文档库 最新最全的文档下载
当前位置:文档库 › 直线与圆一

直线与圆一

直线与圆一
直线与圆一

1.如图,A B ,是直线l 上的两点,且2AB =别与l 相切于

A B ,点,C

是这两个圆的公共点,则圆弧AC ,CB 与

线段AB 围成图形面积S 的取值范围是 .

2、圆心为(11),且与直线4x y +=相切的圆的方程是 .

3、由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为( ) A .1

B

C

D .3

4、若圆04222=--+y x y x 的圆心到直线0=+-a y x 的距离为2

2

,则a 的值为( ) (A)-2或2

(B)2

32

1或

(C)2或0 (D)-2或0

5、若直线1+=kx y 与圆122=+y x 相交于P 、Q 两点,且∠POQ =120°(其中O 为原点),则k 的值为( )

(A )??

?

??-72,73

(B )??? ??-214,

72

(C )??

?

??-72,73

(D )??

?

??-

214,72

6、已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点,则直线

AB 的方程是

7、已知O 的方程是2220x y +-=,'O 的方程是228100x y x +-+=,由动点P 向O 和'O 所引的切线长相等,则运点P 的轨迹方程是__________________

8、若直线1x

y a

b

+=通过点(cos sin )M αα,

,则( )

A .221a b +≤

B .221a b +≥

C .

22

111a b +≤ D .

22

111a b +≥ 9、等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( ) A .3 B .2 C .13- D .12

-

10、过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线12l l ,,当直线12l l ,关于y x =对称时,它们之间的夹角为( ) A .30 B .45 C .60 D .90

11、直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( )

(A)113

3

y x =-+ (B)113

y x =-+ (C)33y x =- (D)

1

13

y x =

+ 12、若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )

A .

[ B .( C .[ D .( 13、过点(11,2)A 作圆22241640x y x y ++--=的弦,其中弦长为整数的共有( )

A.16条

B. 17条

C. 32条

D. 34条 14、圆O 1:0222=-x y x +和圆O 2: 0422=-y y x +的位置关系是( )

(A)相离 (B)相交 (C)外切 (D)内切

15、圆221x y +=与直线2y kx =+没有..公共点的充要条件是( ) A .

(k ∈ B .()k ∈-+

C .(k ∈

D .()k ∈-+

16、已知圆C 的圆心与点(2,1)P -关于直线1y x =+对称.直线

34110x y +-=与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为

__________________.

17、直线l 与圆04222=+a y x y x -++ (a<3)相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为 .

18、经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 .

19、若圆2244100x y x y +---=上至少有三个不同点到直线l :0ax by +=

的距离为则直线l 的倾斜角的取值范围是 ( )

A.[

,

124ππ

] B.[

5,1212ππ] C.[,]63

ππ D.[0,]2π

20、已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为 。

有关直线与圆的几个典型例题

有关直线与圆的几个典型例题 本节内容在高考题中通常是通过选择题、填空题进行考查,在解 答题中往往是出现在第(1)小题中,考查的热点是求直线的方程, 两直线平行、垂直的关系,关于直线的对称问题,直线与圆的位置关 系及圆与圆的位置关系等。要熟练掌握求直线方程的方法,注意根据 已知条件灵活选择方程形式;在解决圆的有关问题时,要注意圆的儿 何性质的应用。 例1:在A ABC 中,已知顶点A(3,-l),过点B 的内角平分线所在 直线的方程为x-4y+10=0,过点C 的中线所在直线的方程为 6x+10y-59=0,求顶点B 的坐标及BC 边的方程。 A + 3 J -1 解:设B 点坐标为(x,y),则AB 的中点E 的坐标为(丁'丁), 因 E 在直线 6x+10y-59=0±, 乳 + 3 ??? 6 ? 2 +10 ? 2 -59=0,整理得 3x+5y-55=Oo 乂过点B 的内角平分线所在直线方程为x-4y+10=0o 戸+ "-55 = 0, |x = 10, 解方程组仍10丸得卜" ???B 点坐标为(10,5)。 6 设BC 边所在直线斜率为k, AB 边所在直线斜率k AB = 7,角B 平 _1 分线的斜率为忆。 例2:已知过点A(1J),且斜率为的直线/与x,y 轴分别 交于P 、Q 点,过P 、Q 作直线2x+y=0的垂线,垂足分别为R, S, 2 - 9 - = k ???BC 边所在直线方程为2x+9y-65=0o 评注:本题是关于求直线方程的例 题。 6 一 7 6 一 7

