,约占了气体总量的85%。 熔炼温度越高,氢在铝液中溶解度越高,但在固态铝中溶解度非常低,因此在凝固过 程中,氢析出形成气孔。氢的来源: (1)大气中水蒸气,金属液从潮湿空气中吸氢。 (2)原材料本身含氢量,合金锭表面潮湿,回炉料脏,油污。

对层压后出现气泡现象的总结做完小气泡有脱皮现象

对层压后出现气泡现象的总结做完小气泡有脱皮现象 对层压后出现气泡现象的总结组在太阳能组件生产过程中,层压是一道至关重要的工序。组件的寿命,性能及组件的美观都在层压这个环节定型。而在这道环节,经常出现一些致命的问题,比如出现气泡、组件破碎、电池串错位等等。严重时甚至导致组件的报废,这无疑会增加生产成本。所以有效控制这些问题的发生至关重要,下面我们主要对层压后出现气泡现象的原因和解决措施进行总结。 组件层压后存在气泡,可能造成的原因: 1、EVA裁剪的数量没有合理控制,导致EVA裁剪过量,放置时间长,致使EVA受潮:当EVA受潮时,会出现间歇性局部花纹状不粘合现象即局部脱胶。 解决方法:有效的控制每天使用的EVA数量,并且EVA从产家购进时摆放要合理,环境湿度要≤60%。而且拿到组件车间进行生产的EVA批号、时间进行有效控制,尽量做到EVA购进后及时生产。做到先购买的先生产。 2、EVA材料本身不纯,交联度达不到技术指标。指标规定EVA的交联度要达到75%-85%,过高EVA容易变黄,交联度过低会导致气泡。

解决方法:购进EVA时,要求产家提供确切的工艺参数,因为各个产家的EVA不同,工艺参数要相应有所改动。为了使EVA交联度达标,把好来料关很重要。工艺员及时做 EVA交联度实验,确保EVA 交联度合格。 3、抽真空不理想,不能将气体抽干净,加压时已不能将气泡赶出:层压后出现气泡很大程度上与抽真空有关,所以每次层压前要观察层压机真空泵是否正常,上下室真空维持力是否正常。①真空泵转速低(即功率低)会导致抽真空抽不干净。但是转速过快(抽真空力度大)又会导致电池串错位。选择合适的真空泵很重要。②检查密封圈是否漏气,特别注意层压机上盖密封圈。漏气会导致层压出现气泡。 解决方法:设备技术部及时更换硅胶板,及时更换真空泵油,适时对真空管道进行清理,防止真空管道堵塞,导致抽真空不良。操作人员在层压前确保高温布无残留EVA和异物,注意清洁工作,防止抽真空时吸入真空管道。 4、加热板温度不均,导致EVA局部提前固化:由于EVA材料快速融化,组件加热时,升温到固化,时间很短,所以受热必须均匀。而EVA材料受热温度的高低,直接影响到大面积交联度的均匀,所以

钢化玻璃自爆的原因是什么

自爆及其分类 钢化玻璃自爆可以表述为钢化玻璃在无外部直接作用的情况下而自动发生破碎的现象。在钢化加工、贮存、运输、安装、使用等过程中均可发生钢化玻璃自爆。自爆按起因不同可分为两种:一是由玻璃中可见缺陷引起的自爆,例如结石、砂粒、气泡、夹杂物、缺口、划伤、爆边等;二是由玻璃中硫化镍(NiS)杂质膨胀引起的自爆。 这是两种不同类型的自爆,应明确分类,区别对待,采用不同方法来应对和处理。前者一般目视可见,检测相对容易,故生产中可控。后者则主要由玻璃中微小的硫化镍颗粒体积膨胀引发,无法目测检验,故不可控。在实际运作和处理上,前者一般可以在安装前剔除,后者因无法检验而继续存在,成为使用中的钢化玻璃自爆的主要因素。硫化镍类自爆后更换难度大,处理费用高,同时会伴随较大的质量投诉及经济损失,造成业主的不满甚至更为严重的其他后果。所以,硫化镍引发的自爆是我们讨论的重点。 钢化玻璃自爆机理 钢化玻璃内部的硫化镍膨胀是导致钢化玻璃自爆的主要原因。玻璃经钢化处理后,表面层形成压应力。内部板芯层呈张应力,压应力和张应力共同构成一个平衡体。玻璃本身是一种脆性材料,耐压但不耐拉,所以玻璃的大部分破碎是张应力引发的。 钢化玻璃中硫化镍晶体发生相变时,其体积膨胀,处于玻璃板芯张应力层的硫化镍膨胀使钢化玻璃内部产生更大的张应力,当张应力超

