文档库 最新最全的文档下载
当前位置:文档库 › 基于TM影像提取城区

基于TM影像提取城区

基于TM影像提取城区
基于TM影像提取城区

基于TM影像提取城市区域提取说明

Landsat5影像条带号124、036;

Landsat5影像TM3、TM4、TM5波段分别为红、中红、近红;

Landsat5影像

图2 影像提取流程

信息提取解释

归一化植被指数(NDVI)可以间接表达地表植被的覆盖。利用TM 影像提取NDVI 的公式为:

TM3) + /(TM4TM3) - (TM4= NDVI

归一化裸露植被指数(NBVI)可以很好的反映出地表面的裸露程度。利用TM 影像提取NDBI 的公式为:

TM4) + TM5 /(TM4) - TM5 (= NDBI

一般来说,NDVI<0表示裸地和水体。将NDVI 二值化处理。小于0的区域用1表示。大于0用0表示。NDBI>0表示城市建设区域和低密度植被覆盖的裸地。将NDBI 大于0的区域赋值为1,小于0的区域赋为0.然后再进行栅格计算,将二值化后的NDVI 和NDBI 相乘,值为1的区域即为城市建设用地。地物二值化处理表格如下:

表1

部分地物二值化处理表

建设用地

水体 低植被覆盖区

NDVI

1

1

NDBI 1 0 1

NDVI*NDBI 1 0 0

阈值改进

考虑到影像成像时间处在春夏季,低密度植分类被容易混淆,因此可以通过设置分类的阈值来改进提取区域的精度。根据精度需要,将NDVI的阈值设为0.1,即原值在0~0.1的范围内二值化后值为1,其余为0。设置NDBI的阈值为-0.1,即原值在-0.1~1的范围内二值化后值为1,其余为0。

城市区域提取成果展示

根据指数提取方法,2006年建设用地提取结果如下图:

图3 阈值为0,提取城市区域

图4 NDVI阈值为0.1,NDBI阈值为-0.1

图5 不同阈值提取结果对比

图3、图4中,白色区域表示城市区域,图3表示阈值为0时,提取城市区域成果。图4表示NDVI阈值为0.1,NDBI阈值为-0.1时城市区域提取成果。图5为不同阈值提取成果叠加。

改进与总结

对比图3、4、5发现,设置阈值的不同对结果的重要影响。建议实际研究中修改阈值,做精度评价,客观选择阈值;图3中部分道路信息清晰可见。但提取结果与实际城区任有很大差别;图4中将部分水体裸地纳入城区,可以用归一化水体指数进一步修正。

该方法克服了单一NDBI指数提取信息,排除了监督分类的主观干扰,效果客观可信。但提取阈值较难把握,需反复改进。提取成果影像仅能做参考,不能

全面代表实际面积。

Landsat-TM-影像处理最完整流程

一. 界面系统介绍 1. 主菜单:菜单项,Tool、Classification、Tranform、Spectral实 习所涉及的(粗略介绍) 2. Help 工具的使用 3. 主菜单设置(preferences):内存设置 二. 文件的存取与显示 1.图像显示 由一组三个不同的图像窗口组成:主图像窗口、滚动窗口、缩放窗口。 1)主图像Image窗口:(400*400)100%显示(全分辨率显示)scroll的方框,可 交互式分析、查询信息。主图像窗口内的功能菜单:在主图像窗口内点击鼠标右键, 切换隐藏子菜单的开启和关闭。该"Functions" 菜单控制所有的ENVI交互显示功能,这包括:图像链接和动态覆盖;空间和波谱剖面图;对比度拉伸;彩色制图;诸如ROI 的限定、光标位置和值、散点图和表面图等交互特征;诸如注记、网格、图像等值线 和矢量层等的覆盖(叠置);动画以及显示特征。 2)滚动Scroll窗口:全局,重采样(降低分辨率)显示一幅图像。只有要显示的图像比主图像窗口能显示的图象大时,才会出现滚动窗口。滚动窗口位置和大小最初在 envi.cfg 文件中被设置并且可以被修改。 3)缩放Zoom窗口:(200*200)显示image的方框。缩放系数(用户自定义)出现在 窗口标题栏的括号中。 2.图像的头文件资料的获取和编辑 ENVI:File>>Edit ENVI Header,选择相应的文件。 从Header Info 对话框里,你可以点击Edit Attributes 下拉菜单中的选项,调用 编辑特定文件头参数的独立对话框。这些参数包括波段名、波长、地图信息等。3.图像的存取 File > Open Image File. 当你打开任何文件,可用波段列表(ABL)自动地出现。 ABL列出该图像文件的所有波段,并允许你显示灰阶和彩色图像、启动新的显示窗口、 打开新文件、关闭文件,以及设置显示边框。 要选择当前活动显示,请按以下步骤: 从ABL(Available Bands List)内,点击“Display #X”按钮菜单(其中“X” 是与显示窗口标题栏内数字相对应的数字),再从列表中选择所需要的显示。 要开始一个新的显示,从按钮菜单选择“New Display”。