求四边形PRSQ 的面积的最小值。 丄 解:设直线1的方程为y-l=-m(x-l),则P 、Q 的坐标分别为(1 +也,0), (0,1 +m) o 1 m +1 m +1 /? PR 所在直线方程为y=2(x ?m ),即x ?2y ?朋=0 丄 QS 所在直线方程为 y= 2 x+m+1,即 x-2y+2(m+l)=0。 | 2加十2十1十丄| 3十2眈十丄 m = m m +1 乂IPRI=怎,IQSI=品, ???四边形PRSQ 的面积为 (2 + -+m + 1) 3+2忍十丄2(购+丄尸十9⑻+丄)+ 10 . 〔。 〔 S=- ? ———?— =——世 ------------ 世—丄[(时丄)+分-丄, 2 75 10 5 4 80 丄 *.* m>0,?*. m+m $2, ?°?、勺 m=l 时,Smin=3.6。 故四边形PRSQ 面积的最小值为3.6o 评注:本题是关于直线的平行、垂直问题的例题 例3:根据下列条件求圆的方程: (1) 圆心在直线/]: 5x-3y=O 上,并且圆与直线伍:x-6y-10=0 相切于点P(4,?l); (2) 圆过点P(-2,4), Q(3,-l),并且在x 轴上截得的弦长等于6; (3) 圆心在曲线y 2=-18x ±,并且既与y 轴相切乂与圆 (x+2)2+(y- 3)2=l 外切。 解:(1)设圆心为C(3t,5t), 主十1 . 1 T PR//QS, |RS| = 75

(完整版)直线与圆知识归纳

直线与圆 ◆知识点归纳 直线与方程 1.直线的倾斜角 规定:当直线l 与x 轴平行或重合时,它的倾斜角为0 范围:直线的倾斜角α的取值范围为),0[π 2.斜率:)2 (tan π α≠ =a k ,R k ∈ 斜率公式:经过两点),(111y x P ,),(222y x P )(21x x ≠的直线的斜率公式为1 21 22 1x x y y k P P --= 3.直线方程的几种形式 能力提升 斜率应用 例1.已知函数)1(log )(2+=x x f 且0>>>c b a ,则 c c f b b f a a f ) (,)(,)(的大小关系

例2.已知实数y x ,满足)11(222 ≤≤-+-=x x x y ,试求2 3 ++x y 的最大值和最小值 两直线位置关系 两条直线的位置关系 设两直线的方程分别为: 222111:b x k y l +=或0 :22221111=++C y B x A l ;当21k k ≠或1221B A B A ≠时它们 相交,交点坐标为方程组???+=+=2211b x k y b x k y 或???=++=++00 222 111C y B x A C y B x A 直线间的夹角: ①若θ为1l 到2l 的角,12121tan k k k k +-= θ或2 1211 221tan B B A A B A B A +-=θ; ②若θ为1l 和2l 的夹角,则12121tan k k k k +-= θ或2 1211 221tan B B A A B A B A +-=θ; ③当0121=+k k 或02121=+B B A A o 直线1l 到2l 的角θ与1l 和2l 的夹角α:) 2 (π θθα≤ =

2019-2020年高三数学二轮复习 专题五 第1讲 直线与圆教案

2019-2020年高三数学二轮复习 专题五 第1讲 直线与圆教案 自主学习导引 真题感悟 1.(xx ·浙江)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 解析 先求出两条直线平行的充要条件,再判断. 若直线l 1与l 2平行,则a (a +1)-2×1=0,即a =-2或a =1,所以a =1是直线l 1与直线l 2平行的充分不必要条件. 答案 A 2.(xx·福建)直线x +3y -2=0与圆x 2 +y 2 =4相交于A 、B 两点,则弦AB 的长度等于 A .2 5 B .2 3 C. 3 D .1 解析 利用平面几何中圆心距、半径、半弦长的关系求解.∵圆心到直线x +3y -2=0的距离d =|0+3×0-2| 12+3 2 =1,半径r =2, ∴弦长|AB |=2r 2 -d 2 =222 -12 =2 3. 答案 B 考题分析 圆在高考命题中多以直线与圆的位置关系为主,考查直线与圆位置关系的判定、弦长的求法等,题目多以小题为主,难度中等,掌握解此类题目的通性通法是重点. 网络构建

