文档库 最新最全的文档下载
当前位置:文档库 › 解直角三角形及其运用(三)

解直角三角形及其运用(三)

解直角三角形及其运用(三)
解直角三角形及其运用(三)

解直角三角形及其运用(三)

教学目标

1、了解什么是坡度、坡脚、坡比以及坡比与坡脚之间的关系

2、使学生理解并灵活运用直角三角形元素间等量关系解决实际问题

3、通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力

4、渗透数形结合的数学思想,培养学生良好的学习习惯.

教学重点

灵活运用直角三角形元素间等量关系解决实际问题

教学难点

会将实际问题抽象成几何图形

教学过程

一、展示学习目标

灵活运用直角三角形元素间等量关系解决实际问题

二、知识回顾

直角三角形元素间等量关系

三、自学指导

1、阅读课本,思考下列问题:

(1)什么是坡度、坡脚、坡比?

(2)坡比与坡脚之间有什么关系?

2、完成课后练习并纠错点评

坡面的铅垂高度h和水平长度l的比叫做坡面坡度(或坡比).记作i,坡面与水平面的夹角叫做坡角,记作α,

四、例题精讲

例1:一段路基的横断面是梯形,高为4.2米,上底的宽是12.51米,路基的坡面与地面的倾角分别是32°和28°.求路基下底的宽.(精确到0.1米)

五、当堂训练

1、一水库大坝的横断面为梯形ABCD,坝顶宽6.2米,坝高23.5米,斜坡AB 的坡度i1=1∶3,斜坡CD的坡度i2=1∶2.5.求:

(1)斜坡AB与坝底AD的长度;(精确到0.1米)

(2)斜坡CD的坡角α.(精确到1°)

2、一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角α和坝底宽AD.(单位米,结果保留根号)

六、知识小结

1、坡度越大,坡角α 越大

2、i = =tan α

七、课外作业

基础训练

l h

(完整版)解直角三角形超经典例题讲解

课 题 解直角三角形 授课时间: 备课时间: 教学目标 1. 了解勾股定理 2. 了解三角函数的概念 3. 学会解直角三角形 重点、难点 三角函数的应用及解直角三角形 考点及考试要求 各考点 教学方法:讲授法 教学内容 (一)知识点(概念)梳理 考点一、直角三角形的性质 1、直角三角形的两个锐角互余 可表示如下:∠C=90°?∠A+∠B=90° 2、在直角三角形中,30°角所对的直角边等于斜边的一半。 ∠A=30° 可表示如下: ?BC= 2 1AB ∠C=90° 3、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90° 可表示如下: ?CD=2 1 AB=BD=AD D 为AB 的中点 4、勾股定理 直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即2 2 2 c b a =+ 5、摄影定理 在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项 ∠ACB=90° BD AD CD ?=2 ? AB AD AC ?=2 CD ⊥AB AB BD BC ?=2 6、常用关系式 由三角形面积公式可得: AB ?CD=AC ?BC 7.图中角α可以看作是点A 的 角 也可看作是点B 的 角; (1)

9、(1)坡度(或坡比)是坡面的 铅直 高度(h )和水平长度(l )的比。 记作i,即i = l h ; (2)坡角——坡面与水平面的夹角。记作α,有i =l h =tan α (3)坡度与坡角的关系:坡度越大,坡角α就越 大 ,坡面就越 陡 考点二、直角三角形的判定 1、有一个角是直角的三角形是直角三角形。 2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 3、勾股定理的逆定理 如果三角形的三边长a ,b ,c 有关系2 2 2 c b a =+,那么这个三角形是直角三角形。 考点三、锐角三角函数的概念 1、如图,在△ABC 中,∠C=90° ①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即 c a sin =∠= 斜边的对边A A ②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即 c b cos =∠= 斜边的邻边A A ③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即 b a tan =∠∠= 的邻边的对边A A A ④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA ,即a b cot =∠∠=的对边的邻边A A A 2、锐角三角函数的概念 锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数 3、一些特殊角的三角函数值 三角函数 0° 30° 45° 60° 90° sinα 21 22 23 1 cos α 1 23 2 2 21 0 tan α 0 33 1 3 不存在 cot α 不存在 3 1 3 3 0 4、各锐角三角函数之间的关系 (1)互余关系 sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A) (2)平方关系 1cos sin 22=+A A (3)倒数关系 tanA ?tan(90°—A)=1

