文档库 最新最全的文档下载
当前位置:文档库 › nwvAAA偏置直动滚子推杆盘形凸轮Matlab编程(附录程序)

nwvAAA偏置直动滚子推杆盘形凸轮Matlab编程(附录程序)

nwvAAA偏置直动滚子推杆盘形凸轮Matlab编程(附录程序)
nwvAAA偏置直动滚子推杆盘形凸轮Matlab编程(附录程序)

机械原理大作业

学院:机械与电子信息学院

授课老师:曾小慧

姓名:张京

学号:20131004547

日期:2015-5-23

目录

1.求轮廓曲线

○1推程阶段

○2远休止阶段

○3回程阶段

○4近休止阶段

○5Matlab程序设计

○6轮廓图形

2.求工作廓线

○1推程阶段

○2远休止阶段

○3回程阶段

○4近休止阶段

○5Matlab程序设计

○6轮廓图形

3.求解最大压力角

○1压力角公式

○2MATLAB程序设计

○3根据MATLAB程序作图可得出其压力角与角度的关系并分析○4失真情况分析

4.附录 Matlab程序

凸轮轮廓

9-14试设计偏置直动滚子推杆盘形凸轮机构的理论轮廓曲线和工作廓线。已知凸轮轴置于推杆轴线右侧,偏距e=20mm ,基圆半径r。=50mm ,滚子半径rr=10mm 。凸轮以等角速度沿顺时针方向回转,在凸轮转过角d1=120o的过程中,推杆按正弦加速度运动规律上升h=50mm ;凸轮继续转过d2=30o时,推杆保持不动;其后,凸轮再回转角度d3=60o时,推杆又按余弦加速度运动规律下降至起始位置;凸轮转过一周的其余角度时,推杆又静止不动。

解:

1.求理论廓线

对于偏置直动滚子推杆盘形凸轮机构,凸轮理论廓线上B 点(即滚子中心)的直角坐标为

]cos sin )[(0δδe s s x ++-=

δδsin cos )(0e s s y -+= (a ) 式中mm mm e r s 826.4520502222

00=-=-=

① 推程阶段

3212001π

δ=?=

)]

2/()3sin()2/3[()]2/()/2sin()/[(110110111πδπδπδπδδδ-=-=h h s (??

????=32,

01πδ) ② 远休止阶段 63002π

δ=?=

502=s ??

????=6,02πδ

③ 回程阶段

36003π

δ=?=

2/)]3cos(1[2/)]/cos(1[30333δδπδ+=+=h h s ??

????=3,03πδ ④ 近休止阶段

6

515004πδ=?= 04=s ??????=65,04πδ

5Matlab 程序设计: a1=linspace(0,2*pi/3); %推程阶段的自变量

s1=h*(3*a1/2/pi-sin(3*a1)/2/pi); %推杆产生的相应位移

x1=-((s0+s1).*sin(a1)+e*cos(a1)); %x 函数

y1=(s0+s1).*cos(a1)-e*sin(a1); %y 函数

a2=linspace(0,pi/6); %远休止阶段的自变量

s2=50; %推杆位移

x2=-((s0+s2).*sin(a2+2*pi/3)+e*cos(a2+2*pi/3)); %x 函数

y2=(s0+s2).*cos(a2+2*pi/3)-e*sin(a2+2*pi/3); %y 函数

a3=linspace(0,pi/3); %回程阶段的自变量

s3=h*(1+cos(3*a3))/2; %推杆位移

x3=-((s0+s3).*sin(a3+5*pi/6)+e*cos(a3+5*pi/6)); %x 函数

y3=(s0+s3).*cos(a3+5*pi/6)-e*sin(a3+5*pi/6); %y 函数

a4=linspace(0,5*pi/6); %近休止阶段的自变量

s4=0; %推杆位移

x4=-((s0+s4).*sin(a4+7*pi/6)+e*cos(a4+7*pi/6)); %x 函数

y4=(s0+s4).*cos(a4+7*pi/6)-e*sin(a4+7*pi/6); %y 函数

a0=linspace(0,2*pi); %基圆自变量

x5=r0*cos(a0); %x 函数

y5=r0*sin(a0); %y 函数

6轮廓图形 通过Matlab 软件,编写程序,将以上各相应值代入式(a)计算理论轮廓线上各点的坐标值。在计算时应注意:在推程阶段取1δδ=,在远休止阶段取201δδδ+=,在回程阶段取30201δδδδ++=,在近休止阶段取

4030201δδδδδ+++=。画出的图形如下图所示

2.求工作廓线

θcos 'r r x x -= θsin 'r r y y -= (b )

其中 2

2)/()/(/)/(sin δδδθd dy d dx d dx +-= 22)/()/(/)/(cos δδδθd dy d dx d dy +=

① 推程阶段

??

????=32,01πδ 1011cos )(sin })2/()]3cos(1[3{/δδπδδs s e h d dx +----=

1011sin )(cos })2/()]3cos(1[3{/δδπδδs s e h d dy +---=

② 远休止阶段

??

????=6,02πδ )3/2cos()()3/2sin(/202δπδπδ++-+=s s e d dx

)3/2sin()()3/2cos(/202δπδπδ++-+-=s s e d dy

③ 回程阶段

??

????=3,03πδ )6/5cos()()6/5sin(]2/)3sin(3[/3033δπδπδδ++-++=s s e h d dx

)6/5sin()()6/5cos(]2/)3sin(3[/3033δπδπδδ++-++-=s s e h d dy

④ 近休止阶段

??

????=65,04πδ )6/7cos()()6/7sin(/404δπδπδ++-+=s s e d dx

)6/7sin()()6/7cos(/404δπδπδ++-+-=s s e d dy

5Matlab 程序设计: %工作廓线

m1=-(h*3/2/pi*(1-cos(3*a1))-e).*sin(a1)-(s0+s1).*cos(a1); %中间变量dx/d$ n1=(h*3/2/pi*(1-cos(3*a1))-e).*cos(a1)-(s0+s1).*sin(a1); %中间变量dy/d$ p1=-m1./sqrt(m1.^2+n1.^2); %sin&

q1=n1./sqrt(m1.^2+n1.^2); %cos&

x6=x1-r*q1; %x'函数

y6=y1-r*p1; %y'函数

m2=-(s0+s2).*cos(a2+2*pi/3)+e*sin(a2+2*pi/3); %中间变量dx/d$ n2=-(s0+s2).*sin(a2+2*pi/3)-e*cos(a2+2*pi/3); %中间变量dy/d$ p2=-m2./sqrt(m2.^2+n2.^2); %sin&

q2=n2./sqrt(m2.^2+n2.^2); %cos&

x7=x2-r*q2; %x'函数

y7=y2-r*p2; %y'函数

m3=(h*3/2*sin(3*a3)+e).*sin(a3+5*pi/6)-(s0+s3).*cos(a3+5*pi/6); %中间变量dx/d$ n3=-(h*3/2*sin(3*a3)+e).*cos(a3+5*pi/6)-(s0+s3).*sin(a3+5*pi/6);%中间变量dy/d$ p3=-m3./sqrt(m3.^2+n3.^2); %sin&