高频考点突破 考点一:直线方程及位置关系问题 【例1】(xx·江西八所重点高中联考)“a=0”是“直线l1:(a+1)x+a2y-3=0与直线l2: 2x+ay-2a-1=0平行”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 [审题导引] 求出l1∥l2的充要条件,利用定义判定. [规范解答] 当a=0时,l1:x-3=0,l2:2x-1=0,此时l1∥l2, 所以“a=0”是“直线l1与l2平行”的充分条件; 当l1∥l2时,a(a+1)-2a2=0,解得a=0或a=1. 当a=1时,l1:2x+y-3=0,l2:2x+y-3=0,此时l1与l2重合, 所以a=1不满足题意,即a=0. 所以“a=0”是“直线l1∥l2”的充要条件. [答案] C 【规律总结】 直线与直线位置关系的判断方法 (1)平行:当两条直线l1和l2的斜率存在时,l1∥l2?k1=k2;如果直线l1和l2的斜率都不存在,那么它们都与x轴垂直,则l1∥l2. (2)垂直:垂直是两直线相交的特殊情形,当两条直线l1和l2的斜率存在时,l1⊥l2?k1·k2=-1;若两条直线l1,l2中的一条斜率不存在,另一条斜率为0时,则它们垂直.

直线与圆知识点总结

直线和圆知识点总结 1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。当直线l 与x 轴重合或平行时,规定倾斜角为0;(2)倾斜角的范围[)π,0。如(1)直线023cos =-+y x θ的倾斜角的范围是____(答:5[0][)66 ,,π ππ );(2)过点),0(),1,3(m Q P -的直线的倾斜角的范围m 那么],32,3[π πα∈值的范围是______ (答:42≥-≤m m 或) 2、直线的斜率:(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;(2)斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=;(3)直线的方向向量(1,)a k = , 直线的方向向量与直线的斜率有何关系?(4)应用:证明三点共线: AB BC k k =。如(1) 两条直线钭率相等是这两条直线平行的____________条件(答:既不充分也不必要);(2)实数,x y 满足3250x y --= (31≤≤x ),则 x y 的最大值、最小值分别为______(答:2,13 -) 3、直线的方程:(1)点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为 00()y y k x x -=-,它不包括垂直于x 轴的直线。 (2)斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线。(3)两点式:已知直线经 过111(,)P x y 、222(,)P x y 两点,则直线方程为1 21121x x x x y y y y --=--,它不包括垂直于坐标轴的直线。(4)截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为1=+b y a x ,它不包括垂直于坐标轴的直线和过原点的直线。(5)一般式:任何直线均可写成0Ax By C ++=(A,B 不同时为0)的形式。如(1)经过点(2,1)且方向向量为v =(-1,3) 的直线的点斜式方程是___________(答:1(2)y x -=-);(2)直线(2)(21)(34)m x m y m +----=,不管m 怎样变化恒过点______(答:(1,2)--);(3)若曲线||y a x =与(0)y x a a =+>有两个公共点,则a 的取值范围是_______(答:1a >) 提醒:(1)直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?);(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等?直线的斜率为-1或直线过原点;直线两截距互为相反数?直线的斜率为1或直线过原点;直线两截距绝对值相等?直线的斜率为1±或直线过原点。如过点(1,4)A ,且纵横截距的绝对值相等的直线共有___条(答:3) 4.设直线方程的一些常用技巧:(1)知直线纵截距b ,常设其方程为y kx b =+;(2)知直线横截距0x ,常设其方程为0x my x =+(它不适用于斜率为0的直线);(3)知直线过点00(,)x y ,当斜率k 存在时,常设其方程为00()y k x x y =-+,当斜率k 不存在时,则其方程为0x x =;(4)与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=;(5)与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=. 提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解。

直线与圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 例2 求半径为4,与圆04242 2=---+y x y x 相切,且和直线0=y 相切的圆的方程.

第1讲 直线与圆、圆锥曲线的方程与性质

第1讲直线与圆、圆锥曲线的方程与性质 [选题明细表] 知识点、方法题号 直线与圆2,3,13 圆锥曲线的定义与标准方程的应用1,7,8,9,14 圆锥曲线的几何性质5,10,11,16 圆锥曲线的离心率4,6,12,15 一、选择题 1.(2019·武汉模拟)已知F1(-3,0),F2(3,0),若点P(x,y)满足|PF1|- |PF2|=6,则P点的轨迹为( D ) (A)椭圆(B)双曲线 (C)双曲线的一支(D)一条射线 解析:F1(-3,0),F2(3,0),动点P满足|PF1|-|PF2|=6, 因为|F1F2|=6,则点P的轨迹是一条射线.故选D. 2.过点(0,1)的直线l被圆(x-1)2+y2=4所截得的弦长最短时,直线l 的斜率为( A ) (A)1 (B)-1 (C) (D)- 解析:点(0,1)在圆(x-1)2+y2=4内,要使得过点(0,1)的直线l被圆(x-1)2+y2=4所截得的弦长最短,则该弦以(0,1)为中点,与圆心和(0,1)