《解直角三角形及其应用》教案

【教案三】23.2解直角三角形及其应用 一.教学三维目标 (一)、知识目标 使学生了解仰角、俯角的概念,使学生根据直角三角形的知识解决实际问题. (二)、能力目标 逐步培养分析问题、解决问题的能力. 二、教学重点、难点和疑点 1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题. 2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题. 三、教学过程 (一)回忆知识 1.解直角三角形指什么? 2.解直角三角形主要依据什么? (1)勾股定理:a2+b2=c2 (2)锐角之间的关系:∠A+∠B=90°

(3)边角之间的关系: tanA=的邻边的对边A A ∠∠,sinA=斜边的对边A ∠, cosA=斜边的邻边A ∠ (二)新授概念 1.仰角、俯角 当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角. 教学时,可以让学生仰视灯或俯视桌面以体会仰角与俯角的意义. 2.例1 如图(6-16),某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地平面控制点B 的俯角α=16°31′,求飞机A 到控制点B 距离(精确到1米) 解:在Rt △ABC 中sinB=AB AC ∴AB=B AC sin =2843.01200 =4221(米) 答:飞机A 到控制点B 的距离约为4221米. 例2.2003年10月15日“神州”5号载人航天飞船发射成功。当飞船完成变轨后,就在离地形表面350km 的圆形轨道上运行。如图,当飞船运行到地球表面上P 点的正上方时,从飞船上能直接看到地球上最远的点在什么位置?这样的最远点与P 点的距离是多少?(地球半径约为6400km ,结果精确到0.1km ) 分析:从飞船上能看到的地球上最远的点,应是视线与地球相切时的切点。斜边 的邻边 A A ∠=cos 斜边的对边 A A ∠=sin

(完整版)解直角三角形和应用题.doc

解直角三角形和应用题 解直角三角形既是初中几何的重要内容,又是今后学习解斜三角形,三角函数等知识的基 础,同时,解直角三角形的知识又广泛应用于测量、工程技术和物理之中,解直角三角形 的应用题还有利于培养学生空间想象的能力。因此,通过复习应注意领会以下几个方面的问 题: 一、重点难点 解直角三角形的重点是锐角三角函数的概念和直角三角形的解法。前者又是复习解直角 三角形的难点,更是复习本部分内容的关键。 二、中考导向 掌握锐角三角函数和解直角三角形是进行三角运算解决应用问题和进一步研究任意角三 角函数的重要基础。因此,解直角三角形既是各地中考的必考内容,更是热点内容。题量一 般在 4%~10% 。分值约在 8%~12% 题型多以中、低档的填空题和选择题为主。个别省市也有小型综合题和创新题。几乎每份试卷都有一道实际应用题出现。 【典型例题】 例 1. 如图,点两个村庄,现要在A 是一个半径为300 米的圆形森林公园的中心,在森林公园附近有 B、 C B、C 两村庄之间修一条长为 1000 米的笔直公路将两村连通,经测得∠ o o ABC=45,∠ ACB=30,问此公路是否会穿过该森林公园?请通过计算进行说明。 AH 解:在Rt ABH 中, BH tan45 A AH 在Rt ACH 中, CH AH AH tan30 1000 tan45 tan30 B H C AH 500 3 500 300 不会穿过 例 2. 如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整 地带,该建筑物顶端宽度AD和高度 DC都可直接测得,从A、D、 C三点可看到塔顶 端H,可 供使用的测量工具有皮尺、测倾器。 ( 1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案。具体要求如下:测量数据尽可能少,在所给图形上,画出你设计的测量平面图,并 将应测数据标记在图形上(如果测 A、D间距离,用 m表示;如果测 D、C间距离,用 n 表示; 如果测角,用α、β、γ表示)。 ( 2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示,测倾器高度忽略不计)。

