文档库 最新最全的文档下载
当前位置:文档库 › 梯形积分

梯形积分

梯形积分

用梯形法求积分:

分析:n等分积分区间[a,b],每一个小梯型的面积和即近似为f(x)在[a,b]的积分值。即将求积分转化求和。

设计采用梯形法和辛普生法求定积分的程序

河北工业大学计算机软件技术基础(VC)课程设计报告 学院信息工程学院院班级通信101 姓名崔羽飞学号 102117 成绩 __ ____ 一、题目: 设计采用梯形法和辛普生法求定积分的程序 二、设计思路 1、总体设计 1)分析程序的功能 本题目的功能是对梯形法和辛普森法,在不同区间数下计算所得的定积分的值,进行精度比较。 2)系统总体结构: 设计程序的组成模块,简述各模块功能。 该程序共分为以下几个模块 模块一:各函数原型的声明。 模块二:主函数。 模块三:各函数的定义。 包括两个数学函数y1=1+x*x、y2=1+x+x*x+x*x*x的定义和两个函数指针double integralt(double ,double ,int ,double(*f)(double)) double integrals(double ,double ,int ,double(*f)(double)) 的定义。 2、各功能模块的设计:说明各功能模块的实现方法 模块一:对各种函数进行声明。 模块二:求梯形法和辛普森法,在不同区间数下计算所得的定积分的值。 模块三:将各函数写出来。 3、设计中的主要困难及解决方案 在这部分论述设计中遇到的主要困难及解决方案。 1)困难1:函数指针的应用。解决方案:仔细阅读课本,以及与同学之间的讨论,和向老师求助。 2)困难2:将程序分成不同的.cpp文件。解决方案:与同学讨论。 4、你所设计的程序最终完成的功能 1)说明你编制的程序能完成的功能 在数学上求一个函数与x轴在一定范围内所围的面积即求定积分,对梯形法和辛普森法求定积分的比较。 2)准备的测试数据及运行结果

第一题.矩阵法,梯形法积分

梯形法数值积分 A .算法说明: 梯形法数值积分采用的梯形公式是最简单的数值积分公式,函数()f x 在区间[a,b]上计算梯形法数值积分表达式为: ()[()()]2b a b a f x dx f a f b -≈+? 由于用梯形公式来求积分十分粗糙,误差也比较大,后来改进后提出了复合梯形公式:b a h n -=,其中,n 为积分区间划分的个数;h 为积分步长。 在MATLAB 中编程实现的复合梯形公式的函数为:Combine Traprl. 功能:复合梯形公式求函数的数值积分。 调用格式:[I,step]=CombineTraprl(f,a,b,eps). 其中,f 为函数名; a 为积分下限; b 为积分上限; eps 为积分精度; I 为积分值; Step 为积分划分的区间个数 B .流程图

C.复合梯形公式的原程序代码: function[I,step]=CombineTraprl(f,a,b,eps) % 复合梯形公式求函数f在区间[a,b]上的定积分 %函数名:f %积分下限:a %积分上限:b %积分精度:eps %积分值:I %积分划分的子区间个数:step if(nargin==3) eps=1.0e-4; %默认精度为0.0001 end n=1; h=(b-a)/2; I1=0; I2=(subs(sym(f),findsym(sym(f)),a)+subs(sym(f),findsym(sym(f)),b))/h; while abs(I2-I1)>eps n=n+1 h=(b-a)/n; I1=I2; I2=0; for i=0:n-1 %第年n次的复合梯形公式积分 x=a+h*i; %i=0 和n-1时,分别代表积分区间的左右端点 x1=x+h I2=I2+(h/2)*(subs(sym(f),findsym(sym(f)),x)+subs(sym(f),findsym(sym(f)),x1)); end end I=I2; step=n; D.应用举例 复合梯形法求数值积分应用举例,利用复合梯形法计算定积分 dx x ? - 4 221 1 流程图