遥感影像融合处理方法

遥感影像融合处理方法 摘要:本文介绍了遥感影像数据融合技术,并给出了融合的一些基本理论、融合处理一般步骤以及常用融合处理方法,最后简要描述了融合评价的方式方法等。 关键词:遥感影像融合融合评价 1、前言 将高分辨率的全色遥感影像和低分辨率的多光谱遥感影像进行融合,获得色彩信息丰富且分辨率高的遥感融合影像的过程,成为遥感影像融合。全色影像一般具有较高空间分辨率,多光谱影像光谱信息较丰富,为提高多光谱影像的空间分辨率,可以将全色影像融合进多光谱影像。通过影像融合既可以提高多光谱影像空间分辨率,又能保留其多光谱特性。 2、遥感影像融合一般步骤 遥感影像信息融合一般流程主要分为两个阶段:图像预处理,图像融合变换。 图像预处理主要包括:几何校正及影像配准。几何校正主要在于去除透视收缩、阴影等地形因素以及卫星扰动、天气变化、大气散射等随机因素对成像结果一致性的影响;影像配准的目的在于消除由不同传感器得到的影像在拍摄角度、时相及分辨率等方面的差异。 3 常用融合方式 3.1 IHS融合 IHS(亮度I、色度H、饱和度S)变换就是将影像从RGB彩色空间变换到IHS空间来实现影像融合的一种方法。由光学、热红外和雷达(微波)等方式得到的不同波段遥感数据,合成的RGB颜色空间是一个对物体颜色属性描述系统,而IHS色度空间提取出物体的亮度、色度、饱和度,它们分别对应每个波段的平均辐射强度、数据向量和的方向及其等量数据的大小。RGB颜色空间和IHS 色度空间有着精确的转换关系。IHS变换法只能用三个波段的多光谱影像融合和全色影像融合。 3.2 小波融合 小波变换,基于遥感影像的频域分析进行的,由于同一地区不同类型的影像,低频部分差别不大,而高频部分相差很大,通过小波变换对变换区实现分频,在分频基础上进行遥感影像的融合,常用于雷达影像SAR与TM影像的融合。

ArcGIS方法利用到路面提取道路中心线的方法

A r c G I S方法-利用到路面提取道路中心线的方法利用到路面提取道路中心线的方法在利用GIS制图时,需要经常跟数据打交道。很多初级的制图人员都存在一种惯性思路,以为数据精度越高,出图的效果就越好。这是错误的观点。假如现在需要制作1:1w的地图,但手头上却只有1:500的地形图,数据精度虽然很高,但却无法在小比例尺下显示出来。回到主题上,1:500的数据,大多数道路都是以面状显示。由于其精度高,有些数据甚至是不带线道路图层的,而在1w的地图下,道路以线状表达才是符合要求的。所以,这就需要涉及到地图制图的一个常规工作—地图缩编。本文主要介绍如何从到路面直接提取出道路中心线,从而辅助小比例尺地图的制作。 由于面状数据一般都是不规则的,所以很难从其提取中心线,一般的GIS软件也没提供直接提取的工具。ArcGIS里面虽然也有一些工具可以辅助一下处理,例如在制图工具箱里面有一个提取中心线的工具,但这个工具的作用是通过道路边线(双线)提取中心线。也有人说ArcGIS里面同样是提供面转线工具,先用工具转一道再提取不就行了吗?可是问题来了,面转线工具传出来的数据是封闭线,而不是道路边线,提取中心线工具依然是不可用,除非在每个路面图形打断两端的封闭,不然无法进行提取,恰好打断工作又是非常的巨大。因此,该方法还是不可用。 为了解决这个问题,那就是ArcScan扩展模块。提到ArcScan扩展,很多专业人员第一时间反应是这只是个栅格矢量化工具,跟当前讨论的中心线提取似乎没有任何关系。只要深入了解ArcScan扩展的具体细节,我们不难发现其自动矢量化里面可以提取面要素和中心线,利用这一特性,我们就可以曲线去完成该任务了。 先来说说总体思路:将路面(矢量面数据)转化为栅格数据,因为ArcScan只能对栅格数据进行处理,由于是从矢量转为栅格而非扫描,栅格质量一般会非常好;通过二值化栅格

高分辨率遥感影像中提取道路网的新方法设计

目录 1 引言 (3) 2 对遥感的认识 (4) 2.1遥感的发展 (4) 2.2遥感的分类 (4) 2.3遥感影像道路提取的定义 (6) 2.4遥感影像矢量化 (7) 2.5遥感影像提取道路的特征性 (7) 2.6遥感影像处理过程 (8) 2.7遥感影像道路网提取的过程 (8) 3 高分辨率遥感影像中道路网提取划分 (9) 4 提取道路的方法汇总 (9) 4.1数学形态学方法提取道路影像 (9) 4.2平行线法提取道路影像 (10) 4.3模型法提取道路影像 (10) 4.4滤波法提取道路影像 (11) 4.5辐度和波普角法提取道路影像 (11) 4.6水平集函数提取道路影像 (12) 4.7变换系数非抽样方法提取道路影像 (12) 4.8其他方法 (12) 5 新的方法 (13) 5.1思路和设计过程 (13) 5.2成果比较 (16) 5.3结论 (18) 6 结束语 (19) 致谢 (20) 参考文献 (21)

高分辨率遥感影像中提取道路网的新方法设计 摘要 高分辨率遥感影像中道路网的提取是地理信息数字化和网络化的需要。借助已有的数据和成果,介绍了高分辨率遥感影像上道路网提取的方法和思路步骤,从提取要素层次、建模方法、中间处理手段的角度,对现有的道路网提取方法进行了分析,最后指出了在高分辨率遥感影像道路网提取方法中,所遇到的问题比如:要解决的遮挡、地物复杂等问题。对于已有的技术和方法,提出了一种新的思路,即:运用光的三原色红光、绿光、蓝光,能搭配成其他光色的原理。用两三种相同底片不同成像方法生成新的影像。之后进行了对比和总结。 关键词:高分辨率/遥感影像/三原色/道路网提取