解直角三角形及其应用

解直角三角形及其应用 1. 某地下车库出口处安装了“两段式栏杆”,如图J 25-2①所示,点A 是栏杆转动的支点,点E 是栏杆两段的连接点.当车辆经过时,栏杆最多只能升起到如图J 25-2②所示的位置,其示意图如图J 25-2③所示(栏杆宽度忽略不计),其中AB⊥BC,EF ∥BC ,∠AEF =143°,AB =AE =1.2米,那么适合该地下车库的车辆限高标志牌为(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)( ) 图J 25-2 图J 25-3 2.如图J 25-4,某人站在楼顶观测对面的笔直的旗杆AB.已知观测点C 到旗杆的距离CE =8 m ,测得旗杆的顶部A 的仰角∠ECA=30°,旗杆底部B 的俯角∠ECB=45°,那么旗杆AB 的高度是( ) 图J 25-4 A .(8 2+8 3)m B .(8+8 3)m C .(8 2+ 8 33)m D .(8+8 3 3 )m 3.如图J 25-5所示,河堤横断面迎水坡AB 的坡角是30°,堤高BC =5 m ,则坡面AB 的长度是( ) 图J 25-5 A .10 m B .10 3 m C .15 m D .5 3 m 4.奥林匹克公园观光塔由五座高度不等、错落有致的独立塔组成.在综合实践活动课中,某小组的同学决定利用测角仪测量这五座塔中最高塔的高度(测角仪高度忽略不计).他们的操作方法如下:如图J 25-6,他们先在B 处测得最高塔塔顶A 的仰角为45°,然后向最高塔的塔基直行90米到达C 处,再次测得最高塔塔顶A 的仰角为58°.请帮助他们计算出最高塔的高度AD 约为多少米(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.60).

解直角三角形教案(完美版)

在线分享文档地提升自我 By :麦群超 解直角三角形 一、教育目标 (一)知识与技能 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的 两个锐角互余及锐角三角函数解直角三角形. (二)过程与方法 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角 三角形,逐步培养学生分析问题、解决问题的能力. (三)情感态度与价值观 渗透数形结合的数学思想,培养学生良好的学习习惯. 二、重、难点 重点:直角三角形的解法. 难点:三角函数在解直角三角形中的灵活运用. 三、教学过程 (一)明确目标 1.在三角形中共有几个元素? 2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系 sin ;cos ;t an ;cot b a b a B B B B c c a b ====; sin ;cos ;tan ;cot a b a b A A A A c c b a ==== 如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成. 的对边的邻边 ;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠= ∠∠=∠=∠= cot tan cos sin (2)三边之间关系 a 2 +b 2 =c 2 (勾股定理) (3)锐角之间关系∠A+∠B=90°. 以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二)整体感知 教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习巩固.同时,本课又为以后的应用举例打下基础,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.

(完整版)初中解直角三角形练习题

解直角三角形练习题 一、 真空题: 1、 在Rt △ABC 中,∠B =900,AB =3,BC =4,则sinA= 2、 在Rt △ABC 中,∠C =900,AB =,35cm BC cm = 则SinA= cosA= 3、 Rt △ABC 中,∠C =900,SinA=5 4 ,AB=10,则BC = 4、α是锐角,若sin α=cos150,则α= 若sin53018\=0.8018,则cos36042\= 5、 ∠B 为锐角,且2cosB -1=0则∠B = 6、在△ABC 中,∠C =900,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,a =9,b =12,则sinA= sinB= 7、 Rt △ABC 中,∠C =900,tanA=0.5,则cotA= 8、 在Rt △ABC 中,∠C =900,若b a 32=则tanA= 9.等腰三角形中,腰长为5cm ,底边长8cm ,则它的底角的正切值是 10、若∠A 为锐角,且tan 2A+2tanA -3=0则∠A = 11、Rt △ABC 中,∠A =600,c=8,则a = ,b = 12、在△ABC 中,若32=c ,b =3,则tanB= ,面积S = 13、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC = 14、在△ABC 中,∠B =900,AC 边上的中线BD =5,AB =8,则tanACB=

二、选择题 1、在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦值 ( ) A 、都扩大2倍 B 、都扩大4倍 C 、没有变化 D 、都缩小一半 2、若∠A 为锐角,且cotA <3,则∠A ( ) A 、小于300 B 、大于300 C 、大于450且小于600 D 、大于600 3、在Rt △ABC 中,已知a 边及∠A ,则斜边应为 ( ) A 、asinA B 、 A a sin C 、acosA D 、A a cos 4、等腰三角形底边与底边上的高的比是2:3,则顶角为( ) A 、600 B 、900 C 、1200 D 、1500 5、在△ABC 中,A ,B 为锐角,且有sinA =cosB ,则这个三角形是( ) A 、等腰三角形 B 、直角三角形 C 、钝角三角形 D 、锐角三角形 6、有一个角是300的直角三角形,斜边为1cm ,则斜边上的高为( ) A 、41cm B 、21cm C 、43cm D 、2 3 cm