矩形、梯形法计算定积分的黎曼和

钦州学院数学与计算机科学学院 数 学 实 验 报 告 实验完成日期 2010 年 11 月 5 日 , 第 10 周 , 星期五 成绩等级(五级分制) 评阅教师 评阅日期 年 月 日 数学实验报告填写要求:思路清晰,中间结果和最终结果真实;字迹工整,报告完整。 [实验题目及内容] 实验题目:(1)通过矩形法、梯形法分别计算定积分? ++-= b a x x x f 32.0)(2 的黎曼和; (2)通过10=n ,50=n ,200=n 时黎曼和的值分析两种方法逼近定积分的 速度。 内容:黎曼和逼近定积分值的动态过程演示,可利用几何画板制作 [问题描述](用自己组织的相关数学语言重述现实问题;注意对约定的条件作说明) 将AB 边n 等分,过这些分点作E B '的垂线,将抛物线32.0)(2 ++-=x x x f 和以AB 为边形成的图形分割为n 个直角小梯形或小矩形,求这些小梯形或小矩形面积的和,即可求出定积分? ++-= b a x x x f 32.0)(2 黎曼和即面积。当n 充分大时,直角小梯形或小矩形的 面积之和可近似代替定积分? ++-=b a x x x f 32.0)(2 黎曼和。因此可通过计算梯形或矩形 面积求出定积分? ++-= b a x x x f 32.0)(2 的黎曼和。 定积分dx x f b a ?)(在数值上等于以曲线)(x f y =和三直线0=y 、a x =、b x =所围 成的曲边梯形的面积。解决的办法是分割后再求和:设想将区间],[b a 分为n 个小区间,以每个小区间左端点对应的函数值为高,以小区间的长度为宽,构作n 个梯形或矩形,并以这些小梯形或小矩形的面积的和(即黎曼和)近似代替定积分的面积。当改变参数n 的大小时,随着n 的逐渐增大(并且每个小区间的长度逐渐缩小),黎曼和的值逐渐趋近定积分的值。 [模型建立或思路分析](建立合理,可解释的数学模型,通过公式、表格或图形直观明确地描述模型的结构;无法通过建立模型解决的,给出解题的思路及办法。) 利用几何画板作图:

C语言-用矩形法和梯形法求定积分

一.写一个用矩形法求定积分的函数,求sin(x)在(0,1)上的定积分。 #include #include float jifen(float a,float b) {int i,l; float n=0.001,s=0; //n表示划分的单位宽度,n越小结果越精确,n是矩形的宽 l=(b-a)/n; // l表示有多少个单位宽度 for(i=0;i #include float jifen(float a,float b) {int i,l; float n=0.001,s=0; l=(b-a)/n; for(i=0;i #include jifen(float a,float b,double (*fun)(double)) {int i,l;

最新定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法 教学目的:掌握定积分换元积分法与分部积分法 难点:定积分换元条件的掌握 重点:换元积分法与分部积分法 由牛顿-莱布尼茨公式可知,定积分的计算归结为求被积函数的原函数.在上一章中,我们已知道许多函数的原函数需要用换元法或分部积分法求得,因此,换元积分法与分部积分法对于定积分的计算也是非常重要的.1.定积分换元法 定理假设 (1) 函数?Skip Record If...?在区间?Skip Record If...?上连续; (2) 函数?Skip Record If...?在区间?Skip Record If...?上有连续且不变号的导数; (3) 当?Skip Record If...?在?Skip Record If...?变化时,?Skip Record If...?的值在?Skip Record If...?上变化,且?Skip Record If...?, 则有 ?Skip Record If...?.(1) 本定理证明从略.在应用时必须注意变换?Skip Record If...?应满足定理的条件,在改变积分变量的同时相应改变积分限,然后对新变量积分.例1计算?Skip Record If...?. 仅供学习与交流,如有侵权请联系网站删除谢谢4

仅供学习与交流,如有侵权请联系网站删除 谢谢4 解 令?Skip Record If...?,则?Skip Record If...?.当?Skip Record If...?时,?Skip Record If...?;当?Skip Record If...?时,?Skip Record If...?.于是 ?Skip Record If...? ?Skip Record If...?. 例2 计算?Skip Record If...??Skip Record If...?. 解 令?Skip Record If...?,则?Skip Record If...?.当?Skip Record If...?时,?Skip Record If...?;当?Skip Record If...?时,? ?Skip Record If...??Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...?. 显然,这个定积分的值就是圆?(图5-8). 例3 计算?Skip Record If...?. 解法一 令?Skip Record If...?,则?Skip Record If...?. 当?Skip Record If...?时,?Skip Record If...?;当?Skip Record If...?时,?Skip Record If...?,于是 ?Skip Record If...?. 解法二 也可以不明显地写出新变量?Skip Record If...?,这样定积分的上、下限也不要改变. 即 ?Skip Record If...? ?Skip Record If...?.