基于Landsat-TM影像的专题信息提取

基于Landsat-TM影像的专题信息提取摘要:本文以沈阳地区为研究区,利用光谱信息提取水体、植被,采用基于灰度共生矩阵的纹理量的分类法,通过TM5波段提取灰度共生矩阵和灰度联合矩阵,计算并提取最能反映类别差异的纹理量值将光谱信息混淆的水田、旱田、居民地用分离,得到最终的分类结果。结果表明:将纹理特征应用于图像分类中可区分光谱混淆的地类,光谱与纹理特征结合得到的分类精度要高于单纯光谱的分类精度。 关键词:遥感影像;光谱特征;纹理特征;灰度共生矩阵;分层提取;土地利用 Abstract:Based on the study of shenyang area for using spectral information extraction,water,vegetation,based on gray symbiotic matrix of the texture classification,through the TM5 band extraction graylevel co-occurrence matrix and gray,and joint matrix extraction can reflect the differences between vector-valued texture category will confuse the paddy fields,spectral information structure,separation,with residents of the final results of the classification.Results show that: the texture characteristics will be applied to image classification can distinguish the confusion of spectral spectrum and texture feature combination,the classification accuracy than pure spectral classification accuracy. Key words:remote sensing image;spectrum feature;texture feature;text gray-level co-occurrence matrix;layered extraction;land-use 引言 遥感图像信息专题特征的提取,需要对TM图像的光谱信息和纹理信息进行综合分析,以达到提高影像分类精度的目的[1]。在自然资源调查中,遥感图像已成为重要的空间数据源,其中TM图像信息是进行土地利用/覆盖变化动态监测的重要依据。常规提取TM图像信息主要是利用影像的光谱分辨率进行的,难以正确区分光谱易混淆的地物,例如菜地与其他耕地类型。 提取TM图像中易混淆地物信息,可以充分利用影像的空间分辨率及影像上丰富的纹理信为了息来完成信息提取。纹理分析方法在许多领域都有重要的应用,吴高洪等[2]为了提高纹理图像分割的边缘准确性和区域一致性以及降低分割错误

ENVI中的融合方法

ENVI下的图像融合方法 图像融合是将低空间分辨率的多光谱影像或高光谱数据与高空间分辨率的单波段影像重采样生成成一副高分辨率多光谱影像遥感的图像处理技术,使得处理后的影像既有较高的空间分辨率,又具有多光谱特征。图像融合的关键是融合前两幅图像的精确配准以及处理过程中融合方法的选择。只有将两幅融合图像进行精确配准,才可能得到满意的结果。对于融合方法的选择,取决于被融合图像的特征以及融合目的。 ENVI中提供融合方法有: ?HSV变换 ?Brovey变换 这两种方法要求数据具有地理参考或者具有相同的尺寸大小。RGB输入波段必须为无符号8bit数据或者从打开的彩色Display中选择。 这两种操作方法基本类似,下面介绍Brovey变换操作过程。 (1)打开融合的两个文件,将低分辨率多光谱图像显示在Display中。 (2)选择主菜单-> Transform -> Image Sharpening->Color Normalized (Brovey),在Select Input RGB对话框中,有两种选择方式:从可用波段列表中和从Display窗口中,前者要求波段必须为无符号8bit。 (3)选择Display窗口中选择RGB,单击OK。 (4) Color Normalized (Brovey)输出面板中,选择重采样方式和输入文件路径及文件名,点击OK输出结果。 对于多光谱影像,ENVI利用以下融合技术: ?Gram-Schmidt ?主成分(PC)变换 ?color normalized (CN)变换 ?Pan sharpening 这四种方法中,Gram-Schmidt法能保持融合前后影像波谱信息的一致性,是一种高保真的遥感影像融合方法;color normalized (CN)变换要求数据具有中心波长和FWHM,;Pansharpening融合方法需要在ENVI Zoom中启动,比较适合高分辨率影像,如QuickBird、IKONOS等。 这四种方式操作基本类似,下面介绍参数相对较多的Gram-Schmidt操作过程。 (1)打开融合的两个文件。

ERDAS影像融合操作流程

影象融合流程 影像融合在影象解译模块和雷达影象处理模块中都有,但是雷达模块中的处理效果要相对好一些,下面就两个不同模块中的融合处理流程进行分别介绍。 一、影象解译模块(Interpreter) 1)单击,在弹出的Interpreter菜单中选则Spatial Enhancement (空间增强)弹出Spatial Enhancement菜单,再选择Resolution Merge(分辨率融合)选项。 弹出对话框如下

在Resolution Merge对话框中需要设置下列参数 (1)确定高分辨率输入文件(high Resolution input file); (2)选择影象波段; (3)确定多光谱输入文件(multispectral input file); (4)定义输出文件; (5)选择融合方法。在分辨率变换中,erdas提供了三种融合方法Principal Component(主成分变换法)、Multipalcative(乘积变换)、Brovey transform(比值变换)。其图象分别如下: Principal Component(主成分变换法)

Multipalcative(乘积变换) Brovey transform(比值变换) (6)选择重采样方法。系统提供了两种重采样方法Nearest Neighbor(邻近像元法)、Bilinbear Interpolation(二次线形内插)和Cubic Convolution(立方卷积)。其中 以Cubic Convolution方法最为平滑。 (7)确定Output Options输出图象选项。选择Lgnore Zero Stats,可以忽略像素值为