解直角三角形知识点

一、直角三角形的性质: 1、两个锐角互余 ∵∠C=90°∴∠A+∠B=90° 2、在直角三角形中,30°角所对的直角边等于斜边的一半。 ∵∠C=90°∠A=30°∴ BC= 2 1 AB 3、直角三角形斜边上的中线等于斜边的一半 ∵∠ACB=90° D 为AB 的中点 ∴ CD= 2 1 AB=BD=AD 4、勾股定理:222c b a =+ :22 2 a b c +=还可以变形为2 2 2 a c b =-,2 2 2 b c a =-. 5、射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项 ∵∠ACB=90°CD ⊥AB ∴ BD AD CD ?=2 AB AD AC ?=2 AB BD BC ?=2 6、常用关系式 由三角形面积公式可得:AB ?CD=AC ?BC 二、锐角三角函数 1、锐角三角函数定义:在RT ABC ?中,∠C=90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,则: sin A a A c ∠= =的对边斜边 cos A b A c ∠==的邻边斜边 tan A a A A b ∠= =∠的对边的邻边 c o t A b A A a ∠==∠的邻边的对边 常用变形:sin a c A = ;sin a c A =等,由同学们自行归纳 2、锐角三角函数的有关性质: (1)当 °<∠A<90°时,0sin 1A <<;0cos 1A <<;tan 0A >;cot 0A > (2)在0° 90°之间,正弦、正切(sin 、tan )的值,随角度的增大而增大;余弦、余切(cos 、cot )的值,随角度的增大而减小。 3、同角三角函数的关系: A C B D

解直角三角形练习题及答案

解直角三角形 一、选择题 1、如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于( ) (A).1 (B).2 (C).22 (D).22 2、如果α是锐角,且54 cos =α,那么αsin 的值是( ). (A )259 (B ) 54 (C )53 (D )2516 3、等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ). (A )513 (B )12 13 (C )1013 (D )5 12 4、. 以下不能构成三角形三边长的数组是 ( ) (A )(1,3,2) (B )(3,4,5) (C )(3,4,5) (D )(32,42,52) 5、在Rt △ABC 中,∠C =90°,下列式子中正确的是( ). (A )B A sin sin = (B )B A cos sin = (C )B A tan tan = (D )B A cot cot = 6、在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且53 cos =α, AB = 4, 则AD 的长为( ). (A )3 (B )316 (C )320 (D )516 7、某市在“旧城改造”中计划在一 块如图所示的三角形空地上种植某种草皮以美 化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ). (A )450a 元 (B )225a 元 (C )150a 元 (D )300a 元 8、已知α为锐角,tan (90°-α)=3,则α的度数为( ) (A )30° (B )45° (C )60° (D )75° 9、在△ABC 中,∠C =90°,BC =5,AB =13,则sin A 的值是( ) (A )135 (B )1312 (C )125 (D )512 10、如果∠a 是等边三角形的一个内角,那么cos a 的值等于( ).

最新(五)解直角三角形的实际应用(含答案)

精品文档 (五 )解直角三角形的实际应用 (含答案 ) 1. (2017 湖南株洲第 23 题 )如图示一架水平飞行的无人机 AB 的尾端点 A 测得正前方的桥的左端点 P 的俯角为 α 其中 tan α=2 3 ,无人机的飞行高度 AH 为 500 3米,桥的长度为 1255 米. ①求点 H 到桥左端点 P 的距离; ②若无人机前端点 B 测得正前方的桥的右端点 Q 的俯角为 30°,求这架无人机的长度 AB . 【答案】①求点 H 到桥左端点 P 的距离为 250 米;②无人机的长度 AB 为5米. ②设 BC ⊥HQ 于 C . 在 Rt △BCQ 中,∵ BC=AH=500 3,∠ BQC=30°, BC ∴ CQ= =1500 米,∵ PQ=1255 米,∴ CP=245 米, tan30 ∵HP=250 米,∴ AB=HC=250﹣245=5 米. 答:这架无人机的长度 AB 为 5 米. . 考点:解直角三角形的应用﹣仰角俯角问题. 2. ( 2017 内蒙古通辽第 22 题)如图,物理老师为同学们演示单摆运动,单摆左右摆动中,在 EOA 300 ,在OB 的位置时俯角 FOB 600 .若OC EF ,点 A 比点 B 高 7cm . OA 的位置时俯角

求( 1)单摆的长度(3 1.7 );

