文档库

最新最全的文档下载
当前位置:文档库 > 系统发育树构建方法优劣

系统发育树构建方法优劣

1.邻接法邻接法(neighbor-joiningmethod,NJ)由Saitou和Nei(1987)提出,NJ法是基于最小进化原理经常被使用的一种算法,它不检验所有可能的拓扑结构,能同时给出拓扑结构和分支长度。在重建系统发生树时,它取消了UPGMA法所做的假定,认为在进化分支上,发生趋异的次数可以不同。最近的计算机模拟已表明它是最有效的基于距离数据重建系统树的方法之一。该方法通过确定距离最近(或相邻)的成对分类单位来使系统树的总距离达到最小。它的特点是重建的树相对准确,假设少,计算速度快,只得一棵树。其缺点主要表现在将序列上的所有位点等同对待,且所分析序列的进化距离不能太大。故NJ法适用于进化距离不大,信息位点少的短序列。邻接法在距离建树中经常会用到,而不用理会使用什么样的优化标准。完全解析出的进化树是通过对完全没有解析出的“星型”进化树进行“分解”得到的,分解的步骤是连续不断地在最接近(实际上是最孤立的)的序列对中插入树枝,而保留进化树的终端。于是,最接近的序列对被巩固了,而“星型”进化树被改善了,这个过程将不断重复。这个方法相对而言很快,也就是说,对于一个50个序列的进化树,只需要若干秒甚至更少。

2.最大简约法最大简约法(maximum parsimony method,MP)最早是基于形态特征分类的需要发展起来的,具体的算法有许多不同版本,其中有些已被广泛地应用于分子进化研究中。利用MP方法重建系统发生树,实际上是一个对给定OTUs其所有可能的树进行比较的过程。对某一个可能的树,首先对每个位点祖先序列的核苷酸组成做出推断,然后统计每个位点用来阐明差异的核苷酸最小替换数目。在整个树中,所有信息简约位点最小核苷酸替换数的总和称为树的长度(常青和周开亚,1998)。MP法是一种优化标准,这种标准遵循“奥卡姆剃刀原则(Occam’S Razor principle)”:对数据最好的解释也是最简单的,而最简单的所需要的特别假定也最少。MP法基于进化过程中所需核苷酸(或氨基酸)替代数目最少的假说,对所有可能正确的拓扑结构进行计算并挑选出所需替代数最小的拓扑结构作为最优系统树,也就是通过比较所有可能树,选择其中长度最小的树作为最终的系统发生树,即最大简约树(maximum parsimony tree)。与其他建树方法相比,MP法无需引入处理核苷酸或者氨基酸替代时所必需的假设(替代模型)。同时,MP法对于分析某些特殊的分子数据(如插入序列和插入/缺失)有用。在分析的序列位点上没有回复突变或平行突变,且被检验的序列位点数很大的时候,MP法能够获得正确的(真实)系统树。但MP法推导的树不是唯一的,在分析序列上存在较多的回复突变或平行突变,而被检验的序列位点数又比较少的时候,最大简约法可能会出现建树错误。故MP法适用于序列残基差别小,具有近似变异率,包含信息位点比较多的长序列。

3.最大似然法最大似然法(maximum likelihood method,MI。)是20世纪60年代末期由于对地生物信息学分析实践震波和水声信号等处理的需要而发展起来的一种非线性谱估计方法。最早由凯佩用这种方法对空间阵列接收信号进行频率波数谱估值,后来推广到对时问信号序列的功率谱估值。

最大似然法最早应用于系统发育分析是在对基因频率数据的分析上。其原理是考虑到每个位点出现残基的似然值,将每个位置所有可能出现的残基替换概率进行累加,产生特定位点的似然值。MI。法对所有可能的系统发育树都计算似然函数,似然函数值最大的那棵树即为最可能的系统发育树。利用最大似然法来推断一组序列的系统发生树,需首先确定序列进化的模型,如Jukes—Cantor模型、Kimura二参数模型及一般二参数模型等。在进化模型选择合理的情况下,MI。法是与进化事实吻合最好的建树算法。其缺点是计算强度非常大,极为耗时。