城市道路自动提取

高空间分辨率影像城市道路信息自动提取 为了更好的对城市规划和各个探测领域提供更准确的道路信息,城市道路信息的提取成为显而易见的问题,怎么样才能提高城市道路信息提取的效率呢,这里主要研究采用半自动和自动化的高空间分辨率影像城市道路信息提取。 高空间分辨率遥感影像以其丰富的纹理等细节信息, 降低了目视解译难度的同时, 却提高了计算机处理的复杂性高空间分辫率遥感影像道路信息的提取, 尤其是城市道路信息的自动提取, 存在着许多困难本文通过面向对象的影像分割、道路信息与背景信息的闺值分离、道路骨架提取、霍夫变换提纯并矢量化等技术, 实现了高空间分辫率遥感影像城市道路信息的自动提取与识别。 城市道路包括市区各类道路, 包括全市性干道、高速公路、工业区道路和居住区道路, 而不包括广场和停车场用地以及街坊小区内部道路道路的位置、宽度等信息, 是城市地理信息系统中的重要信息, 而通过目视判读和手工勾绘方式费时费力, 因此采用人工智能方式利用计算机自动提取道路信息成为一个主要的发展方向。 随着遥感技术的发展, 特别是高分辨率遥感影像的出现, 遥感卫星影像作为数据源在测图和空间数据库更新中得到了越来越广泛的应用高空间分辨率遥感影像以其丰富的纹理等细节信息, 降低了目视解译难度的同时, 却提高了计算机处理的复杂性高空间分辨率遥感影像道路信息的提取, 尤其是城市道路信息的自动提取, 存在着许多困难现阶段, 高分辨率遥感影像城市道路提取方法尚不成熟, 本文针对这一问题进行了有益的探索。 道路特征自动提取, 包括道路特征的自动识别和几何特征的自动定位, 已发展出各种各样的提取方法, 其基本思路大致是将影像道路的提取分解成四个步骤道路影像的特征增强道路种子点的确定将种子点扩展成线段将线段确认并连接成道路网目前已经能够做到把道路影像从其他地物影像中分割出来甚至能区分道路类型已有的道路提取算法大多都针对不同的影像类别, 即航空影像或卫星遥感影像, 不同的比例尺影像分辨率, 不同区域的影像如城区、乡村或郊区和不同的道路类型, 如乡村路、街道、高速公路、高等级公路等。 主要包括以下几类基于平行线对的道路提取基于二值化和知识的道路提取基于窗口模型特征的道路提取方法近年来的发展趋向于在道路提取中解决特定问题或对某一步骤的方法改进, 并且, 高分辨率米级及以下影像的道路提取以其特有的信息与噪音均丰富而越来越受到关注在高分辨率影像中, 道路被模型化为伸长、延续和近于等宽的区域。 高分辨率遥感影像的结构、形状、纹理和细节等信息异常丰富, 一方面为米级甚至以下的尺度地物信息的提取提供了可能, 另一方面过度的高频信息也对地物类型的识别带来干扰, 使得地物信息更加破碎, 噪音影响更加明显在城市高分辨率遥感影像上,道路常常与同样具有良好线形形状的建筑物信息混合在一起, 使得计算机视觉领域的边缘提取算法无法准确分辨出道路位置信息同时道路上的车辆、建筑物的阴影、天桥等信息为道路信息的噪音, 增加了城市道路信息的提取难度。 面向对象分类是近年来高空间分辨率影像分类的一种有效解决方案面向对象分类法是指首先通过对影像分割, 得到同质像元组成的大小不同的影像对象由于影像对象内部的光

Landsat_TM_组合

波段组landsat 3,2,1 这种RGB组合模拟出一副自然色的图象。有时用于海岸线的研究和烟柱的探测。 4,5,3 用于土壤湿度和植被状况的分析。也很好的用于内陆水体和陆地/水体边界的确定。 4,3,2 红外假色。在植被、农作物、土地利用和湿地分析的遥感方面,这是最常用的波段组合。 7,4,2 土壤和植被湿度内容分析;内陆水体定位。植被显示为绿色的阴影。 5,4,3 城镇和农村土地利用的区分;陆地/水体边界的确定。 4,5,7 探测云,雪和冰(尤其在高维度地区)。 4-3/4+3NDVI-标准差植被指数;TM波段4:3的不同比率被证明在增强不同植被类型对比度方面很有用。 实践应用 3,2,1 普通色图象。适宜于浅海探测作图。 4,3,2 红外色图象。提供中等的空间分辨率。在这种组合中,所有的植被都显示为红色。MultiSpec3-ch.Default。 7,5,4 适宜于湿润地区。提供了最大的空间分辨率。 7,4,2 适宜于温带到干旱地区。提供最大的光谱多样性。 321:真彩色合成,即3、2、1波段分别赋予红、绿、蓝色,则获得自然彩色合成图像,图像的色彩与原地区或景物的实际色彩一致,适合于非遥感应用专业人员使用。432:标准假彩色合成,即4、3、2波段分别赋予红、绿、蓝色,获得图像植被成红色,由于突出表现了植被的特征,应用十分的广泛,而被称为标准假彩色。 举例:卫星遥感图像示蓝藻暴发情况 我们先看一看蓝藻爆发时遥感监测机理。蓝藻暴发时绿色的藻类生物体拌随着白色的泡沫状污染物聚集于水体表面,蓝藻覆盖区的光谱特征与周围湖面有明显差异。由于所含高叶