换元法在不定积分和定积分中的联系与区别

换元法在不定积分和定积分中的联系与区别 1.第一换元法在不定积分和定积分中的联系与区别 1.1不定积分中第一换元法的定理形式 定理1若,且的原函数容易求出,记 , 则 . 证明若,令,于是有 因而 得证。 1.2定积分中第一换元法的定理形式 定理2若连续,在上一阶连续可导,且,在构成的区间上连续,其中,则 . 证明令,由于在构成的区间上连续,记,则 得证。 1.3 第一换元法在不定积分和定积分中的联系与区别 区别:第一换元法在定积分中对未知量给出了定义范围,要求换元函数在该定义域内一阶连续可导即可,对积分要求变弱。

联系:不定积分的实质是求一个函数的原函数组成的集合,部分定积分的计算可以利用不定积分的第一换元法求出简单函数的任意一个原函数,再用原函数在定义域的上下限的函数值取差值。 例1求. 解因为 即有一个原函数,所以 例2 计算积分. 解由于 于是 2.第二换元法在不定积分和定积分中的联系与区别 2.1不定积分中第二换元法的定理形式 定理3设连续,及都连续,的反函数存在且连续,并且 ,(1)则 (2)

证明将(2)式右端求导同时注意到(1)式,得 , 这便证明了(2)式。 2.2定积分中第二换元法的定理形式 定理 4 设在连续,作代换,其中在构成的区间上有连续导数,且,则 证明设是的一个原函数,则是的一个原函数。于是 , 定理得证。 2.3 第二换元法在不定积分和定积分中的联系与区别 区别:由不定积分中第二换元法的证明过程可知,不定积分中第二换元法要求变换的反函数存在且连续,并且。而在定积分的第二换元法则不这样要求,它通过换元法写出关于新变量的被积函数与新变量的积分上下限后可以直接求职,不像不定积分的计算最终需要对变量进行还原。 例3用第二换元法求解 解令,则

利用复化梯形公式复化simpson 公式计算积分

实验 目 的 或 要 求1、利用复化梯形公式、复化simpson 公式计算积分 2、比较计算误差与实际误差 实 验 原 理 ( 算 法 流 程 图 或 者 含 注 释 的 源 代 码 ) 取n=2,3,…,10分别利用复化梯形公式、复化simpson 公式计算积分1 20I x dx =?,并与真值进行比较,并画出计算误差与实际误差之间的曲线。 利用复化梯形公式的程序代码如下: function f=fx(x) f=x.^2; %首先建立被积函数,以便于计算真实值。 a=0; %积分下线 b=1; %积分上线 T=[]; %用来装不同n 值所计算出的结果 for n=2:10; h=(b-a)/n; %步长 x=zeros(1,n+1); %给节点定初值 for i=1:n+1 x(i)=a+(i-1)*h; %给节点赋值 end y=x.^2; %给相应节点处的函数值赋值 t=0; for i=1:n t=t+h/2*(y(i)+y(i+1)); %利用复化梯形公式求值 end T=[T,t]; %把不同n 值所计算出的结果装入 T 中 end R=ones(1,9)*(-(b-a)/12*h.^ 2*2); %积分余项(计算误差) true=quad(@fx,0,1); %积分的真实值 A=T-true; %计算的值与真实值之差(实际误差) x=linspace(0,1,9); plot(x,A,'r',x,R,'*') %将计算误差与实际误差用图像画出来 注:由于被积函数是x.^2,它的二阶倒数为2,所以积分余项为:(-(b-a)/12*h.^ 2*2)

实 验 原 理 ( 算 法 流 程 图 或 者 含 注 释 的 源 代 码)利用复化simpson 公式的程序代码如下: 同样首先建立被积函数的函数文件: function f=fx1(x) f=x.^4; a=0; %积分下线 b=1; %积分上线 T=[]; %用来装不同n值所计算出的结果 for n=2:10 h=(b-a)/(2*n); %步长 x=zeros(1,2*n+1); %给节点定初值 for i=1:2*n+1 x(i)=a+(i-1)*h; %给节点赋值 end y=x.^4; %给相应节点处的函数值赋值 t=0; for i=1:n t=t+h/3*(y(2*i-1)+4*y(2*i)+y(2*i+1)); %利用复化simpson公式求值end T=[T,t] ; %把不同n值所计算出的结果装入T中 end R=ones(1,9)*(-(b-a)/180*((b-a)/2).^4*24) ; %积分余项(计算误差) true=quad(@fx1,0,1); %积分的真实值 A=T-true; %计算的值与真实值之差(实际误差) x=linspace(0,1,9); plot(x,A,'r',x,R,'*')