q3=n3./sqrt(m3.^2+n3.^2); %cos&

x8=x3-r*q3; %x'函数

y8=y3-r*p3; %y'函数

m4=-(s0+s4).*cos(a4+7*pi/6)+e*sin(a4+7*pi/6); %中间变量dx/d$ n4=-(s0+s4).*sin(a4+7*pi/6)-e*cos(a4+7*pi/6); %中间变量dy/d$

p4=-m4./sqrt(m4.^2+n4.^2); %sin&

q4=n4./sqrt(m4.^2+n4.^2); %cos&

x9=x4-r*q4; %x'函数

y9=y4-r*p4; %y'函数

○6轮廓图形

同理,通过Matlab软件,编写程序,将以上各相应值代入式(a)计算理论轮廓线上各点的坐标值。获得凸轮的工作廓线如下图所示。

将滚子画在上图中,可得最终的图形。

将Matlab中编程获得的凸轮轮廓曲线点的坐标保存为后缀名为dat文件,导入到UG中,完成凸轮的三维建模,如下图所示。

3.求解最大压力角

1压力角公式 压力角|)0/()e -/(|arctan s s d ds +=σα

2MATLAB 程序设计 clear

r0=50;

e=20;

h=50;

s0=sqrt(r0^2-e^2);

r=10;

a1=0:0.01:2*pi/3;

s1=h*(3*a1/2/pi-sin(3*a1)/2/pi);

c1=h*(3/2/pi- 3*cos(3*a1)/2/pi); %中间变量ds/d б

t1=atan( abs((c1-e)/(s0+s1))); %压力角的计算

plot(a1,t1)

grid on

hold on

a2=2*pi/3:0.01:5*pi/6;

s2=50;

c2=0;

t2=atan( abs((c2-e)/(s0+s2)));

plot(a2,t2)

grid on

hold on

a3=5*pi/6:0.01:7*pi/6;

s3=h*(1+cos(3*(a3-5*pi/6)))/2;

c3=-h*3*sin(3*(a3-5*pi/6))/2;

t3=atan( abs((c3-e)/(s0+s3)));

plot(a3,t3)

grid on

hold on

a4=7*pi/6:0.01:2*pi;

s4=0;

c4=0;

t4=atan( abs((c4-e)/(s0+s4)));

plot(a4,t4)

grid on

3根据MATLAB 程序作图可得出其压力角与角度的关系并分析

当在推程段时,0=δ度时,得最大压力角度即为5.2341.0=α;

当在远休止段时,其压力角为定值,度即为7.1121.0=α;

当其在回程段时,度时189=δ,得最大压力角度;即为8.5597.0=α

当在近休止段时,其压力角为定值,度即为5.2341.0=α

4失真情况分析

由实际轮廓线可知其并未出现尖端,故其没有发生失真情况。

4.附录 Matlab程序

%凸轮理论廓线与工作廓线的画法

clear %清除变量

r0=50; %定义基圆半径

e=20; %定义偏距

h=50; %推杆上升高度

s0=sqrt(r0^2-e^2);

r=10; %滚子半径

%理论廓线

a1=linspace(0,2*pi/3); %推程阶段的自变量

s1=h*(3*a1/2/pi-sin(3*a1)/2/pi); %推杆产生的相应位移

x1=-((s0+s1).*sin(a1)+e*cos(a1)); %x函数

y1=(s0+s1).*cos(a1)-e*sin(a1); %y函数

a2=linspace(0,pi/6); %远休止阶段的自变量

s2=50; %推杆位移

x2=-((s0+s2).*sin(a2+2*pi/3)+e*cos(a2+2*pi/3)); %x函数

y2=(s0+s2).*cos(a2+2*pi/3)-e*sin(a2+2*pi/3); %y函数

a3=linspace(0,pi/3); %回程阶段的自变量

s3=h*(1+cos(3*a3))/2; %推杆位移

x3=-((s0+s3).*sin(a3+5*pi/6)+e*cos(a3+5*pi/6)); %x函数

y3=(s0+s3).*cos(a3+5*pi/6)-e*sin(a3+5*pi/6); %y函数

a4=linspace(0,5*pi/6); %近休止阶段的自变量

s4=0; %推杆位移

x4=-((s0+s4).*sin(a4+7*pi/6)+e*cos(a4+7*pi/6)); %x函数

y4=(s0+s4).*cos(a4+7*pi/6)-e*sin(a4+7*pi/6); %y函数

a0=linspace(0,2*pi); %基圆自变量

x5=r0*cos(a0); %x函数

y5=r0*sin(a0); %y函数

%工作廓线

m1=-(h*3/2/pi*(1-cos(3*a1))-e).*sin(a1)-(s0+s1).*cos(a1); %中间变量dx/d$ n1=(h*3/2/pi*(1-cos(3*a1))-e).*cos(a1)-(s0+s1).*sin(a1); %中间变量dy/d$ p1=-m1./sqrt(m1.^2+n1.^2); %sin&

q1=n1./sqrt(m1.^2+n1.^2); %cos&

x6=x1-r*q1; %x'函数

y6=y1-r*p1; %y'函数

m2=-(s0+s2).*cos(a2+2*pi/3)+e*sin(a2+2*pi/3); %中间变量dx/d$

n2=-(s0+s2).*sin(a2+2*pi/3)-e*cos(a2+2*pi/3); %中间变量dy/d$

p2=-m2./sqrt(m2.^2+n2.^2); %sin&

q2=n2./sqrt(m2.^2+n2.^2); %cos&

x7=x2-r*q2; %x'函数

y7=y2-r*p2; %y'函数

m3=(h*3/2*sin(3*a3)+e).*sin(a3+5*pi/6)-(s0+s3).*cos(a3+5*pi/6); %中间变量dx/d$ n3=-(h*3/2*sin(3*a3)+e).*cos(a3+5*pi/6)-(s0+s3).*sin(a3+5*pi/6);%中间变量dy/d$ p3=-m3./sqrt(m3.^2+n3.^2); %sin&

q3=n3./sqrt(m3.^2+n3.^2); %cos&

x8=x3-r*q3; %x'函数

y8=y3-r*p3; %y'函数

m4=-(s0+s4).*cos(a4+7*pi/6)+e*sin(a4+7*pi/6); %中间变量dx/d$

n4=-(s0+s4).*sin(a4+7*pi/6)-e*cos(a4+7*pi/6); %中间变量dy/d$

p4=-m4./sqrt(m4.^2+n4.^2); %sin&

q4=n4./sqrt(m4.^2+n4.^2); %cos&

x9=x4-r*q4; %x'函数

y9=y4-r*p4; %y'函数

%画滚子

g1=x1(1)+r*cos(a0);

j1=y1(1)+r*sin(a0);

g2=x1(25)+r*cos(a0);

j2=y1(25)+r*sin(a0);

g3=x1(50)+r*cos(a0);

j3=y1(50)+r*sin(a0);

g4=x1(60)+r*cos(a0);

j4=y1(60)+r*sin(a0);

g5=x1(75)+r*cos(a0);

j5=y1(75)+r*sin(a0);

g6=x1(90)+r*cos(a0);

j6=y1(90)+r*sin(a0);

g7=x2(1)+r*cos(a0);

j7=y2(1)+r*sin(a0);

g8=x2(50)+r*cos(a0);

j8=y2(50)+r*sin(a0);

g9=x3(1)+r*cos(a0);

j9=y3(1)+r*sin(a0);

g10=x3(25)+r*cos(a0);

j10=y3(25)+r*sin(a0);

g11=x3(40)+r*cos(a0);

j11=y3(40)+r*sin(a0);

g12=x3(50)+r*cos(a0);

j12=y3(50)+r*sin(a0);

g13=x3(75)+r*cos(a0);

j13=y3(75)+r*sin(a0);

g14=x4(1)+r*cos(a0);

j14=y4(1)+r*sin(a0);

g15=x4(50)+r*cos(a0);

j15=y4(50)+r*sin(a0);

figure %创建图形窗口

plot(x1,y1,'b-',x2,y2,'g-',x3,y3,'m-',x4,y4,'c-',...

x6,y6,'b-',x7,y7,'g-',x8,y8,'m-',x9,y9,'c-',...