的连线垂直,而圆心和(0,1)连线的斜率为=-1,所以所求直线斜率为1,故选A. 3.(2019·合肥三模)已知直线l:x-y-a=0与圆C:(x-3)2+(y+)2=4交于点M,N,点P在圆C上,且∠MPN=,则实数a的值等于( B ) (A)2或10 (B)4或8 (C)6±2(D)6±2 解析:由∠MPN=可得∠MCN=2∠MPN=. 在△MCN中,CM=CN=2,∠CMN=∠CNM=, 可得点C(3,-)到直线MN,即直线l:x-y-a=0的距离为2sin=1. 所以=1,解得a=4或8.故选B. 4.(2019·临沂三模)若双曲线C:-=1(a>0,b>0)的一条渐近线被圆x2+(y-2)2=2所截得的弦长为2,则双曲线C的离心率为( B ) (A) (B)2 (C)(D)2 解析:双曲线C:-=1(a>0,b>0)的渐近线方程为y=±x, 由对称性,不妨取y=x,即bx-ay=0. 圆x2+(y-2)2=2的圆心坐标为(0,2),半径为, 则圆心到渐近线的距离d==1,

直线与圆专题

直线与圆专题 1.已知点P (1,2)和圆C :x 2+y 2+kx +2y +k 2=0,过点P 作圆C 的切线有两条,则k 的取值范围是( ) A .R B.? ?????-∞,233 C.? ?? ??? -233,233 D.? ?? ???-233,0 2.在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则||MP 2+|| MQ 2的值为( ) A.102 B. 10 C .5 D .10 3. 已知直线l :y =k (x -1),圆C :(x -1)2+y 2=r 2(r >0),现给出下列四个命题: p 1:?k ∈R ,l 与C 相交; p 2:?k 0∈R ,l 与C 相切; p 3:?r >0,l 与C 相交; p 4:?r 0>0,l 与C 相切. 其中真命题为( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3 D .p 2,p 4 4.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是坐标原点,且有????OA →+OB →≥3 3??? ?AB →,那么k 的取值范围是( ) A.( )3,+∞ B. [) 2,+∞ C. [) 2,2 2 D. [ ) 3,2 2 5.与圆x 2+(y -2)2=2相切,且在两坐标轴上截距相等的直线共有( ) A .2条 B .3条 C .4条 D .6条

6.若圆O 1:x 2+y 2=5与圆O 2:() x +m 2+y 2=20相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是( ) A .3 B .4 C .2 3 D .8 7. 若平面内两定点A ,B 间的距离为2,动点P 与A ,B 的距离之比为2,当P ,A ,B 不共线时,△PAB 面积的最大值是( ) A .2 2 B. 2 C. 2 2 3 D. 23 8.已知点A (2,3),B (-3,-2),若直线kx -y +1-k =0与线段AB 相交,则k 的取值范围是( ) A.???? ??34,2 B.? ???? -∞,34∪[2,+∞) C .(-∞,1]∪[2,+∞) D .[1,2] 9.已知点Q ()-1,m ,P 是圆C :(x -a )2+() y -2a +42=4上任意一点,若线段PQ 的中点M 的轨迹方程为x 2+() y -12=1,则m 的值为( ) A .1 B .2 C .3 D .4 10.若圆x 2+y 2+4x -4y -10=0上至少有三个不同的点到直线l :ax +by =0的距离为2 2,则直线l 的斜率的取值范围是( ) A .[2-3,2+3] B .[-2-3, 3-2] C .[-2- 3,2+ 3] D .[-2- 3,2- 3] 11.若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0的周长, 则(a -2)2+(b -2)2的最小值为( ) A. 5 B .5 C .2 5 D .10 12. 在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若 AP →=λAB →+μAD → ,则λ+μ的最大值为( )