不定积分换元法例题

【不定积分的第一类换元法】 已知 ()()f u du F u C =+? 求()(())'()(())()g x dx f x x dx f x d x ????= =? ?? 【凑微分】 ()()f u du F u C = =+? 【做变换,令()u x ?=,再积分】 (())F x C ?=+ 【变量还原,()u x ?=】 【求不定积分()g x dx ? 的第一换元法的具体步骤如下:】 (1)变换被积函数的积分形式:()(())'()dx g x f x x dx ??=?? (2)凑微分:()(())((')))(()x g x dx d x dx f x f x ????= =??? (3)作变量代换()u x ?=得:()(())'()()()()g x dx f x x x x dx f d ????==? ??()u f u d =? (4)利用基本积分公式()()f u du F u C =+?求出原函数: ()(())'()(())()g x dx f x x dx f x d x ????==???()()d u u C f u F ==+? (5)将()u x ?=代入上面的结果,回到原来的积分变量x 得: ()(())'()(())()g x dx f x x dx f x d x ????==???()()f u du F u C ==+?(())F x C ?=+ 【注】熟悉上述步骤后,也可以不引入中间变量()u x ?=,省略(3)(4)步骤,这与复合函数的求导法则类似。 __________________________________________________________________________________________ 【第一换元法例题】 1、9 9 9 9 (57)(57)(5711(57)(57)55 )(57)dx d x d x dx x x x x +=+?=+?= +?++? ? ? ? 110091(57)(57)(57)10111 (57)5550 d C x x x x C =?=?+=+++++? 【注】1 (57)'5,(57)5,(57)5 x d x dx dx d x +=+==+?? 2、1ln ln ln ln dx d x x x dx x x x =?=???? 221 (l 1ln ln (ln )2n )2x x x d C x C =?=+=+? 【注】111 (ln )',(ln ),(ln )x d x dx dx d x x x x ===?? 3(1)sin tan cos co si s cos cos n cos cos xdx d x xdx dx x d x x x x x --= ===? ???? cos ln |cos |c ln |co s |o s x x d C x C x =-=-+=-+?

数值分析与算法变步长梯形求积法计算定积分

变步长梯形求积法计算定积分 1.原理: 变步长求积法的主要思想是利用若干小梯形的面积代替原方程的积分,当精度达不到要求时,可以通过增加点数对已有的区间再次划分,达到所需精度时即可;其中由于新的式子中有原来n点中的部分项,故可以省略一些计算,符合了计算机计算存储的思想。 主要公式:T2n=T n/2+(h/2)*Σf(x k+; 2.C++语言实现方式: 通过每次的T n值和新增的函数值点计算T2n,再通过判断|T n-T2n|的大小来判断是否达到精度要求。 3.源程序如下: #include"" #include"" double f(double x)//预先输入的待积分函数 { double s; s=log(x*x); return(s); } double ffts(double a,double b,double eps) { int n,k; double fa,fb,h,t1,p,s,x,t; fa=f(a);

fb=f(b); n=1; h=b-a; t1=h*(fa+fb)/2; p=eps+1; while(p>=eps) { s=0; for(k=0;k<=n-1;k++) { x=a+(k+*h; s=s+f(x); } t=t1/2+h*s/2; p=fabs(t1-t); cout<<"步长n为:"<

定积分换元法与分部积分法习题教学文稿

定积分换元法与分部积分法习题

1 ?计算下列定积 分: ⑴ g 3)dx; 【解法 一】 应用牛顿-莱布尼兹公式 【解法二】 化到 sin( x 3 )dx sin(x 3 3 [cos( 应用定积分换元法 于是有 dx ; 2(11 5x)3; 【解法一】应用牛顿 u,则dx du , sin(x )dx 3 3 [cos 3 -莱布尼兹公式 1 dx 2(11 5x)31 (1 1 2 【解法二】应用定积分换元法 令11 5x u, 变化到16,于是有 1 dx 3 2(11 5x) 3)d(x 3)cos(x 3) cos(—一)] [ cos 3 3 3 当x从3单调变化到 4 2 3sinudu 3 (cos3)] 3 5x) 3d(11 1^(11 5 1 1)2 cosu 4 3 2 3 5x) 1(11 2 (11 5 2)2] 则dx 1du, 5 (cos )] 。 3 2 时,u从3单调变 [cos4 3 cos2] 3 5x) 2 1( 12 1) 10 162 51 512 当x从2单调变化到1时,u从1单调 16 u 1 3du 1 5 2 16 1 1o(卡1)誥。