'LineWidth',2) %画函数曲线

grid on %加网格

hold on %保持图像

plot(x5,y5,'r--',g1,j1,'k-',g2,j2,'k-',g3,j3,'k-',...

g4,j4,'k-',g5,j5,'k-',g6,j6,'k-',g7,j7,'k-',...

g8,j8,'k-',g9,j9,'k-',g10,j10,'k-',g11,j11,'k-',...

g12,j12,'k-',g13,j13,'k-',g14,j14,'k-',g15,j15,'k-','LineWidth',2) %画基圆

title('凸轮理论廓线与工作廓线','FontSize',16) %标题

axis ([-100,80,-120,60])

axis('equal')

points=[x6',y6',zeros(100,1);x7',y7',zeros(100,1);...

x8',y8',zeros(100,1);x9',y9',zeros(100,1)]

%最大压力角

clear

r0=50;

e=20;

h=50;

s0=sqrt(r0^2-e^2);

r=10;

a1=0:0.01:2*pi/3;

s1=h*(3*a1/2/pi-sin(3*a1)/2/pi);

c1=h*(3/2/pi- 3*cos(3*a1)/2/pi); %中间变量ds/dб

t1=atan( abs((c1-e)/(s0+s1))); %压力角的计算

plot(a1,t1)

grid on

hold on

a2=2*pi/3:0.01:5*pi/6; s2=50;

c2=0;

t2=atan( abs((c2-e)/(s0+s2)));

plot(a2,t2)

grid on

hold on

a3=5*pi/6:0.01:7*pi/6;

s3=h*(1+cos(3*(a3-5*pi/6)))/2;

c3=-h*3*sin(3*(a3-5*pi/6))/2;

t3=atan( abs((c3-e)/(s0+s3)));

plot(a3,t3)

grid on

hold on

a4=7*pi/6:0.01:2*pi; s4=0;

c4=0;

t4=atan( abs((c4-e)/(s0+s4)));

plot(a4,t4)

grid on

机械原理-凸轮设计(偏置直动滚子从动件盘形凸轮机构的设计)

中国地质大学 课程论文 题目偏置直动滚子从动件盘形凸轮机构的设计 指导老师__ _____________ 姓名 班级 学号 专业机械设计制造及其自动化 院系机电学院 日期 2015 年 5 月 30 日 解析法分析机构运动 ——MATLAB辅助分析摘要: 在各种机械,特别是自动化和自动控制装置中,广泛采用着各种形式的凸轮机构,例如盘形凸 轮机构在印刷机中的应用,等经凸轮机构在机械加工中的应用,利用分度凸轮机构实现转位, 圆柱凸轮机构在机械加工中的应用。 凸轮机构的最大优点是只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运 动规律,而且响应快速,机构简单紧凑。正因如此,凸轮机构不可能被数控,电控等装置完全 代替。但是凸轮机构的缺点是凸轮轮廓线与推杆之间为点,线接触,易磨损,凸轮制造较困难。 在这些前提之下,设计者要理性的分析实际情况,设计出合理的凸轮机构,保证工作的质量与 效率。 本次设计的是偏置直动滚子从动件盘形凸轮机构,推杆是滚子推杆,这种推杆由于滚子与凸轮 廓之间为滚动摩擦,所以磨损较小,可用来传递较大动力,因而被大量使用,通过设计从根本 上了解这种凸轮机构的设计原理,增加对凸轮机构的认识。通过用MATLAB软件进行偏置直动 滚子从动件盘形凸轮轮廓设计,得出理论廓线和工作廓线,进一步加深对凸轮的理解。 一、课程设计(论文)的要求与数据 设计题目:偏置直动滚子从动件盘形凸轮机构的设计 试设计偏置直动滚子推杆盘形凸轮机构的理论轮廓曲线和工作廓线。已知凸轮轴置于推杆轴 线右侧,偏距e=20mm,基圆半径r0=50mm,滚子半径r r=10mm。凸轮以等角速度沿顺时针方

直动从动件盘形凸轮机构设计说明书

机械原理大作业二直动从动件盘形凸轮机构设计任务书 课程名称:机械原理 设计题目:盘形凸轮机构设计(20) 院系:机电工程学院 班级:1508104 设计者:关宇珩 学号:1150810423 指导教师:陈明 设计时间:2017.6.15 哈尔滨工业大学机械设计制造

目录 一.凸轮设计要求 (1) 二.凸轮轮廓设计数学模型 (3) 三.计算流程框图 (4) 四.matlab程序 (5) 五.计算结果与分析 (10)

一.凸轮设计要求

二.凸轮轮廓设计数学模型 1.确定凸轮偏心距与基圆半径(mm ) 通过matlab 对已给s 方程求导,通过许用压力角做斜率已知的直线,找出其与线图的切线,并找出切线的y 轴截距。 由于最大截距绝对值为65,则取偏心距3/56e =,基圆半径12/385r 0=,滚子半径 3/28r =。计算2200e -r s =。 2.建立压力角方程 已知方程: ??? ? ? ?+=e -d /ds arctan 0?α分段代入s 方程,计算升程和回程的压力角。 3.建立凸轮轮廓线的坐标方程 已知凸轮轴心在从动件左方。建立方程(理论轮廓线): ()??ecos sin s s x 0++=;()??esin -cos s s y 0+=; 建立方程(外包络实际轮廓线): ()() 2 2 d /dy d /dx d /dy r x X ??? ++=; ()() 2 2 d /dy d /dx d /dx r -y Y ??? +=; 4.建立曲率方程

已知方程: ()() 2 /322 2dx /dy 1dx /y d k += ; ; k /1R =通过参数方程的求导方法建立R ~ψ的方程。 三.计算流程框图 设时间ψ为未知量 对s ,v ,a 方程求导,绘制位移、速度、 加速度和?d /ds ~s 线图 利用许用压力角做已知斜率曲线,寻找与?d /ds ~s 线图相交的y 轴截距绝对值最大的直线为切线,取偏 心距e 、基圆半径r0、滚子半径 建立压力角方程 建立理论轮廓线和实际轮廓线的坐标方 程