绿素A的作用,蓝藻区在LandsatTM2波段具有较高的反射率,在TM3波段反射率略降但仍比湖水高,在TM4波段反射率达到最大。因此,在TM4(红)、3(绿)、2(蓝)假彩色合成图像上,蓝藻区呈绯红色,与周围深蓝色、蓝黑色湖水有明显区别。此外,蓝藻暴发聚集受湖流、风向的影响,呈条带延伸,在TM图像上呈条带状结构和絮状纹理,与周围的湖水面也有明显不同。 451:信息量最丰富的组合,TM图像的光波信息具有3~4维结构,其物理含义相当于亮度、绿度、热度和湿度。在TM7个波段光谱图像中,一般第5个波段包含的地物信息最丰富。3个可见光波段(即第1、2、3波段)之间,两个中红外波段(即第4、7波段)之间相关性很高,表明这些波段的信息中有相当大的重复性或者冗余性。第4、6波段较特殊,尤其是第4波段与其他波段的相关性得很低,表明这个波段信息有很大的独立性。计算各种组合的熵值的结果表明,由一个可见光波段、一个中红外波段及第4波段组合而成的彩色合成图像一般具有最丰富的地物信息,其中又常以4,5,3或4,5,1波段的组合为最佳。第7波段只是在探测森林火灾、岩矿蚀变带及土壤粘土矿物类型等方面有特殊的作用。最佳波段组合选出后,要想得到最佳彩色合成图像,还必须考虑赋色问题。人眼最敏感的颜色是绿色,其次是红色、蓝色。因此,应将绿色赋予方差最大的波段。按此原则,采取4、5、3波段分别赋红、绿、蓝色合成的图像,色彩反差明显,层次丰富,而且各类地物的色彩显示规律与常规合成片相似,符合过去常规片的目视判读习惯。例如把4、5两波段的赋色对调一下,即5、4、3分别赋予红、绿、蓝色,则获得近似自然彩色合成图像,适合于非遥感应用专业人员使用。 741:波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。 742:1992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用1:10万TM7、4、2假彩色合成片进行解译,共解译出线性构造1615条,环形影像481处,并在总结了构造蚀变岩型、石英脉型、火山岩型典型矿床的遥感影像特征及成矿模式的基础上,对全区进厅成矿预测,圈定金银A类成矿远景区2处,B类4处,C类5处。为该区优选找矿靶区提供遥感依据。 743:我国利用美国的陆地卫星专题制图仪图像成功地监测了大兴安岭林火及灾后变化。这是因为TM7波段(2.08-2.35微米)对温度变化敏感;TM4、TM3波段则分别属于红外光、红光区,能反映植被的最佳波段,并有减少烟雾影响的功能;同时TM7、TM4、TM3(分别赋予红、绿、蓝色)的彩色合成图的色调接近自然彩色,故可通过TM743彩色合成图的分析来指挥林火蔓延与控制和灾后林木的恢复状况。 754:对不同时期湖泊水位的变化,也可采用不同波段,如用陆地卫星MSS7, MSS5,MSS4合成的标准假彩色图像中的蓝色、深蓝色等不同层次的颜色得以区别。从而可用作分析湖泊水位变化的地理规律。

道路提取

道路信息自动化和半自动提取研究综述 姓名:****** 学号:****** 专业:地图学与地理信息系统 学院:*******

道路信息自动化和半自动提取研究综述 摘要:道路信息作为一种重要的基础地理信息,可以作为提取其他地物目标的线索和参考系,具有很强的现实意义。从遥感影像自动提取人工地物,特别是线状地物(主要是道路),不仅是摄影测量与遥感领域的难题,也是计算机视觉与图像理解研究的重点之一。本文首先阐述了道路提取的基本思想以及与道路提取有关的背景知识,然后介绍了国内外比较成熟的理论与技术,最后总结并展望了道路提取的发展趋势。 关键词:道路提取,自动化道路提取,半自动道路提取 Abstract:Road information as a kind of important basic geographic information, and other features can be extracted the clues and reference of the target has a strong practical significance. Automatic extraction of artificial from remote sensing image features, especially linear feature (mainly road), not only is a difficult problem in the field of photogrammetry and remote sensing, is also the emphasis of research in computer vision and image understanding. Firstly, this paper expounds the basic ideas and road extraction road extraction related background knowledge, and then more mature theory and technology at home and abroad is introduced, finally summarized and prospected the development trend of road extraction. Key words: road feature extraction; automatic road extraction; semi-automatic road extraction 随着实时、全天候、大面积获得地面高分辨率、高精度、多时相、多光谱的数字影像成为可能。而又作为获得地面几何与物理信息的主要信息源,遥感影像解译或者说信息的自动提取是摄影测量与遥感以及计算机视觉等领域的热门课题,有着十分重要的理论和意义。道路不仅是一种重要的基础地理信息,而且可以作为提取其他地物目标的线索和参考系。影像上的道路虽然比其他地物更突出,但实现起来却很困难[1]。这主要是因为目前计算机人工智能还远未达到完全自动地从数字影像中理解与提取地物信息的水平[2]。但是在道路提取方面,国内外还是涌现出了许多重要理论与技术。这里主要是对道路信息提取做了一个总体概述,并展望了其发展趋势。 1 道路特征及提取思想 1.1道路的基本特征 影像特征是由于景物的物理与几何特性使影像中局部区域的灰度产生明显变化而形成的[3]。在高分辨率遥感图像上,图像分辨率的提高使得图像细节特征越来越丰富。欲得到理想的道路提取效果,必须充分了解道路在遥感影像上的基本特征。有关道路的影像特征描述很多,Vosselman和Kneeht等将道路描述为几何(Geometries)特性、辐射度(photometries)特性、拓扑(Topologies)特性、功能(Functional)特性和关联(Contextual)特性,其中几何特性、辐射度特性和拓扑特性属于中低级知识,功能特性和关联特性属于高