过玻璃自身所能承受的极限时,就会导致钢化玻璃自爆。国外研究证明:玻璃主料石英砂或砂岩带入镍,燃料及辅料带入硫,在1400℃~1500℃高温熔窑燃烧熔化形成硫化镍。当温度超过1000℃时,硫化镍以液滴形式随机分布于熔融玻璃液中。当温度降至797℃时,这些小液滴结晶固化,硫化镍处于高温态的α-NiS晶相(六方晶体)。当温度继续降至379℃时,发生晶相转变成为低温状态的β-NiS(三方晶系),同时伴随着2.38%的体积膨胀。这个转变过程的快慢,既取决于硫化镍颗粒中不同组成物(包括Ni7S6、NiS、NiS1.01)的百分比含量,还取决于其周围温度的高低。如果硫化镍相变没有转换完全,则即使在自然存放及正常使用的温度条件下,这一过程仍然继续,只是速度很低而已。 当玻璃钢化加热时,玻璃内部板芯温度约620℃,所有的硫化镍都处于高温态的α-NiS相。随后,玻璃进入风栅急冷,玻璃中的硫化镍在379℃发生相变。与浮法退火窑不同的是,钢化急冷时间很短,来不及转变成低温态β-NiS而以高温态硫化镍α相被“冻结”在玻璃中。快速急冷使玻璃得以钢化,形成外压内张的应力统一平衡体。在已经钢化了的玻璃中硫化镍相变低速持续地进行着,体积不断膨胀扩张,对其周围玻璃的作用力随之增大。钢化玻璃板芯本身就是张应力层,位于张应力层内的硫化镍发生相变时体积膨胀也形成张应力,这两种张应力叠加在一起,足以引发钢化玻璃的破裂即自爆。 进一步实验表明:对于表面压应力为100MPa的钢化玻璃,其内

泡沫形成和破泡原理

1.简介 在水性涂料系统中,疏水物质如乳液分子,颜料和填充料的导入和稳定于水性体系是通过表面活性物质来实现的。而乳化剂则保障乳液树脂分子在水相中的稳定性,颜填料可通过在润湿剂和分散剂的作用下混合于水相介质中。在水性体系中所有的表面活性物质都会起泡与稳泡。 表面活性分子稳泡的作用则是体系起泡的主要因素。其他一些起泡因素如配方组分,生产及施工方法和基材的种类等都促成泡沫的形成,增加或降低消泡剂的效率。 不含表面活性剂纯净的液体(如水)中,气泡升至表面然后爆裂。空气与液体之间的界面张力太高导致气泡不能稳定存在。然而,如体系中含有表面活性物质,气泡就如同表面活性剂的疏水端可稳定存在(图1)。这些表面活性剂分子有亲水疏水端基的特性,在气泡周围能形成一层,其中疏水一端朝向气泡,亲水一端朝向水。因此降低的气泡和液体之间的的界面张力稳定了气泡的存在。当气泡升至液体表面时,因空气和液体界面间也存在着表面活性分子,因而就形成了包括气泡上的表面活性剂层和液体表面活性剂的稳定双层。这此稳定双层分别由空气-液体界面上的表面活性剂单层与液体-空气界面上的表面活性剂单层组成。 in pure water:in surfactant containing systems: 在纯净的水中在含有表面活性剂的系统中 图1:含表面活性剂水中的稳定性气泡 根据泡沫形成机理,气泡单体会形成一紧密的的球形圈。根据气泡之间排水作用的渗水过程,气泡界面间的水会移位(图2)而集中在气泡间的空隙间。由于这一排水作用,气泡间的窄狭间距促使了八面体泡沫球体形成(图3)。这就是所称的由紧密六边形泡沫组成的泡沫聚合体。 球形泡沫疏水效应 图2:疏水效应导致的气泡变形变。

混凝土表面气泡产生的原因及处理

混凝土主要技术指标及性能 初凝结时间5-12小时;终凝结时间10-18小时; 出厂坍落度:交货坍落度: 混凝土浇筑的注意事项 浇筑混凝土应连续进行。如必须间歇,其卸料时间应在混凝土初凝时间之前,将混凝土浇筑完毕。在混凝土施工过程中,尽量缩短浇筑与开始养护的时间差。并根据当天天气情况,采取必要的防风、防晒措施,防止砼表面失水。 混凝土入模后,要立即进行振捣。振捣必须密实,不能漏振、欠振,也不可过振,振捣时间宜为15-30秒,以砼开始反浆和不冒泡为准,振捣时要快插慢拔,振点布置要均匀,在施工缝预埋件处,加强振捣,以免振捣不实,造成渗水通道。振捣时应尽量不接触模板、钢筋、止水带,以防止其移位、变形。 对已浇筑的混凝土,在初凝前进行二次振捣,二次抹压。以防止表面裂缝出现,终饰抹面要掌握好时间,理论上以砼的凝结时间为准,但由于施工现场白天、晚上以及季节气候的不同,对砼的凝结时间影响很大,因此可用常规方法即按压方法控制。混凝土养护的技术要求 一、混凝土的养护是保证混凝土质量最重要的措施,一定要派专人负责养护工作。应在浇筑完毕后12小时内对混凝土加以覆盖并保温养护。 二、混凝土浇水养护的时间:不得少于14天。对于掺加膨胀剂的混凝土最好采用蓄水养护,蓄水养护5天后可改用浇水方式养护,砼表面不得见白。如无法进行蓄水养护,可采用盖草袋或麻袋浇水养护,保持草袋或麻袋潮湿。模板撤除后宜涂刷养护液或在墙体两侧挂麻袋浇水养护。浇水次数应能保持混凝土处于湿润状态;采用