滚子摆动从动件凸轮设计matlab程序

} disp ' ******** 滚子摆动从动件凸轮设计 ********' disp '已知条件:' disp ' 凸轮作顺时针方向转动,从动件做摆动' disp ' 从动件在推程作等加速/等减速运动,在回程作等加速等减速运动' rb =52;rt = 10;qm=15;ft = 60;fs = 10;fh = 60;alp = 35;a=140;l=122;q0=asin(rb/a)*180/pi; fprintf (1,' 基圆半径 rb = % mm \n',rb) fprintf (1,' 滚子半径 rt = % mm \n',rt) fprintf (1,' 起始角度 q0= % mm \n',q0) ; fprintf (1,' 最大摆动角度 qm = % mm \n',qm) fprintf (1,' 推程运动角 ft = % 度 \n',ft) fprintf (1,' 远休止角 fs = % 度 \n',fs) fprintf (1,' 回程运动角 fh = % 度 \n',fh) fprintf (1,' 推程许用压力角 alp = % 度 \n',alp) hd= pi / 180;du = 180 / pi; %角度弧度互换 d1 = ft + fs;d2 = ft + fs + fh; disp ' ' . disp '计算过程和输出结果:' disp ' 1- 计算凸轮理论轮廓的压力角和曲率半径' disp ' 1-1 推程(等加速/等减速运动)' s = zeros(ft);ds = zeros(ft);d2s = zeros(ft);vt=zeros(ft);st1=zeros(ft);at=zeros(ft); at = zeros(ft);atd = zeros(ft);pt = zeros(ft); for f = 1 : ft if f <= ft / 2 s(f)=2*(qm/ft^2)*f^2;st1(f)=s(f);s = s(f); %推程加速方程式 ( ds(f)=(qm/ft^2)*f;vt(f)=ds(f);ds = ds(f); d2s(f)=4*qm/ft;at(f)=d2s(f);d2s = d2s(f); else s(f)=qm-2*qm*(ft-f)^2/ft^2;st1(f)=s(f); s = s(f); %推程减速方程式 ds(f)=4*qm*(ft-f)/ft^2;vt(f)=ds(f);ds = ds(f); d2s(f)=-4 *qm/ft^2;at(f)=d2s(f);d2s = d2s(f);

偏置直动滚子推杆盘形凸轮matlab编程(程序)

机械原理大作业 学院:机械与电子信息学院 授课老师:曾小慧 姓名:张京 学号:547 日期:2015-5-23

目录 1.求轮廓曲线 ○1推程阶段 ○2远休止阶段 ○3回程阶段 ○4近休止阶段 ○5Matlab程序设计 ○6轮廓图形 2.求工作廓线 ○1推程阶段 ○2远休止阶段 ○3回程阶段 ○4近休止阶段 ○5Matlab程序设计 ○6轮廓图形 3.求解最大压力角 ○1压力角公式 ○2MATLAB程序设计 ○3根据MATLAB程序作图可得出其压力角与角度的关系并分析○4失真情况分析 4.附录 Matlab程序

凸轮轮廓 9-14试设计偏置直动滚子推杆盘形凸轮机构的理论轮廓曲线和工作廓线。已知凸轮轴置于推杆轴线右侧,偏距e=20mm ,基圆半径r。=50mm ,滚子半径rr=10mm 。凸轮以等角速度沿顺时针方向回转,在凸轮转过角d1=120o的过程中,推杆按正弦加速度运动规律上升h=50mm ;凸轮继续转过d2=30o时,推杆保持不动;其后,凸轮再回转角度d3=60o时,推杆又按余弦加速度运动规律下降至起始位置;凸轮转过一周的其余角度时,推杆又静止不动。 解: 1.求理论廓线 对于偏置直动滚子推杆盘形凸轮机构,凸轮理论廓线上B 点(即滚子中心)的直角坐标为 ]cos sin )[(0δδe s s x ++-= δδsin cos )(0e s s y -+= (a ) 式中mm mm e r s 826.4520502222 00=-=-= ① 推程阶段 3212001π δ=?= )] 2/()3sin()2/3[()]2/()/2sin()/[(110110111πδπδπδπδδδ-=-=h h s (?? ????=32, 01πδ) ② 远休止阶段 63002π δ=?= 502=s ?? ????=6,02πδ

滚子摆动从动件凸轮设计matlab程序

disp ' ******** 滚子摆动从动件凸轮设计 ********' disp '已知条件:' disp ' 凸轮作顺时针方向转动,从动件做摆动' disp ' 从动件在推程作等加速/等减速运动,在回程作等加速等减速运动' rb =52;rt = 10;qm=15;ft = 60;fs = 10;fh = 60;alp = 35;a=140;l=122;q0=asin(rb/a)*180/pi; fprintf (1,' 基圆半径 rb = %3.4f mm \n',rb) fprintf (1,' 滚子半径 rt = %3.4f mm \n',rt) fprintf (1,' 起始角度 q0= %3.4f mm \n',q0) fprintf (1,' 最大摆动角度 qm = %3.4f mm \n',qm) fprintf (1,' 推程运动角 ft = %3.4f 度 \n',ft) fprintf (1,' 远休止角 fs = %3.4f 度 \n',fs) fprintf (1,' 回程运动角 fh = %3.4f 度 \n',fh) fprintf (1,' 推程许用压力角 alp = %3.4f 度 \n',alp) hd= pi / 180;du = 180 / pi; %角度弧度互换 d1 = ft + fs;d2 = ft + fs + fh; disp ' ' disp '计算过程和输出结果:' disp ' 1- 计算凸轮理论轮廓的压力角和曲率半径' disp ' 1-1 推程(等加速/等减速运动)' s = zeros(ft);ds = zeros(ft);d2s = zeros(ft);vt=zeros(ft);st1=zeros(ft);at=zeros(ft); at = zeros(ft);atd = zeros(ft);pt = zeros(ft); for f = 1 : ft if f <= ft / 2 s(f)=2*(qm/ft^2)*f^2;st1(f)=s(f);s = s(f); %推程加速方程式 ds(f)=(qm/ft^2)*f;vt(f)=ds(f);ds = ds(f); d2s(f)=4*qm/ft;at(f)=d2s(f);d2s = d2s(f); else s(f)=qm-2*qm*(ft-f)^2/ft^2;st1(f)=s(f); s = s(f); %推程减速方程式 ds(f)=4*qm*(ft-f)/ft^2;vt(f)=ds(f);ds = ds(f); d2s(f)=-4 *qm/ft^2;at(f)=d2s(f);d2s = d2s(f); end at(f)= atan((-l*(1-ds))/(a*sin((s+q0)*hd))-(-1)*cos((s+q0)*hd)/sin((s+q0)*hd));atd(f) = at(f) * du; %推程压力角的角度和弧度表达式 p1= -a*sin(f*hd)+l*sin((s+q0-f)*hd)*(ds-1); p2= a*cos(f*hd)+l*cos((s+q0-f)*hd)*(ds-1); p3=-a*cos(f*hd)+l*(ds-1)^2*cos((s+q0-f)*hd)+l*d2s*sin((s+q0-f)*hd); p4=-a*sin(f*hd)-l*(ds-1)^2*sin((s+q0-f)*hd)+l*ds*cos((s+q0-f)*hd); pt(f)= (p1^2+p2^2)^1.5/(p1*p4-p2*p3) ;p = pt(f);