精品文档 (2)从点A摆动到点B 经过的路径长(3.1) 答案】( 1)单摆的长度约为 18.9cm(2)从点 A 摆动到点 B经过的路径长为 29.295cm 1 OP=OAcos∠ AOP= x, 2 在 Rt△ BOQ 中, 由 PQ=OQ﹣ OP 可得3 x﹣1 x=7,22 解得: x=7+7 3 ≈ 18.9( cm), . 答:单摆的长度 约为 18.9cm; (2)由( 1)知,∠ AOP=60°、∠ BOQ =30°,且 OA=OB=7+7 3 ,∴∠ AOB=90°,则在 Rt△ AOP 中, OQ=OBcos∠BOQ= 2

解直角三角形知识点及典型例题

解直角三角形 本章知识结构梳理 一、锐角三角函数 1、梯子越陡——倾斜角_____ 倾斜角越大——铅直高度与梯子的比_____ 倾斜角越大——水平宽度与梯子的比_____ 倾斜角越大——铅直高度与水平宽度的比____ 2、直角三角形AB 1C 1 和直角三角形ABC 有什么关系? 边之间的关系呢? 3、三角函数定义: 注意:sinA ,cosA ,tanA 都是一个完整的符号,单独的sin ,cos ,tan 是没有意义的,其中A 前面的“∠”一般省略不写 例1、把Rt △ABC 各边的长度都扩大3倍得Rt △A ′B ′C ′,那么锐角A ,A ′的余弦值的关系为( ) A .cosA=cosA ′ B .cosA=3cosA ′ C .3cosA=cosA ′ D .不能确定 例2、在△ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,则下列各项中正确的是( ) A .a=c ·sin B B .a=c ·cosB C .a=c ·tanB D .以上均不正确 例3、在Rt △ABC 中,∠C=90°,cosA= 23 ,则tanB 等于( ) 锐角三角函数 1锐角三角函数的定义 ⑴、正弦; ⑵、余弦; ⑶、正切。 2、30°、45°、60°特殊角的三角函数值。 3、各锐角三角函数间关系 ⑴、定义; ⑵、直角三角形的依据 ⑶、解直角三角形的应用。 ①、三边间关系; ②、锐角间关系; ③、边角间关系。

A . 35 B .3 C .2 5 D . 2 例4、已知:α是锐角,tan α= 7 24 ,则sin α=_____,cos α=_______. 4、取值范围:0<sinA <1,0<cosA <1,tanA >0 解直角三角形的知识在生活和生产中有广泛的应用,如在测量高度、距离、角度,确定方案时常用到解直角三角形。解这类题关键是把实际问题转化为数学问题,常通过作辅助线构造直角三角形来解决。 坡度(坡比) 方向角度 俯角仰角 例6、如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB ?的值. 例7、如图,∠C=90°,∠DBC=30°,AB=BD ,根据此图求tan15°的值.

解直角三角形的应用教案

解直角三角形的应用教案

解直角三角形的应用教案 ―-俯角仰角问题教学目标: 1、了解仰角、俯角的概念。 2、能根据直角三角形的知识解决与仰角、俯角有关的实际 问题。 3、能够借助辅助线解决实际问题,掌握数形结合的思想方 法。 教学重点: 解直角三角形在实际中的应用。 教学难点: 将某些实际问题中的数量关系归结为直角三角形中元素之间的关系,从而解决问题。 教学方法:三疑三探 教学过程: 一、复习引入新课 如图:在△ABC中,∠C=90°, ∠A、∠B、∠C的对边分别为 a,b,c. 则三边之间关系为; 锐角之间关系为;边角之间关系(以锐角A为例)为。 看来大家对基础知识掌握得还是比较牢固的。下面我们来看这样一个问题: 问题:小玲家对面新造 了一幢图书大厦,小玲心想: “站在地面上可以利用解直角 三角形测得图书大厦的高,站 在自家窗口能利用解直角三角 形测出大厦的高吗?他望着大厦顶端和大厦底部,可测出视线与水平线之间的夹角各一个,但这两个角如何命名呢? ο 46A B C Cο 29 A