⑶ 0%in cos 1 2 3 d ; 【解法一】应用牛顿-莱布尼兹公式 1 4 4 [cos cos 0] 4 2 【解法二】应用定积分换元法 单调变化到0,于是有 ⑷ o (1 sin 3 )d ; 由于1是独立的,易于分离出去独立积分,于是问题成为对 sin 3 d 的积分, 这是正、余弦的奇数次幕的积分,其一般方法是应用第一换元法,先分出一次 式以便作凑微分: sin d d cos ,余下的sin 2 1 cos 2 ,这样得到的 1 -cos 3 1] 令cos u , sin du , 单调变化到 2时,u 从1 2 sin cos 3 :u 3du 0u 3 du (1 cos 2 )d cos 便为变量代换做好了准备。 具体的变换方式有如下两种: 【解法一】 应用牛顿-莱布尼兹公式 3 0 (1 sin )d 1d °sin 2 sin d 0 o (1 cos 2 )d cos (cos (cos cos0) 1 (cos 3 3 cos 3 0) 【解法二】 应用定积分换元法 1) 1(1 1) 2 ? 3 2 sin cos d 2 3 2 cos dcos 1 4 cos 4 【解】被积式为(1 sin 3 )d ,不属于三角函数的基本可积形式,须进行变换。

定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法 教学目的:掌握定积分换元积分法与分部积分法 难 点:定积分换元条件的掌握 重 点:换元积分法与分部积分法 由牛顿-莱布尼茨公式可知,定积分的计算归结为求被积函数的原函数.在上一章中,我们已知道许多函数的原函数需要用换元法或分部积分法求得,因此,换元积分法与分部积分法对于定积分的计算也是非常重要的. 1.定积分换元法 定理 假设 (1) 函数)(x f 在区间],[b a 上连续; (2) 函数)(t x ?=在区间],[βα上有连续且不变号的导数; (3) 当t 在],[βα变化时,)(t x ?=的值在],[b a 上变化,且b a ==)(,)(β?α?, 则有 []dt t t f dx x f b a ?? '=β α ??)()()(. (1) 本定理证明从略.在应用时必须注意变换)(t x ?=应满足定理的条件,在改变积分变量的同时相应改变积分限,然后对新变量积分. 例1 计算? -2 1 1 dx x x . 解 令t x =-1,则tdt dx t x 2,12=+=.当1=x 时,0=t ;当2=x 时, 1=t .于是 ??? ?? ? ??+-=?+=-1021022 1 1112211dt t tdt t t dx x x ??? ? ?-=-=412)a r c t a n (210 πt t . 例2 计算? -a dx x a 0 22)0(>a .

解 令t a x sin =,则t d t a dx cos =.当0=x 时,0=t ;当a x =时,2 π = t .故 ? -a dx x a 0 22dt t a t a ??=20 cos cos π dt t a )2cos 1(2 20 2 += ? π 20 2 2s i n 212π ??????+= t t a 4 2 a π= . 显然,这个定积分的值就是圆222a y x =+在第一象限那部分的面积(图5-8). 例3 计算?20 5sin cos π xdx x . 解法一 令x t cos =,则xdx dt sin -=. 当0=x 时,1=t ;当2 π =x 时,0=t ,于是 6 1 6 1 sin cos 01 6 50120 5= -=-=?? t dt t xdx x π . 解法二 也可以不明显地写出新变量t ,这样定积分的上、下限也不要改变. 即 x d x x d x x c o s c o s s i n c o s 20 5 20 5 ?? -=π π 61610cos 61206 =??? ? ?--=-=π x . 此例看出:定积分换元公式主要适用于第二类换元法,利用凑微分法换元 不需要变换上、下限. 例4 计算dx x ?-π sin 1. 解 dx x ? -π sin 1?-=π02 c o s 2s i n dx x x 注去绝对值时注意符号.