基于MATLAB软件的凸轮轮廓曲线设计_

基于MATLAB软件的凸轮轮廓曲线设 计 摘要:以偏置移动从动件盘形凸轮为例,基于MATLAB软件对凸轮轮廓曲线进行了解析法设计.绘制出轮廓曲线。运行结果表明:在从动件运动规律确定的情况下,利用MATLAB软件以很方便、快捷地得到凸轮的轮廓曲线。 关键词:凸轮机构;凸轮轮廓曲线;MATLAB;解析法 前言 凸轮轮廓曲线的设计,一般可分为图解法和解析法.利用图解法能比较方便地绘制出各种平面凸轮的轮廓曲线.但这种方法仅适用于比较简单的结构,用它对复杂结构进行设计则比较困难,而且利用图解法进行结构设计,作图误差较大,对一些精度要求高的结构不能满足设计要求。解析法可以根据设计要求,通过推导机构中各部分之间的几何关系,建立相应的方程,精确地计算出轮廓线上各点的坐标,然后把凸轮的轮廓曲线精确地绘制出来.但是,当从动件运动规律比较复杂时,利用解析法获得凸轮的轮廓曲线的工作量比较大.而MATLAB软件提供了强大的矩阵处理和绘图功能,具有核心函数和工具箱.其编程代码接近数学推导公式,简洁直观,操作简易,人机交互性能好,且可以方便迅速地用三维图形、图像、声音、动画等表达计算结果、拓展思路[1]。因此,基于MATLAB软件进行凸轮机构的解析法设计,可以解决设计工作量大的问题。 本文基于MATLAB软件进行凸轮轮廓曲线的解析法设计,利用《机械原理》课程的计算机辅助教学,及常用机构的计算机辅助设计.其具体方法为首先精确地计算出轮廓线上各点的坐标,然后运用MATLAB绘制比较精确的凸轮轮廓曲线。

1 设计的意义与已知条件 1.1意义 凸轮机构是由具有曲线轮廓或凹槽的构件,通过高副接触带动从动件实现预期运动规律的一种高副机构,它广泛地应用于各种机械,特别是自动机械、自动控制装置和装配生产线中,是工程实际中用于实现机械化和自动化的一种常用机构。所以,在凸轮的加工中,精确的确定凸轮的轮廓,这对于保证凸轮所带动从动件的运动规律是尤为重要的。 1.2已知条件 偏置移动从动件盘形凸轮设计已知条件(图1): 凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边 从动件在推程作等加速/等减速运动,在回程作余弦加速度运动 基圆半径rb = 40 mm,滚子半径rt = 10mm,推杆偏距e = 15 mm, 推程升程h = 50 mm,推程运动角ft = 100度,远休止角fs = 60度 回程运动角fh = 90度,推程许用压力角alp = 35度。

机械原理课程设计 偏置直动滚子推杆盘形凸轮

凸轮大作业选题:凸轮5-C

一:题目及原始数据: 利用计算机辅助设计完成偏置直动滚子推杆盘形凸轮机构的设计,已知数据如下所示,凸轮沿逆时针方向做匀速运动。具体要求如下: 1.推程运动规律为等加速等减速运动,回程运动规律为五次多项式运动; 2.近休凸轮转角为0°-30°;推程凸轮转角30°-210°;远休凸轮转角210°-280°;回程凸轮转角280°-360。° 3.初选基圆半径为22mm; 4.偏距为+14mm 5.滚子半径为18mm 6.推杆行程为35mm 7.许用压力角为α1=35°,α2=65°。 8.最小曲率半径为0.35r r 9.计算点数取120. 二:推杆运动规律及凸轮轮廓线方程 1.推程加速阶段: s1=70.*a1.*a1/pi/pi; x1=(s0+s1).*sin(a1)+e*cos(a1); y1=(s0+s1).*cos(a1)-e*sin(a1); k1=140*a1/pi^2; i1=[(k1-e).*sin(a1)+(s0+s1).*cos(a1)].*[(k1-e).*(k1-e)+(s0+ s1).*(s0+s1)].^(-1/2); j1=[-(k1-e).*cos(a1)+(s0+s1).*sin(a1)].*[(k1-e).*(k1-e)+(s0 +s1).*(s0+s1)].^(-1/2); x10=x1-18*j1; y10=y1-18*i1; 2.推程减速阶段: s11=35-70.*(pi-a11).*(pi-a11)/pi/pi; x11=(s0+s11).*sin(a11)+e*cos(a11); y11=(s0+s11).*cos(a11)-e*sin(a11); k11=140.*(pi-a1)/pi^2; i11=[(k11-e).*sin(a11)+(s0+s11).*cos(a11)].*[(k11-e).*(k11-e)+(s0+s11).*(s0+s11)].^(-1/2); j11=[-(k11-e).*cos(a11)+(s0+s11).*sin(a11)].*[(k11-e).*(k11 -e)+(s0+s11).*(s0+s11)].^(-1/2);

移动从动件盘形凸轮机构中

第4章习题 4-1 移动从动件盘形凸轮机构中,凸轮以转速为400r/min等速回转,工作要求从动件的运动规律如图4-6所示;当凸轮转速90°时,从动件在起始位置停歇不动;凸轮再转过90°时,从动件上升38.1mm;当凸轮又转过90°时,从动件停歇不动;当凸轮转过一周中剩余的90°时,从动件返回原处。试设计从动件的运动规律,并写出以坐标原点0为起点的从动件的位置方程式。 4-2 图4-7所示为凸轮机构从动件的速度曲线,它由四段直线组成。要求:在题图上画出推杆的位移曲线、加速度曲线;判断在哪几个益有冲击存在,是刚性冲击还是柔性冲击;在图示的F位置,凸轮与推杆之间有无惯性力作用,有无冲击存在。 ?=π/2,行程h=50mm。 4-3 在直动从动件盘形凸轮机构中,已知推程时凸轮的转角 求当凸轮转速ω1=10rad/s时,等速、等加速等减速、余弦加速度和正弦加速度四种常用的 ?。 基本运动规律的最大速度υmax、最大加速度αmax以及所对应的凸轮转角 0 4-4 在图4-8所示的从动件位置移线图中,AB段为摆线运动,BC段为简谐运动。若 ?要在两段曲线交界处的B点从动件的速度和加速度分别相等,试根据图中所给数据确定 2角的大小。 4-5 图4-9中给出了某直动从动件盘形凸轮机构的从动件的速度线图。要求: (1)画出其加速度和位移线图; (2)说明此种运动规律的名称及特点(υ、α的大小及冲击的性质)。 4-6 试求一个对心平底推杆盘状凸轮的廓线方程。已知推杆的平底与其导路垂直,基圆半径r b=45mm,凸轮顺时针方向匀速转动。要求当凸轮转动120°时,推杆以等加速等减速运动上升15mm;再转过60°时,推杆以正弦加速度运动回到原位置;凸轮转过一周中的其余角度时,推杆静止不动。 4-7 试以图解法设计一摆动滚子从动件盘形凸轮轮廓曲线。已知l OA=55mm,r o=25mm,l AB=50mm,r T=8mm,凸轮逆时针方向匀速转动。要求当凸轮转过180°时,推杆以余弦加速度运动向上摆动φ=25°;转过一周中的其余角度时,推杆以正弦加速度运动摆回到原位置。 4-8 用图解法设计摆动从动件圆柱凸轮。圆柱凸轮以等角速回转一圈时,从运件往复 ?=180°,从动件以等加速等减速摆动一次,其运动规律为:凸轮按图4-10所示方向回转