Landsat卫星的TM ETM各波段介绍

Landsat卫星的TM/ETM各波段介绍 北京揽宇方圆信息技术有限公司拥有WorldView、QuickBird、IKONOS、GeoEye、SPOT、PLEIADES、高分一号、高分二号、资源三号等世界上最高分辨率卫星影像的代理权,能够为户提供全天候、全覆盖、多分辨率、多尺度的影像产品。整合最丰富的遥感影像数据资源,为用户提供最专业的遥感影像数据服务,北京揽宇方圆致力成为中国遥感影像数据服务第一品牌。 一、波段介绍 1.TM1 0.45-0.52um,蓝波段 对水体穿透强, 该波段位于水体衰减系数最小,散射最弱的部位(0.45—0.55um),对水体的穿透力最大,可获得更多水下信息,用于判断水深,浅海水下地形,水体浑浊度,沿岸水,地表水等; 能够反射浅水水下特征,区分土壤和植被、编制森林类型图、区分人造地物类型,分析土地利用。 对叶绿素与叶色素反映敏感,有助于判别水深及水中叶绿素分布以及水中是否有水华等。 2.TM2 0.52-0.60um,绿波段 对植物的绿反射敏感该波段位于健康绿色植物的绿色反射率(0.54—-0.55um)附近; 对健康茂盛植物的反射敏感, 主要观测植被在绿波段中的反射峰值,这一波段位于叶绿素的两个吸收带之间,利用这一波段增强鉴别植被的能力 对绿的穿透力强, 探测健康植被绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种,植被类型和评估作物长势 对水体有一定的穿透力,可反映水下特征,水体浑浊度,水下地形,沙洲,沿岸沙地等。. 可区分人造地物类型, 3.TM3 0.62-0.69um ,红波段 对水中悬浮泥沙反映敏感。该波段位于含沙浓度不同的水体辐射峰值(0.58—-0.68um)附近,对水中悬浮泥沙反映敏感。 叶绿素的主要吸收波段, 能增强植被覆盖与无植被覆盖之间的反差,亦能增强同类植被的反差,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率, 测量植物绿色素吸收率,并以此进行植物分类; 此外其信息量大,广泛用于对裸露地表,植被,岩性,地层,构造,地貌等为可见光最佳波段; 可区分人造地物类型 4 .TM4 0.76-0.96UM 近红外波段, 对绿色植物类别差异最敏感,为植物通用波段,用于牧师调查,作物长势测量, 处于水体强吸收区,水体轮廓清晰,用于勾勒水体,绘制水体边界、探测水中生物的含量和

三种图像融合方法实际操作与分析

摘要:介绍了遥感影像三种常用的图像融合方式。进行实验,对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像,简要分析比较三种图像融合方式的各自特点,择出本次实验的最佳融合方式。 关键字:遥感影像;图像融合;主成分变换;乘积变换;比值变换;ERDAS IMAGINE 1. 引言 由于技术条件的限制和工作原理的不同,任何来自单一传感器的信息都只能反映目标的某一个或几个方面的特征,而不能反应出全部特征。因此,与单源遥感影像数据相比,多源遥感影像数据既具有重要的互补性,也存在冗余性。为了能更准确地识别目标,必须把各具特色的多源遥感数据相互结合起来,利用融合技术,针对性地去除无用信息,消除冗余,大幅度减少数据处理量,提高数据处理效率;同时,必须将海量多源数据中的有用信息集中起来,融合在一起,从多源数据中提取比单源数据更丰富、更可靠、更有用的信息,进行各种信息特征的互补,发挥各自的优势,充分发挥遥感技术的作用。[1] 在多源遥感图像融合中,针对同一对象不同的融合方法可以得到不同的融合结果,即可以得到不同的融合图像。高空间分辨率遥感影像和高光谱遥感影像的融合旨在生成具有高空间分辨率和高光谱分辨率特性的遥感影像,融合方法的选择取决于融合影像的应用,但迄今还没有普适的融合算法能够满足所有的应用目的,这也意味着融合影像质量评价应该与具体应用相联系。[2] 此次融合操作实验是用三种不同的融合方式(主成分变换融合,乘积变换融合,比值变换融合),对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多

光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像。 2. 源文件 1 、 imagerycolor.tif ,SPOT图像,分辨率10米,有红、绿、两个红外共四个波段。 2 、imagery-5m.tif ,SPOT图像,分辨率5米。 3. 软件选择 在常用的四种遥感图像处理软件中,PCI适合用于影像制图,ENVI在针对像元处理的信息提取中功能最强大,ER Mapper对于处理高分辨率影像效果较好,而ERDAS IMAGINE的数据融合效果最好。[3] ERDAS IMAGINE是美国Leica公司开发的遥感图像处理系统。它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具。 2012年5月1日,鹰图发布最新版本的ERDAS IMAGINE,所有ERDAS 2011软件用户都可以从官方网站上下载最新版本 ERDAS IMAGINE 11.0.5. 新版本包括之前2011服务包的一些改变。相比之前的版本,新版本增加了更多ERDAS IMAGINE和GeoMedia之间的在线联接、提供了更为丰富的图像和GIS产品。用户使用一个单一的产品,就可以轻易地把两个产品结合起来构建一个更大、更清