分别利用矩形法、梯形法、辛普森法对定积分进行近似计算并比较计算效果。

数学实验报告 实验序号:(4)日期:2015/1/2 实验过程纪录(含基本步骤、主要程序清单及异常情况纪录)

1、计算的近似值 方法一:矩形法 >>n=100x=0:1/n:1left_sum=0;right_sum=0;for i=1:n if i==1left_sum=left_sum +1/n;else left_sum=left_sum +sin(x(i))/x(i)*(1/n);end right_sum=right_sum +sin(x(i+1))/x(i+1)*(1/n);end left_sum right_sum n = 100 x = Columns 1through 10 00.01000.02000.03000.04000.05000.0600 0.07000.08000.0900Columns 11through 20 0.10000.11000.12000.13000.14000.1500 0.16000.17000.18000.1900 Columns 21through 30 0.20000.21000.22000.23000.24000.25000.26000.27000.28000.2900 Columns 31through 40 0.30000.31000.32000.33000.34000.350010sin x dx x

0.36000.37000.38000.3900 Columns41through50 0.40000.41000.42000.43000.44000.4500 0.46000.47000.48000.4900 Columns51through60 0.50000.51000.52000.53000.54000.5500 0.56000.57000.58000.5900 Columns61through70 0.60000.61000.62000.63000.64000.6500 0.66000.67000.68000.6900 Columns71through80 0.70000.71000.72000.73000.74000.7500 0.76000.77000.78000.7900 Columns81through90 0.80000.81000.82000.83000.84000.8500 0.86000.87000.88000.8900 Columns91through100 0.90000.91000.92000.93000.94000.9500 0.96000.97000.98000.9900 Column101 1.0000 left_sum= 0.9469 right_sum=

几种定积分的数值计算方法

几种定积分的数值计算方法 摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计算思想,结合实例,对其优劣性作了简要说明. 关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形 Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods. Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数 )(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况: (1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1 02 , ? 1 0sin dx x x 等,从而无法用牛顿-莱布尼茨公式计算出积分。 (2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较. 2.几何意义上的数值算法 s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计 算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间 ,x 1-i h x i +=b x a x n ==,0,其中n a b h -= 表示小区间的长度. 2.1矩形法 矩形法就是用小矩形面积近似代替各个小曲边梯形面积,从面积得到S 的近似值.若 取小区间左端点的函数值为小矩形的高,如图1中所示,则∑=-=n i i x f n a b A 1 ).(

C语言-用矩形法和梯形法求定积分

#include <> #include <> float jifen(float a,float b) {int i,l; float n=,s=0; 2.0f2.0f一个用梯形法求定积分的函数,求sin(x)在(0,1)上的定积分。#include <> #include <> float jifen(float a,float b) {int i,l; float n=,s=0; l=(b-a)/n; for(i=0;i #include <> jifen(float a,float b,double (*fun)(double)) {int i,l; float n=,s=0,s1=0; l=(b-a)/n; for(i=0;i

MATLAB复化梯形法及龙贝格法计算定积分

姓名:樊元君学号:2012200902 日期:2012.11.06 1.实验目的: 掌握复化梯形法与龙贝格法计算定积分。 2.实验内容: 分别写出变步长梯形法与龙贝格法计算定积分的算法,编写程序上机调试出结果,要求所编程序适用于任何类型的定积分,即能解决这一类问题,而不是某一个问题。实验中以下列数据验证程序的正确性。求。

3.程序流程图: ●变步长梯形法流程图:

●龙贝格法流程图: 4.源程序: ●变步长梯形法: function [ y ] =BTX(a,b,e) a=input('a='); b=input('b='); e=input('e='); h=(b-a); t1=((f(a)+f(b))*h)/2; t2=0; %准备初值%

while abs(t2-t1)>e %while语句控制计算精度以及控制计算时长if t2~=0 %按照变步长梯形法 h=h/2; %递推公式求二分后积分值 t1=t2; end s=0; x=a+h/2; while x

syms x%定义自变量x f=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可 f2=inline('(2*exp(x) + x*exp(x))','x') %定义f(x)的二阶导数,输入程序1里求出的f2即可。 f3='-(2*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,以便求最大值 e=5*10^(-8) %精度要求值 a=1 %积分下限 b=2 %积分上限 x1=fminbnd(f3,1,2) %求负的二阶导数的最小值点,也就是求二阶导数的最大值点对应的x值 for n=2:1000000 %求等分数n Rn=-(b-a)/12*((b-a)/n)^2*f2(x1) %计算余项 if abs(Rn)