Matlab编程五次凸轮

附录11、用解析法设计凸轮2的实际轮廓曲线。 1、建立凸轮轮廓的数学模型。 图l 为往复式偏心从动件盘形凸轮的机构运动简图,B 为 理论轮廓线上的任意一点,在图示的直角坐标系中,B 的坐 标,即凸轮理论廓线上的直角坐标参数方程为: X=OE+EF=(S0+S )*Sin (J )+e*Cos (J ) Y=BD – FD=(S0+S )*Cos (J ) – e*Sin (J ) 式中: X ,Y :凸轮理论廓线上的某一点坐标 (mm) e :从动件的偏心距(mm),OC R :凸轮的基圆半径(mm),OA S 0:220E R S -=(mm),CK J :凸轮的转角 S :S =f(J)从动件运动方程,KB BC =CK 十KB =S 0十S 因为工作廓线在法线方向的距离处处相等,且等于滚子半径r ’,故当已知理论廓线上的任意一点B(X,Y)时,只要沿理论廓线在该点的法线的方向取距离为r ’,即得到工作廓线上的相应点B ’(X ’,Y ’).由高等数学可知,理论廓线B 点处的法线n-n 的斜率(与切线斜率互为负倒数)应为 Tan a=-dx/dy=(dx/dJ)/(dx/dJ)/(-dy/dJ)=sina/cosa 注: a 为理论廓线B 点处的法线和X 轴的夹角。 根据(1)(2)两式有 dx/dJ=(ds/dJ-e)sin(J)+(s0+s)cos(J) (3) dy/dJ=(ds/dJ-e)cos(J)-(s0+s)sin(J) (4) 可得 Sin a=(dx/dJ)/((dx/dJ)^2+(dy/dJ)^2)^0.5 (5) Cos a=-(dy/dJ)/((dx/dJ)^2+(dy/dJ)^2)^0.5 (6) 工作廓线上对应的点B ’(x ’,y ’)坐标为: x ’=x-r ’cos a y ’=y- r ’sin a 2、 从动件运行规律:五次多项式运行规律 从动件运动形式为:升—停—降—停型 图1

机械原理课程设计偏置直动滚子从动杆盘型凸轮机构讲解

目录 (一)机械原理课程设计的目的和任务 (2) (二)设计题目及设计思路 (3) (三)凸轮基圆半径及滚子尺寸的确定 (5) (四)从动杆的运动规律及凸轮轮廓线方程 (7) (五)计算程序框图 (8) (六)计算机源程序 (11) (七)计算机程序结果及分析 (14) (八)凸轮机构示意简图 (20) (九)体会心得 (20) (十)参考资料 (21)

(一)机械原理课程设计的目的和任务 一、机械原理课程设计的目的: 1、机械原理课程设计是一个重要实践性教学环节。其目的在于: 进一步巩固和加深所学知识; 2、培养学生运用理论知识独立分析问题、解决问题的能力; 3、使学生在机械的运动学和动力分析方面初步建立一个完整的概念; 4、进一步提高学生计算和制图能力,及运用电子计算机的运算能力。 二、机械原理课程设计的任务: 1、偏置直动滚子从动杆盘型凸轮机构 2、采用图解法设计:凸轮中心到摆杆中心A的距离为160mm,凸轮以顺时针方向等速回转,摆杆的运动规律如表: 3、设计要求: ①升程过程中,限制最大压力角αmax≤30o,确定凸轮基园半径r0 ②合理选择滚子半径rr ③选择适当比例尺,用几何作图法绘制从动件位移曲线,并画于图纸上; ④用反转法绘制凸轮理论廓线和实际廓线,并标注全部尺寸(用A2

图纸) ⑤将机构简图、原始数据、尺寸综合方法写入说明书 4、用解析法设计该凸轮轮廓,原始数据条件不变,要写出数学模型,编制程序并打印出结果 备注: 凸轮轮廓曲率半径与曲率中心 理论轮廓方程 () () x x y y ? ? = ? ? = ?,其中 22 22 // // x dx d x d x d y dy d x d y d ?? ?? ?== ? ? == ?? 其曲率半径为: 3 222 () x y xy xy ρ + =- -;曲率中心位于: 22 22 () () y x y x x xy xy x x y y x xy xy ρ ρ ?+ =- ?- ? ? + ?=- ?- ? 三、课程设计采用方法: 对于此次任务,要用图解法和解析法两种方法。图解法形象,直观,应用图解法可进一步提高学生绘图能力,在某些方面,如凸轮设计中,图解法是解析法的出发点和基础;但图解法精度低,而解析法则可应用计算机进行运算,精度高,速度快。在本次课程设计中,可将两种方法所得的结果加以对照。 四、编写说明书: 1、设计题目(包括设计条件和要求); 2、机构运动简图及设计方案的确定,原始数据; 3、机构运动学综合;

第6章凸轮--习题及答案(全)

习 题 6-6 在摆动从动件盘形凸轮机构中,从动件行程角max 30o ψ=,0120o Φ=,'0120o Φ=, 从动件推程、回程分别采用等加速等减速和正弦加速度运动规律,试写出摆动从动件在各行程的位移方程式。 解:(1)推程的位移方程式为 ()2 0max 02max 0max 00202 022 2?ψψ?ψψψ?????Φ?=??≤≤ ? Φ???? Φ? =-Φ-≤≤Φ?Φ? 代入数值得 ()2220230 060120240130-120 60120240o o o o o o o o o ??ψ?ψ?????=??=≤≤? ????? ?=?-≤≤?? (2)回程的位移方程式为 ()max 0''0001 21sin 3602o s s T T T πψψ?π ??????=?-+ Φ+Φ≤≤??? ?ΦΦ?????? =-Φ+Φ? 代入数值得: o 2401360360301sin 240120212012024030 30sin 3 24036042o o o o o o o o o o o o ?ψ?π???π ????-=?-+-??? ???? ?-=-+≤≤ 6-7 图中所示为从动件在推程的部分运动曲线,其0o s Φ≠,'0o s Φ≠,试根据s 、v 和a 之 间的关系定性的补全该运动曲线,并指出该凸轮机构工作时,何处有刚性冲击?何处有柔性冲击?