基于Hough变换的道路边界提取方法

基于Hough变换的道路边界提取方法 摘要:本文利用 matlab7.0软件开发平台工具,采用hough变换等技术手段在图片上进行线性构造信息提取,为今后的研究部署工作提供参考。但hough变换存在一定的局限性,如对影像分割依赖性大、受非道路因素影响大等。本文首先利用道路种子点处的光谱信息进行道路区域的生长, 提取光谱信息一致的道路区域, 得到一个包含道路信息的二值影像,然后对此二值影像进行滤波,在提取出的道路条状区域的基础上, 根据道路具有的形状特点, 利用形态学进行细化和一定次数的形态修剪处理, 得到单像素宽 的道路中心线信息。最后对图像进行基于hough变换的线性特征提取,文章对高分辨率航空遥感影像进行了实验验证了该方法的有效性[1-3]。 关键词:线性特征提取,hough变换,matlab a road edge detection algorithm based on the hough transform qiu zhiweili yan (henan university of urban construction, pingdingshan 467036, china) aqiuzhiwei-2008@https://www.wendangku.net/doc/9015729245.html,, bliyan0502@https://www.wendangku.net/doc/9015729245.html, abstract: by using the road seed point spectrum information in this paper firstly, the relevant road information can be extracted from the spectral information consistent with the road area, road information including two value image can be

TM影像各波段介绍

TM影像各波段介绍 1.TM1 0.45-0.52um,蓝波段,对水体穿透强,对叶绿素与叶色素反映敏感,有助于判别水深及水中叶绿素分布以及水中是否有水华等. 2.TM2 0.52-0.60um,绿波段,对健康茂盛植物的反射敏感,对力的穿透力强,用于探测健康植物绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种和反映水下特征. 3.TM3 0.62-0.69UM ,红波段,叶绿素的主要吸收波段,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率,其信息量大多为可见光最佳波段,广泛用于地貌,岩性,土壤,植被,水中泥沙等方面. 4 .TM4 0.76-0.96UM 近红外波段,对绿色植物类别差异最敏感,为植物通用波段,用于牧师调查,作物长势测量,水域测量. 5.TM5 1.55-1.75UM,中红外波段,处于水的吸收波段,一般1.4-1.9UM内反映含水量,用于土壤湿度植物含水量调查,水分善研究,作物长势分析,从而提高了区分不同作用长势的能力.易于反映云与雪. 6.TM6 1.04-1.25UM热红外波段,可以根据辐射响应的差别,区分农林覆盖长势,差别表层湿度,水体岩石,以及监测与人类活动有关的热特征,进行热制图. 7.TM7 2.08-3.35UM,中红外波段,为地质学家追加波段,处于水的强吸收带,水体呈黑色,可用于区分主要岩石类型,岩石的热蚀度,探测与交代岩石有关的粘土矿物. 二.类型提取: 1.城市与乡镇的提取:TM1+TM7+TM3+TM5+TM6+TM2-TM4 2.乡镇与村落:TM1+TM2+TM3+TM6+TM7-TM4-TM5 3.河流的提取:TM5+TM6+TM7-TM1-TM2-TM4 4.道路的提取:TM6-(TM1+TM2+TM3+TM4+TM5+TM7) 三.光谱差异 TM1居民地与河流菜地不易分开. TM2居民地与河流菜地不易分 TM3乡村与菜地不易分 TM4农田与道路不易分,乡镇,道路,河滩易浑. TM5县城与农田不易分 TM6村庄与河流易混.

像素级图像融合

毕业设计(论文)设计(论文)题目像素级图像融合方法 姓名:李桂楠 学号: 2 学院:机电与信息工程学院 专业:自动化 年级2011级 指导教师:孙甲冰

目录 摘要 (4) Abstract (5) 第一章绪论 (1) 1.1课题背景及来源 (1) 1.2图像融合的理论基础和研究现状 (1) 1.3图像融合的应用 (1) 1.4图像融合的分类 (1) 第二章像素级图像融合的预处理 (3) 2.1图像增强 (3) 2.2图像校正 (6) 2.3图像配准 (6) 第三章像素级图像融合的方法综述 (8) 3.1加权平均图像融合方法 (8) 3.2 HIS空间图像融合方法 (8) 3.3 主成分分析图像融合方法 (8) 3.4 伪彩色图像融合方法 (9) 第四章基于小波变换的像素级图像融合概述 (10) 4.1 小波变换的基本理论 (10) 4.2 基于小波变换的图像融合 (11) 4.3基于小波变换的图像融合性能分析 (12)

第五章像素级图像融合方法的研究总结与展望 (19) 参考文献 (20) 谢辞.................................. 错误!未定义书签。

摘要 近些年,随着科学技术的飞速发展,各种各样的图像传感器出现在人们的视野前,这种样式繁多的图像传感器在不同的成像原理和不同的工作环境下具有不同功能。而因为多传感器的不断涌现,图像融合技术也越来越多的被应用于医学、勘探、海洋资源开发、生物学科等领域。 图像融合主要有像素级、决策级和特征级三个层次,而像素级图像融合作为基础能为其他层次的融合提供更准确、全面、可依赖的图像信息。本文的主要工作是针对像素级的图像融合所展开的。 关键词 图像融合理论基础、加权平均、图像融合方法、小波变换、