2019年高考数学(文科)二轮复习专题5 第1讲 直线与圆

2 x B 第 1 讲 直线与圆 高考定位 1.直线方程、圆的方程、两直线的平行与垂直、直线与圆的位置关系是本讲高考 的重点;2.考查的主要内容包括求直线(圆)的方程、点到直线的距离、直线与圆的位置关系判 断、简单的弦长与切线问题,多为选择题、填空题. 真 题 感 悟 1.(2016· 全国Ⅱ卷)圆 x 2+y 2-2x -8y +13=0 的圆心到直线 ax +y -1=0 的距离为 1,则 a = ( ) 4 A.-3 C. 3 3 B.-4 D.2 解析 圆 x 2+y 2-2x -8y +13=0 化为标准方程为(x -1)2+(y -4)2=4,故圆心为(1,4). 由题意得 d = |a +4-1| a 2+1 4 =1,解得 a =-3. 答案 A 2.(2016· 山东卷)已知圆 M :x 2+y 2-2ay =0(a >0)截直线 x +y =0 所得线段的长度是 2 2,则 圆 M 与圆 N :(x -1)2+(y -1)2=1 的位置关系是( ) A.内切 C.外切 B.相交 D.相离 解析 圆 M :x 2+y 2-2ay =0(a >0)可化为 x 2+(y -a )2=a 2, a a 2 由题意,d = ,所以有 a 2= 2 +2,解得 a =2. 所以圆 M :x 2+(y -2)2=22,圆心距为 2,半径和为 3,半径差为 1,所以两圆相交. 答案 B 3.(2016· 全国Ⅰ卷)设直线 y =x +2a 与圆 C :2+y 2-2ay -2=0 相交于 A , 两点,若|AB |=2 3,

初中直线与圆的位置关系经典练习题

圆与直线的基本性质 一、定义 [例1]在ABC Rt?中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何位置关系?为什么? (1)r=2cm; (2)r=2.4cm; (3)r=3cm。 [例2]在ABC ?中,BC=6cm,∠B=30°,∠C=45°,以A为圆心,当半径r多长时所作的⊙A与直线BC相切?相交?相离? [变式题]已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是【】 A.相切B.相离C.相离或相切 D.相切或相交 二、性质 例1:如图,AB是⊙O的直径,C.D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于【】A.40°B.50°C.60°D.70°变式1:如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠ACP=【】 A. 30B. 45 C. 60D.67.5 例3:如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是【】 A.80° B.110° C.120° D.140° 变式2:如图,圆周角∠BAC=55°,分别过B,C两点作⊙O的切线,两切线相交与点P,则∠BPC=°. 例5:如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是.

变式3:如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若AB的长为8cm,则图中阴影部分的面积为cm2.例7:如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N. (1)求证:OM=AN; (2)若⊙O的半径R=3,PA=9,求OM的长.变式4:如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF 于点H,交⊙O于点C,连接BD. (1)求证:BD平分∠ABH; (2)如果AB=12,BC=8,求圆心O到BC的距离. 三、切线的判定定理: 例1:如图,AB是⊙O的直径,AC和BD是它的两条 切线,CO平分∠ACD.(1)求证:CD是⊙O的切线; (2)若AC=2,BC=3,求AB的长.

2020高考数学(理)二轮专题复习讲义《五 第1讲 直线与圆(小题)》

第1讲直线与圆(小题) 热点一直线的方程及应用 1.两条直线平行与垂直的判定 若两条不重合的直线l1,l2的斜率k1,k2存在,则l1∥l2?k1=k2,l1⊥l2?k1k2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在. 2.求直线方程 要注意几种直线方程的局限性.点斜式、斜截式方程要求直线不能与x轴垂直,两点式不能表示与坐标轴垂直的直线,而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线. 3.两个距离公式

(1)两平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d = |C 1-C 2|A 2 +B 2 (A 2+B 2≠0). (2)点(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2 (A 2 +B 2≠0). 例1 (1)(2019·宝鸡模拟)若直线x +(1+m )y -2=0与直线mx +2y +4=0平行,则m 的值是( ) A.1 B.-2 C.1或-2 D.-32 答案 A 解析 ①当m =-1时,两直线分别为x -2=0和x -2y -4=0,此时两直线相交,不合题意. ②当m ≠-1时,两直线的斜率都存在,由直线平行可得??? -11+m =-m 2, 2 1+m ≠-2 解得m =1. 综上可得m =1. (2)我国魏晋时期的数学家刘徽创立了割圆术,也就是用内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长,这种用极限思想解决数学问题的方法是数学史上的一项重大成就.现作出圆x 2+y 2=2的一个内接正八边形,使该正八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该正八边形的一条边所在直线的为( ) A.x +(2-1)y -2=0 B.(1-2)x -y +2=0 C.x -(2+1)y +2=0 D.(2-1)x -y +2=0 答案 C 解析 如图所示可知A (2,0), B (1,1), C (0,2), D (-1,1),