塑料布覆盖养护的混凝土,其敞露的全部表面应覆盖严密,并应保持塑料布内有凝结水。 混凝土性能试件留置、养护、龄期计算等技术要求 交货检验混凝土试样的采取及坍落度实验应在混凝土运到交货地点时开始算起20min内完成,试件的制作应在40min内完成。试样应随机从同一运输车中抽取,应在卸料工程中的1/4至3/4之间采取。 对混凝土强度检验的试样试样的取样频率每100m3或不足100 m3的同一配比混凝土,取样不得少于一次;每次应至少留置一组标准养护试件,同条件养护试件的留置组数应根据实际需要确定。 对混凝土抗渗、抗冻要求的检验试样的取样频率同一工程、同一配比混凝土,取样不得少于一次; 试件成型后应立即用不透水的薄膜覆盖表面。采用标准养护的试件,应在温度为20±5℃的环境中静置一昼夜至二昼夜,然后编号、拆模。后放入温度20±2℃,相对湿度为95%以上的标养室养护。 同条件养护试件的拆模时间、养护与实际构件相同。 标准养护龄期为28天(从搅拌加水开始计时)。同条件养护应每天记录大气气温的最高、最低温度以及天气的变化情况,应进行记录和制度。

OCA光学胶产生气泡原因分析与改善方法

O C A光学胶产生气泡原因分析与改善方法 Revised final draft November 26, 2020

O C A光学胶产生气泡原因分析与改善方法 时间:2015-04-1513:48:45来源:本站浏览次数:1054 在使用真空贴合机贴合完后,贴合面容易留下气泡,大部分可以通过脱泡脱除,但百分几的几率会留小单点的小气泡,这种小气泡有两种类型:1,脱泡不良2,汽包反弹脱泡不良:一次脱泡后留下的小气泡很难再次脱掉,因为气泡缩小了而相对面积下的OCA光学胶变大了,形成围墙效应,也就是说压力无法有效传递到小面积的气泡上,导致无法脱泡完成,可以使用单点压力脱泡的来解决这个问题。 汽泡反弹: 汽泡反弹指的是脱泡完成后立即或某一段时间之后又再次复发的气泡,产生的原因归纳为两种特性: 1,挺性型再发气泡 2.内应力型再发气泡 挺性型再发气泡: G+G贴合施压后随之对TP油墨段差产生压力,TP材质挺性不会消失,所以在油墨边缘就会产生挺性型再发气泡,单点压力脱泡可以消除,但TP挺性却永远存在,这就有再次再发的可能性。这里我们使用”脱泡缓慢泄压”的方式有效减少TP挺性应力与OCA光学胶应力回复的不平衡现象。另外,通过调整脱泡机参数,通常减少脱泡压力和降低脱泡温度对减少汽包反弹有益。脱泡缓慢泄压:脱泡缓慢泄压一般我们脱泡机的动作是压力或温度同时或分时产生,然后再依时间设定开始脱泡程序,直到脱泡时间完成同时降温减压,依照设定压力及脱泡机排气设计不同泄压的时间由 30sec~60Sec不等!这样的泄压程序有一个很大的盲点就是TP并不会因为压力及温度造成多大的改变,而OCA光学胶对于温度压力却很敏感,所以当压力快速释放的当下,TP的挺性很快会回复,但暂时被胶的粘性牵制住了!然而OCA光学胶的挺性恢复就很慢了。这样当脱泡Module一离开脱泡机,OCA光学胶还残留一定的核心温度,内应力较小就很容易会被TP挺性应力拉开产生小气泡,这里多数是原来就有气泡的地方,而内部确实也有少量的空气质量,这种称谓稀出现象。缓慢泄压;改变泄压程序先保持温度不变,再以每秒钟较少0.03Kg/M2的的泄压速度直至无压力为止.应力型再发气泡:这种类型的DelayBubble是最麻烦的类型,这类型的再发气泡是由OCA胶及OCA胶与TP/LCM夹层的Particle(杂质)引起的,但不是所有的Particle都会产生这种类型再发气泡,也与Particle的尺寸大小无关,无法根据单纯的量测筛选作防治,主要的关键点在于Particle的立体形状,一般立体的Particle容易产生气泡。 气泡故障观察重点和经验总结:1.确认故障气泡是没有脱干净还是反弹气泡(Delaybubble),没有脱干净气泡通过延长脱泡时间,增加脱泡压力,提高脱泡温度进行试验,优先顺序为时间,压力,温度。2.确定故障气泡是在TP和OCA胶之间,还是OCA胶和LCM之间,通过放大镜调焦清晰度判断是在哪一层,在LCM和OCA之间时,调焦清晰度与LCM的RGB点阵清晰度相同。TP和OCA

相关文档
相关文档 最新文档