解:如图所示。 (1)AB段的位移线图为一条倾斜直线,因此,在这一段应为等速运动规律,速度线图为一条水平直线,其加速度为零。 (2)BC段的加速度线图为一条水平直线。因此,在这一段应为等加速运动规律,其速度线图为一条倾斜的直线,位移线图为一条下凹的二次曲线。 (3)CD段的速度线图为一条倾斜下降的斜直线。因此,在这一段应为等减速运动规律,其加速度线图为一条水平直线,位移线图为一条上凸的二次曲线。 该凸轮在工作时,在A处有刚性冲击,B、C、D处有柔性冲击。 6-8 对于图中的凸轮机构,要求: 1)写出该凸轮机构的名称; 2)在图上标出凸轮的合理转向; 3)画出凸轮的基圆; 4)画出从升程开始到图示位置时推杆的位移s,相对应的凸轮转角?,B点的压力角α;5)画出推杆的行程H。 解:1)偏置直动滚子推杆盘形凸轮机构。 2)为使推程压力角较小,凸轮应该顺时针转动。

凸轮运动Matlab仿真-Matlab课程设计

Matlab 课程设计 李俊机自091 设计题目一:凸轮机构设计 已知轮廓为圆形的凸轮(圆的半径为100mm、偏心距为20mm),推杆与凸轮运动中心的距离20mm,滚子半径为10mm,请利用matlab仿真出凸轮推杆的运动轨迹和运动特性(速度,加速度),并利用动画演示出相关轨迹和运动特性。 %总程序代码 clc; clf; clear; p=figure('position',[100 100 1200 600]); for i=1:360 %画圆形凸轮 R=100; %圆形凸轮半径 A=0:0.006:2*pi; B=i*pi/180; e=20; %偏心距 a=e*cos(B);

b=e*sin(B); x=R*cos(A)+a; y=R*sin(A)+b; subplot(1,2,1) plot(x,y,'b','LineWidth',3); %填充 fill(x,y,'y') axis([-R-e,R+e,-R-e,R+e+100]); set(gca,'Xlim',[-R-e,R+e]) set(gca,'Ylim',[-R-e,R+e+100]) axis equal; axis manual; axis off; hold on; plot(a,b,'og') plot(e,0,'or') plot(0,0,'or','LineWidth',3)

%画滚子 gcx=0; %滚子中心X坐标r=10; %滚子半径 gcy=sqrt((R+r)^2-a^2)+b; %滚子中心Y坐标 gx=r*cos(A)+gcx; %滚子X坐标 gy=r*sin(A)+gcy; %滚子Y坐标 plot(gx,gy,'b','LineWidth',2); %画其它部分 plot([0 a],[0 b],'k','LineWidth',4) plot([3 3],[170 190],'m','LineWidth',4) plot([-3 -3],[170 190],'m','LineWidth',4) %画顶杆 gc=120; dgx=[0 0]; dgy=[gcy gcy+gc]; plot(dgx,dgy,'LineWidth',4); hold off

matlab程序设计与应用(第二版)第三章部分课后答案

第三章1. (1)A=eye(3) (2)A=100+100*rand(5,6) (3)A=1+sqrt(0.2)*randn(10,50) (4)B=ones(size(A)) (5)A+30*eye(size(A)) (6)B=diag(diag(A)) 2. B=rot90(A) C=rot90(A,-1) 3. B=inv(A) ;A的逆矩阵 C=det(A) ;A的行列式的值 D=A*B E=B*A D=E 因此A与A-1是互逆的。 4. A=[4 2 -1;3 -1 2;12 3 0]; b=[2;10;8]; x=inv(A)*b x = -6.0000 26.6667 27.3333 5. (1) diag(A) ;主对角线元素 ans = 1 1 5 9 triu(A) ;上三角阵

ans = 1 -1 2 3 0 1 -4 2 0 0 5 2 0 0 0 9 tril(A) ;下三角阵 ans = 1 0 0 0 5 1 0 0 3 0 5 0 11 15 0 9 rank(A) ;秩 ans = 4 norm(A) ;范数 ans = 21.3005 cond(A) ;条件数 ans = 11.1739 trace(A) ;迹 ans = 16 (2)略 6. A=[1 1 0.5;1 1 0.25;0.5 0.25 2] A = 1.0000 1.0000 0.5000 1.0000 1.0000 0.2500 0.5000 0.2500 2.0000

[V,D]=eig(A) V = 0.7212 0.4443 0.5315 -0.6863 0.5621 0.4615 -0.0937 -0.6976 0.7103 D = -0.0166 0 0 0 1.4801 0 0 0 2.5365

机械原理课程设计--偏置直动滚子从动件盘形凸轮机构的设计

课程设计(论文) 课程名称机械原理 题目名称偏置直动滚子从动件盘形凸轮机构的设计学生学部(系)机电工程学部 2012年6月27日

目录 课程设计(论文)任务书 (3) 摘要 .......................................................................................................................... 错误!未定义书签。 一、根据已知尺寸做出基圆....................................................................................... 错误!未定义书签。 二、用反转法设计图轮廓线....................................................................................... 错误!未定义书签。 三、绘制推杆的位移图线......................................................................................... 错误!未定义书签。 四、压力角是否满足许用压力角的要求................................................................... 错误!未定义书签。 五、心得与体会 .......................................................................................................... 错误!未定义书签。

机械基础答案解析

第三章凸轮机构 题3-1欲设计图示的直动滚子从动件盘形凸轮机构,要求在凸轮转角为00~900时,推杆以余弦加速度运动规律上升h= 20 mm,且取r0= 25 mm,e= 10 mm,r r= 5 mm。试求: (1)选定凸轮的转向ω,并简要说明选定的原因; (2)用反转法画出当凸轮转角φ=00~900时凸轮的工作廓线(画图的分度要求小于150); (3)在图上标注出φ1=450时凸轮机构的压力角α。 解答: 1.选位移比例尺 m/m m 001 .0 = S μ ,转角比例尺 /mm 04 .0弧度 = ? μ ,绘制从动件 位移曲线,见题解3-1图(a)。 2. 逆时针方向,使凸轮机构为正偏置,减小推程段凸轮机构的压力角。 3.将圆弧顶推杆视为滚子推杆,取尺寸比例尺 m/m m 001 .0 = l μ 作图,凸轮廓线如图 所示。 4.如图所示,当φ1=450时,α=14.50。 题3-1图(a)(b) 题解3-1图

题3-2图示为一摆动平底推杆盘形凸轮机构(001 .0 = l μ m/mm),已知凸轮的轮廓 是一个偏心圆,其圆心为C,试用图解法求: (1)凸轮从初始位置到达图示位置时转角φ0及推杆的角位移ψ0; (2)推杆的最大角位移ψmax及凸轮的推程运动角Φ; (3)凸轮从初始位置回转900时,推杆的角位移ψ90。 解题分析:作推杆的摆动中心所在的圆η→作基圆→作推杆的初始位置→按题目要求逐步求解。 解答: 1.求φ0及ψ0 (1)以O为圆心,OA长为半径作圆 η ;以O为圆心作圆切于凸轮,该圆即为基圆;作推杆与基圆和凸轮同时相切,得切点B0,A0B0即为推杆的初始位置。 (2)凸轮从初始位置到达图示位置时的转角就是A0O沿-ω方向转到AO时的角度,即φ0=330,推杆的角位移ψ0=20。 2.求ψmax及Φ 题3-2图 题解3-2图

MATLAB程序设计及经典例题解析3

MATLAB程序设计 用MATLAB语言编写的程序,称为M文件。M文件可以根据调用方式的不同分为两类:命令文件(Script File)和函数文件(Function File)。 例3-1 分别建立命令文件和函数文件,将华氏温度f转换为摄氏温度c。 程序1:首先建立命令文件并以文件名f2c.m存盘。 clear; %清除工作空间中的变量 f=input('Input Fahrenheit temperature:'); c=5*(f-32)/9 然后在MATLAB的命令窗口中输入f2c,将会执行该命令文件,执行情况为: Input Fahrenheit temperature:73 c =22.7778 程序2:首先建立函数文件f2c.m。 function c=f2c(f) c=5*(f-32)/9 然后在MATLAB的命令窗口调用该函数文件。 clear; y=input('Input Fahrenheit temperature:'); x=f2c(y) 输出情况为: Input Fahrenheit temperature:70 c =21.1111 x =21.1111 3.1.2 M文件的建立与打开 M文件是一个文本文件,它可以用任何编辑程序来建立和编辑,而一般常用且最为方便的是使用MATLAB提供的文本编辑器。