高中数学必修二直线与圆的综合问题

直线与圆一.解答题(共10小题) 1.已知直线x﹣y+3=0与圆心为(3,4)的圆C相交,截得的弦长为2. (1)求圆C的方程; (2)设Q点的坐标为(2,3),且动点M到圆C的切线长与|MQ|的比值为常数k(k>0).若动点M的轨迹是一条直线,试确定相应的k值,并求出该直线的方程. 2.已知直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径. (1)求圆C的方程; (2)已知直线m:y=x+n被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦与圆心构成三角形CDE.若△CDE 的面积有最大值,求出直线m:y=x+n的方程;若△CDE的面积没有最大值,说明理由. 3.已知M(4,0),N(1,0),曲线C上的任意一点P满足:?=6|| (Ⅰ)求点P的轨迹方程; (Ⅱ)过点N(1,0)的直线与曲线C交于A,B两点,交y轴于H点,设=λ1,=λ2,试问λ1+λ2是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由. 4.已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,记圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程; (Ⅱ)设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N 两个不同的点,求△QMN面积的最大值. 5.已知动圆P过定点且与圆N:相切,记动圆圆心P的轨迹为曲线C. (Ⅰ)求曲线C的方程; (Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由. 6.如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且.固定边AB, 在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C 的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系. (Ⅰ)求曲线Γ的方程; (Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围.7.已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上. (Ⅰ)求C点的轨迹Γ的方程; (Ⅱ)已知过P(0,﹣2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N两点连线QM,QN的斜率之积为定值. 8.已知圆M:x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.(1)求曲线E的方程; (2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1,k2,满足k1k2=4,求△ABC面积的最大值. 9.已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M,N两点. (1)求k的取值范围; (2)请问是否存在实数k使得(其中O为坐标原点),如果存在请求出k的值,并求|MN|;如果不存在,请说明理由.

直线与圆知识点及经典例题

圆的方程、直线和圆的位置关系 【知识要点】 一、圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一)圆的标准方程这个方程叫做圆的标准方程。 说明: 1 、若圆心在坐标原点上,这时,则圆的方程就是。 2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了 圆,所以,只要三个量确定了且〉0,圆的方程就给定了。 就是说要确定圆的方程,必须具备三个独立的条件确定,可以根据条件,利用待定系数法来解决。 (二)圆的一般方程 将圆的标准方程, 展开可得。可见,任何一个圆的方程都可以写成: 问题:形如的方程的曲线是不是圆 将方程左边配方得: (1)当〉0时,方程(1 )与标准方程比较,方程表示以为圆心,以为半径的圆。, (3)当v 0时,方程没有实数解,因而它不表示任何图形。 圆的一般方程的定义: 当〉0时,方程称为圆的一般方程? 圆的一般方程的特点: ( 1 )和的系数相同,不等于零; ( 2)没有xy 这样的二次项。 (三)直线与圆的位置关系 1、直线与圆位置关系的种类 ( 1 )相离--- 求距离;(2) 相切--- 求切线;( 3)相交--- 求焦点弦长。 2、直线与圆的位置关系判断方法: 几何方法主要步骤: ( 1)把直线方程化为一般式,利用圆的方程求出圆心和半径 ( 2)利用点到直线的距离公式求圆心到直线的距离 (3)作判断:当d>r时,直线与圆相离;当 d = r时,直线与圆相切;当d0时,直线与圆相交。 【典型例题】 类型一:圆的方程 例 1 求过两点、且圆心在直线上的圆的标准方程并判断点与圆的关系. 变式1:求过两点、且被直线平分的圆的标准方程. 变式2:求过两点、且圆上所有的点均关于直线对称的圆的标准方程. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点与圆的位置关系,只须看点与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为????圆心在上,故????圆的方程为. 又???该圆过、两点.??? 解之得:, 所以所求圆的方程为.解法二:(直接求出圆心坐标和半径) 因为圆过、两点,所以圆心必在线段的垂直平分线上,又因为,故的斜率为1,又的中点为,故的垂直平分线 的方程为:即. 又知圆心在直线上,故圆心坐标为.??半径. 故所求圆的方程为.又点到圆心的距离为

《直线与圆的位置关系》典型例题

《直线与圆的位置关系》典型例题 例1在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么? (1)r=1cm;(2)r=cm;(3)r=2.5cm. 例2 在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆,若直线AB与⊙C,(1)相交;(2)相切;(3)相离.求半径r的取值. 例3如图,在直角梯形ABCD中,AD∥BC,∠C=∠D=90°,若AB=6,AD=4,BC=2,试问:DC上是否存在点P,使R t△PBC∽R t△APD?

例4如图,直角梯形中,,,,为上的一点,平分,平分.求证:以为直径的圆与相切. 例5已知中,,于,,,以为圆心,为半径画圆.求证直线和⊙相离.