Landsat陆地卫星TM遥感影像数据介绍

Landsat陆地卫星遥感影像数据 简介 “地球资源技术卫星”计划最早始于1967年,美国国家航空与航天局(NASA)受早期气象卫星和载人宇宙飞船所提供的地球资源观测的鼓舞,开始在理论上进行地球资源技术卫星系列的可行性研究。1972年7月23日,第一颗陆地卫星(Landsat_1)成功发射,后来发射的这一系列卫星都带有陆地卫星(Landsat)的名称。到1999年,共成功发射了六颗陆地卫星,它们分别命名为陆地卫星1到陆地卫星5以及陆地卫星7,其中陆地卫星6的发射失败了。 Landsat陆地卫星系列遥感影像数据覆盖范围为北纬83o到南纬83o之间的所有陆地区域,数据更新周期为16天(Landsat 1~3的周期为18天),空间分辨率为30米(RBV和MSS传感器的空间分辨率为80米)。目前,中国区域内的Landsat陆地卫星系列遥感影像数据(见图1)可以通过中国科学院计算机网络信息中心国际科学数据服务平台 QQ电子网免费获得(https://www.wendangku.net/doc/9015729245.html,)。 Landsat 陆地卫星在波段的设计上,充分考虑了水、植物、土壤、岩石等不同地物在波段反射率敏感度上的差异,从而有效地扩充了遥感影像数据的应用范围。在基于Landsat遥感影像数据的一系列应用中,计算植被指数和针对Landsat ETM off影像的条带修复为最常用同时也是最为基础的两个应用。因此,中国科学院计算机网络信息中心基于国际科学数据服务平台,提供了1)基于Landsat 数据的多种植被指数提取。2)对Landsat ETM SLC-off影像数据的条带修复。 图1 Landsat 遥感影像中国区示意图 数据特征 (1)数据基本特征 Landsat陆地卫星包含了五种类型的传感器,分别是反束光摄像机(RBV),多光谱扫描仪(MSS),专题成像仪(TM),增强专题成像仪(ETM)以及增强专题成像仪+(ETM+),各传感器拍摄影像的基本特征如下:

ERDAS 影像融合方法汇总(chimneyqin)

ERDAS 影像融合方法汇总 影像融合是指将多源信道所采集到的关于同一目标的影像数据经过影像处理和计算机技术等,最大限度的提取各自信道中的有利信息,最后综合成高质量的影像,以提高影像信息的利用率、改善计算机解译精度和可靠性、提升原始影像的空间分辨率和光谱分辨率,利于监测。 ERDAS IMAGINE 提供多种影像融合方法,且支持带RPC模型的影像融合处理。 1、 (1 4个波段(蓝/ 像也为 Step4: 利用低通滤波器(5×5)对多光谱影像进行滤波处理,输出多光谱滤波影像。 Step5: 利用相减法对全色锐化影像、全色滤波影像进行相减处理,并将全色锐化影像按照权重融合到多光谱滤波影像各个波段,输出新多光谱影像。 (2)参数说明

Input Sensor Type 待融合影像传感器类型,分为Quickbird、IKONOS、Format三种传感器。输入影像要求:多光谱和全色分辨率比为4:1、同时获取、为同一个传感器,全色为单波段,多光谱为4波段。 Sharpening Filter Center Value3×3锐化卷积窗口中心值,其他值都为-1,默认值根据传感器变化,范围值为11、14、17、20、23、1000,小的中心值会产生更好的锐化效果。一般来说,大分辨率影像锐化程度要求低,小分辨率影像锐化程度要求高,若全色影像已经经过锐化处理,此处选择1000。 Pan Contribution Weight融合时全色图像所占的比重(权重),范围为0.7-1.3,默认值根据传感器变化,小的锐化值会产生更好的锐化效果。 Create image of subset area根据子区的坐标来定义融合影像范围。 Create image of full area输出所有区域的融合影像,这个范围是全色和多光谱影像的交集(intersect)。该项勾选时才可设置融合影像成果名称和存放路径。 Null Value 设置输出图像空值的数值。 Mask input Null Values 勾选该项时,可设置输出图像空值。

遥感影像中城市道路的提取

遥感影像中城市道路的提取 施海亮 (河海大学土木工程学院 江苏 南京 210098) 摘 要:阐述了城市遥感影像中道路提取的特点,以及当今道路特征提取的一些研究成果。根据城市道路的特点,设计了根据植被指数先提取道路两旁的植被方法,通过面积阈值和形状指数阈值剔除图斑,以及应用数学形态学,对图像进行细化,可以提取道路目标。实验结果证明这一方法的正确性。 关键字:道路提取,归一化植被指数,数学形态学,细化 1.引言 在遥感影像处理中,特征提取和模式识别具有重要的地位。特征提取一般可分为三个部分:点特征的提取、线特征的提取和面状特征提取,其中线状特征的提取具有承上启下的作用。在一幅遥感图像中,道路是一种重要的线型地物,因此道路提取具有重要的意义。 ]1[如何提取道路特征现在已经有很多这方面的研究,但都有一定的不足。史文中等人对当今的研究进行了综述,认为根据道路提取的自动化程度,可以分为自动特征提取和半自动特征提取。其中具有代表性的方法有:基于像素与背景的算子模型的道路特征提取、基于树结构的特征判别模型的道路提取、基于最小二乘B 样条曲线的道路提取、基于类与模糊集的道路网提取、基于平行线对的道路提取、基于二值化和知识的道路提取和基于窗口模型特征的道路提取。另外,人工神经网络(ANN )、遗传算法 (GA )、数学形态学(Mathematical Morphology )、次胜者受罚算法(RPCL )、动态规划等一些新方法也应用到了道路提取中,并取得了一定的效果。 ]2[]3[]4[]6][5[本文通过分析城市遥感影像,发现道路两旁一般都有绿化地带,而在遥感影像中,植被的提取比道路提取要容易。可以通过先提取植被使道路信息和其它地物孤立起来,为后续处理提供较好的二值图像。 本文选用的实验图像为南京市鼓楼区某一局部地区的IKONOS 影像(见图

相关文档
相关文档 最新文档