1.建立新的M文件 为建立新的M文件,启动MATLAB文本编辑器有3种方法: (1) 菜单操作。从MATLAB主窗口的File菜单中选择New菜单项,再选择M-file命令,屏幕上将出现MATLAB 文本编辑器窗口。 (2) 命令操作。在MATLAB命令窗口输入命令edit,启动MATLAB文本编辑器后,输入M文件的内容并存盘。 (3) 命令按钮操作。单击MATLAB主窗口工具栏上的New M-File命令按钮,启动MATLAB文本编辑器后,输入M文件的内容并存盘。 2.打开已有的M文件 打开已有的M文件,也有3种方法: (1) 菜单操作。从MATLAB主窗口的File菜单中选择Open命令,则屏幕出现Open对话框,在Open对话框中选中所需打开的M文件。在文档窗口可以对打开的M文件进行编辑修改,编辑完成后,将M文件存盘。 (2) 命令操作。在MATLAB命令窗口输入命令:edit 文件名,则打开指定的M文件。 (3) 命令按钮操作。单击MATLAB主窗口工具栏上的Open File命令按钮,再从弹出的对话框中选择所需打开的M文件。 3.2 程序控制结构 3.2.1 顺序结构 1.数据的输入 从键盘输入数据,则可以使用input函数来进行,该函数的调用格式为: A=input(提示信息,选项); 其中提示信息为一个字符串,用于提示用户输入什么样的数据。 如果在input函数调用时采用's'选项,则允许用户输入一个字符串。例如,想输入一个人的姓名,可采用命令: xm=input('What''s your name?','s'); 2.数据的输出 MATLAB提供的命令窗口输出函数主要有disp函数,其调用格式为

凸轮轮廓线的绘制(MATLAB)

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程名称:精密机械学基础 设计题目:直动从动件盘形凸轮的设计 院系:航天学院控制科学与工程系 班级: 0904102班 设计者:陈学坤 学号: 1090410229 设计时间: 2011年10月

直动从动件盘形凸轮机构的计算机辅助设计 说明: 凸轮轮阔曲线的设计,一般可分为图解法和解析法,尽管应用图解法比较简便,能简单地绘制出各种平面凸轮的轮廓曲线,但由于作图误差比较大,故对一些精度要求高的凸轮已不能满足设计要求。此次应用MATLAB 软件结合轮廓线方程用计算机辅助设计。首先,精确地计算出轮廓线上各点的坐标,然后运用MATLAB 绘制 比较精确的凸轮轮廓曲线以及其S-α曲线、v-t 曲线、a-t 曲线。 。 1 凸轮轮廓方程 *()()*() ()*()*() X OE EF E Cos J So S Sin J Y BD FD So S Cos J E Sin J =+=++=-=+- (X,Y):凸轮轮廓线上的任意一点的坐标。 E :从动件的偏心距,OC 。 R :凸轮的基园半径,OA 。 J :凸轮的转角。 S :S=f(J)为从动件的方程。 So :22O S R E =-。 H 为从动件的最大位移(mm )。 J1、J2、J3、J4为从动件的四个转角的区域。 S1、S2、S3、S4为与J1、J2、J3、J4对应的从动件的运动规律。 2 实例 R=40,E=10,H=50,J1=J2=J3=J4=900。 3 MATLAB 程序设计 用角度值计算,对于给定的J1、J2、J3、J4,把相应的公式代入其中,求出位移S 和轮廓线上的各点的坐标X 、Y ,最终求出描述凸轮的数组: J=[J1,J2,J3,J4]; S=[S1,S2,S3,S4]; X=[X1,X2,X3,X4]; Y=[Y1,Y2,Y3,Y4]; 用函数plot (X,,Y )画出凸轮的轮廓曲线; 用plot (J,S )函数位移S 的曲线; 对于速度曲线V-t 和加速度曲线a-t ,

矩量法matlab程序设计实例

矩量法m atla b程序设计实例: Ha llen 方程求对称振子天线 一、条件与计算目标 已知: 对称振子天线长为L,半径为a ,且天线长度与波长得关系为,,设,半径a=0、0000001,因此波数为。 目标: 用H all en 方程算出半波振子、全波振子以及不同值得对应参数值。 求:(1)电流分布 (2)E 面方向图 (二维),H 面方向图(二维),半波振子空间方向性图(三维) 二、对称振子放置图 图1 半波振子得电流 分布 半波振子天线平行于z 轴放置,在x轴与y轴上得分量都为零,坐标选取方式有两种形式,一般选取图1得空间放置方 式。图1给出了天线得电流分布情况,由图可知,当天线很细时,电流分布近似正弦分布。 三、Ha llen 方程 得解题思路 ()()()()2 1 ' ' ' ' 12,cos sin sin 'z z i z z z z i z k z G z z dz c kz c kz E k z z dz j ωμ'++=-?? 对于中心馈电得偶极子,Hallen 方程为 ()22'1222 ('),'cos sin sin ,2L L i L L V i z G z z dz c kz c kz k z z j η + -- ++= <<+? 脉冲函数展开与点选配,得到 ()1121 ,''cos sin sin ,1,2,,2n n N z i n m m m m z n V I G z z dz c kz c kz k z m N j η +''=++= =???∑? 上式可以写成 矩阵形式为 四、结果与分析 (1)电流分布

机械原理---尖底-滚子直动从动件盘形凸轮机构设计

软件研制:重庆大学机械基础实验中心、机械原理国家精品课程凸轮机构设计 尖底-滚子直动从动件盘形凸轮机构设计 1. 凸轮基本参数 基圆半径rb=45.000 mm 偏距e=10.000 mm 滚子半径rt=20.000 mm 凸轮转速n=500.000 rpm 刀具半径rd=10.000 mm 内包络 2. 运动规律选择 推程运动规律:正弦加速度回程运动规律:余弦加速度 3. 运动规律参数 行程h=40.000 mm 推程角Φ1=120.000° 远停角Φ2=90.000°回程角Φ3=90.000° 近停角Φ4=60° 从动件运动规律线图 第1页

软件研制:重庆大学机械基础实验中心、机械原理国家精品课程凸轮机构设计 ----- 从动件运动规律----- Φ(°)位移S(mm)速度V(m/S)加速度a(m/S2)跃度j(m/S3) 000 00.000 0.000 0000.00 24674.0 005 00.019 0.034 0040.66 23833.3 010 00.150 0.134 0078.54 21368.3 015 00.498 0.293 0111.07 17447.2 020 01.153 0.500 0136.03 12337.0 025 02.184 0.741 0151.73 6386.1 030 03.634 1.000 0157.08 0.0 035 05.517 1.259 0151.73 -6386.1 040 07.820 1.500 0136.03 -12337.0 045 10.498 1.707 0111.07 -17447.2 第2页

相关文档
相关文档 最新文档