参考答案 例1分析如图,欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可. 解:过C点作CD⊥AB于D, 在R t△ABC中,∠C=90°,AB=4,BC=2, ∴AC=2 , ∴AB·CD=AC·BC, ∴, (1)当r =1cm时CD>r,∴圆C与AB相离; (2)当r=cm时,CD=r,∴圆C与AB相切; (3)当r=2.5cm时,CD<r,∴圆C与AB相交. 说明:从“数”到“形”,判定圆与直线位置关系. 例2 解:过C点作CD⊥AB于D, 在R t△ABC中,∠C=90°,AB=4,BC=2, ∴AC=2 , ∴AB·CD=AC·BC, ∴, (1)∵直线AB与⊙C相离,∴0rCD,即r>. 说明:从“形”到“数”,由圆与直线位置关系来确定半径. 例3 分析:若R t△PBC∽R t△APD,则∠APD+∠BPC=90°,可知∠APB=90°,所以P点为以AB为直径的圆O与DC的交点,由条件可知为⊙O与DC相切,

第1讲 直线与圆(作业)

第1讲直线与圆 A组基础题组 1.“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的( ) A.充分必要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件 2.已知圆(x-1)2+y2=1被直线x-y=0分成两段圆弧,则较短弧长与较长弧长之比为( ) A.1∶2 B.1∶3 C.1∶4 D.1∶5 3.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程是( ) A.(x+1)2+y2=2 B.(x+1)2+y2=8 C.(x-1)2+y2=2 D.(x-1)2+y2=8 4.(2017南昌第一次模拟)如图,在平面直角坐标系xOy中,直线y=2x+1与圆x2+y2=4相交于A,B两点,则cos∠AOB=() A. B.- C. D.- 5.(2017合肥第一次教学质量检测)设圆x2+y2-2x-2y-2=0的圆心为C,直线l过(0,3)与圆C交于A,B两点,若|AB|=2,则直线l的方程为( ) A.3x+4y-12=0或4x-3y+9=0 B.3x+4y-12=0或x=0 C.4x-3y+9=0或x=0 D.3x-4y+12=0或4x+3y+9=0 6.圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是. 7.过点M的直线l与圆C:(x-1)2+y2=4交于A,B两点,C为圆心,当∠ACB最小时,直线l的方程 为.

8.已知圆C:x2+y2-2x-4y+1=0上存在两点关于直线l:x+my+1=0对称,经过点M(m,m)作圆C的切线,切点为P,则|MP|= . 9.已知圆C过点P(1,1),且圆C与圆M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称. (1)求圆C的方程; (2)设Q为圆C上的一个动点,求·的最小值. 10.已知圆C:x2+y2+2x-4y+3=0. (1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程; (2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使|PM|取得最小值时点P的坐标. B组提升题组

2019-2020年高三数学二轮复习专题五第1讲直线与圆教案

2019-2020年高三数学二轮复习专题五第1讲直线与圆教案 自主学习导引 真题感悟 1.(2012·浙江)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 解析 先求出两条直线平行的充要条件,再判断. 若直线l 1与l 2平行,则a (a +1)-2×1=0,即a =-2或a =1,所以a =1是直线l 1与直线l 2平行的充分不必要条件. 答案 A 2.(2012·福建)直线x +3y -2=0与圆x 2 +y 2 =4相交于A 、B 两点,则弦AB 的长度等于 A .2 5 B .2 3 C. 3 D .1 解析 利用平面几何中圆心距、半径、半弦长的关系求解.∵圆心到直线x +3y -2=0的距离d =|0+3×0-2| 12+3 2 =1,半径r =2, ∴弦长|AB |=2r 2 -d 2 =222 -12 =2 3. 答案 B 考题分析 圆在高考命题中多以直线与圆的位置关系为主,考查直线与圆位置关系的判定、弦长的求法等,题目多以小题为主,难度中等,掌握解此类题目的通性通法是重点. 网络构建

高频考点突破 考点一:直线方程及位置关系问题 【例1】(2012·江西八所重点高中联考)“a=0”是“直线l1:(a+1)x+a2y-3=0与直线l2:2x+ay-2a-1=0平行”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 [审题导引] 求出l1∥l2的充要条件,利用定义判定. [规范解答] 当a=0时,l1:x-3=0,l2:2x-1=0,此时l1∥l2, 所以“a=0”是“直线l1与l2平行”的充分条件; 当l1∥l2时,a(a+1)-2a2=0,解得a=0或a=1. 当a=1时,l1:2x+y-3=0,l2:2x+y-3=0,此时l1与l2重合, 所以a=1不满足题意,即a=0. 所以“a=0”是“直线l1∥l2”的充要条件. [答案] C 【规律总结】 直线与直线位置关系的判断方法 (1)平行:当两条直线l1和l2的斜率存在时,l1∥l2?k1=k2;如果直线l1和l2的斜率都不存在,那么它们都与x轴垂直,则l1∥l2. (2)垂直:垂直是两直线相交的特殊情形,当两条直线l1和l2的斜率存在时,l1⊥l2?k1·k2

直线与圆位置关系知识点与经典例题

直线与圆位置关系 一.课标要求 1.能根据给定直线、圆的方程,判断直线与圆的位置关系; 2.能用直线和圆的方程解决一些简单的问题; 3.在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。 二.知识框架 相离 几何法 弦长 直线与圆的位置关系 相交 代数法 切割线定理 相切 直线与圆 代数法 求切线的方法 几何法 圆的切线方程 过圆上一点的切线方程 圆的切线方程 切点弦 过圆外一点的切线方程 方程 三.直线与圆的位置关系及其判定方法 1.利用圆心0),(=++C By Ax b a O 到直线的距离2 2 B A C Bb Aa d +++=与半径r 的大小来判 定。 (1)?r d 直线与圆相离 2.联立直线与圆的方程组成方程组,消去其中一个未知量,得到关于另外一个未知量的一元二次方程,通过解的个数来判定。 (1)有两个公共解(交点),即?>?0直线与圆相交 (2)有且仅有一个解(交点),也称之为有两个相同实根,即0=??直线与圆相切 (3)无解(交点),即????r d 练习

(位置关系)1.已知动直线5:+=kx y l 和圆1)1(:2 2=+-y x C ,试问k 为何值时,直线与圆相切、相离、相交? (位置关系)2.已知点),(b a M 在圆1:2 2 =+y x O 外,则直线1=+by ax 与圆O 的位置关系是() A.相切 B.相交 C.相离 D.不确定 (最值问题)3.已知实数x 、y 满足方程0142 2 =+-+x y x , (1)求 x y 的最大值和最小值; (2)求y x -的最大值和最小值; (3)求2 2 y x +的最大值和最小值。 〖分析〗考查与圆有关的最值问题,解题的关键是依据题目条件将其转化为对应的几何问题求解,运用数形结合的方法,直观的理解。①转化为求斜率的最值;②转化为求直线b x y +=截距的最大值;③转化为求与原点的距离的最值问题。 (位置关系)4.设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(2 2 =-+-y x 相切,则n m +的取值围是() (位置关系)5.在平面直角坐标系xoy 中,已知圆224x y +=上有且仅有四个点到直线 1250x y c -+=的距离为1,则实数c 的取值围是 6.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是 ( C ) A 、 6π B 、4π C 、3π D 、2 π (位置关系)7.圆01222 2 =+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .2 2 1+ D .221+ (最值问题)8.设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线05=--y x 的最大距离为______. 9.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆 C 的方程为( ) A .0322 2 =--+x y x B .042 2=++x y x C .0322 2 =-++x y x D .042 2 =-+x y x

讲义_直线与圆的位置关系

一、直线和圆的位置关系的定义、性质及判定 1、设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下表: 从另一个角度,直线和圆的位置关系还可以如下表示:

二、切线的性质及判定 1. 切线的性质: 定理:圆的切线垂直于过切点的半径. 推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心. 2. 切线的判定: 定义法:和圆只有一个公共点的直线是圆的切线; 距离法:到圆心距离等于半径的直线是圆的切线; 定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 3. 切线长和切线长定理: ⑴ 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长. ⑵ 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. ①切线的判定定理 设OA 为⊙O 的半径,过半径外端A 作l ⊥OA ,则O 到l 的距离d=r ,∴l 与⊙O 相切.因此,我们得到:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 注:定理的题设①“经过半径外端”,②“垂直于半径”,两个条件缺一不可.结论是“直线是圆的切线”.举例说明:只满足题设的一个条件不是⊙O 的切线. _A _ l _ l _A _ l

上 ②切线的性质定理及其推论 切线的性质定理:圆的切线垂直于过切点的半径. 三、三角形内切圆 1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形. 2. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形. 3.直角三角形的内切圆半径与三边关系 (1) (2) 图(1)中,设a b c ,,分别为ABC ?中A B C ∠∠∠,,的对边,面积为S 则内切圆半径(1)s r p =,其中()12p a b c =++; 图(2)中,90C ∠=?,则()1 2 r a b c =+- 四、典例分析:切线的性质及判定 _ O _F _E _ D _ C _ B _ A _ C _ B _ A _ C _ B _ A _c _ b _a _c _ b _a _T _A

相关文档
相关文档 最新文档