AE =DE ×tan a =BC ×tan a =22.7×tan 22° ≈9.17 AB =BE +AE =AE +CD =9.17+1.20 ≈10.4(米) 答:旗杆的高度约为10.4米. 2、解:在ΔABC 中,∠ACB =90° ∵ ∠CAB =46° AC=32m tan ∠CAB= ∴BC=AC ·tan46° ≈33.1 在ΔADC 中,∠ACD=90° ∵ ∠CAD=29° AC=32m tan ∠CAD= ∴DC=AC ·tan29° ≈17.7 ∴BD=BC+CD=33.1+17.7=50.8≈51 答:大厦高BD 约为51m. 二、 质疑再探 在本节课的探究和学习过程中你还有那些疑惑或问题?请大胆提出来,大家共同解决。 三、 运用拓展 1、 生自编题 2、 师补充题 1、一架飞机以300角俯冲400米,则飞机的高度变化情况是( c ) C ο29D A BC AC DC AC ο46A B C

解直角三角形练习题1(含答案)

解直角三角形练习题1 一. 选择题:(每小题2分,共20分) 1. 在△EFG 中,∠G=90°,EG=6,EF=10,则cotE=( ) A.43 B. 34 C. 53 D. 3 5 2. 在△ABC 中,∠A=105°,∠B=45°,tanC 的值是( ) A. 21 B. 3 3 C. 1 D. 3 3. 在△ABC 中,若2 2cos =A ,3tan = B ,则这个三角形一定是( ) A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 等腰三角形 4. 如图18,在△EFG 中,∠EFG=90°,FH ⊥EG ,下面等式 中,错误的是( ) A.EG EF G =sin B. EF EH G =sin C. FG GH G =sin D. FG FH G =sin 5. sin65°与cos26°之间的关系为( ) A. sin65°cos26° C. sin65°=cos26° D. sin65°+cos26°=1 6. 已知30°<α<60°,下列各式正确的是( ) A. B. C. D. 7. 在△ABC 中,∠C=90°,5 2 sin = A ,则sin B 的值是( ) A.32 B.52 C.54 D. 5 21 8. 若平行四边形相邻两边的长分别为10和15,它们的夹角为 60°,则平行四边形的面积是( )米2 A. 150 B.375 C. 9 D. 7 9. 如图19,铁路路基横断面为一个等腰梯形,若腰的坡度为i= 2∶3,顶宽是3米,路基高是4米,则路基的下底宽是( ) A. 7米 B. 9米 C. 12米 D. 15米 10. 如图20,两条宽度都为1的纸条,交叉重叠放在一起,且它 们的交角为α,则它们重叠部分(图中阻影部分)的面积为( ) A. αsin 1 B. α cos 1 C. αsin D. 1 二. 填空题:(每小题2分,共10分) 11. 已知0°<α<90°,当α=__________时,2 1 sin =α,当α=__________时,Cota=3. 12. 若 ,则锐角α=__________。 13. 在Rt △ABC 中,∠C=90°,5 3 sin = A ,36=++c b a ,则a=__________,b=__________,c=__________,cotA=__________。 14. 若一个等腰三角形的两边长分别为2cm 和6cm ,则底边上的高为__________cm ,底角的余弦值为__________。

(完整版)解直角三角形练习题(三)及答案

解直角三角形 一、 填空题: 1. 若∠A 是锐角,cosA = 2 3 ,则∠A = 。 2. 在△ABC 中,∠C =90°,若tanA =2 1 ,则sinA = ; 3. 求值:1sin 60cos 4522 ?? ?+2sin30°-tan60°+cot45=__________。 4. 在倾斜角为30°的山坡上种树,要求相邻两棵树间的水平距离为3米,那么,相邻两棵 树间的斜坡距离为 米。 5. 已知等腰三角形的周长为20,某一内角的余弦值为3 2,那么该 等腰三角形的腰长等于 。 6. 如图:某同学用一个有60°角的直角三角板估测学校旗杆AB 的高度,他将60°角的直角边水平放在1.5米高的支架CD 上,三角板的斜边与旗杆的顶点在同一直线上,他又量得D 、B 的距离为5米,则旗杆AB 的高度约为 米。(精确到1米, 3取1.732) 7. 如图,△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,且BE =2AE ,已知 AD =33,tan ∠BCE = 3 3,那么CE = 。 8. 正方形ABCD 的边长为1。如果将线段BD 绕着点B 旋转后,点D 落在BC 延长线上的点D '处,那么tan ∠BA D '= 。 二、选择题 1. 在△ABC 中,已知AC =3、BC =4、AB =5,那么下列结论成立的是( ) A 、SinA = 45 B 、cosA =53 C 、tanA =43 D 、cotA =5 4 2. 在△ABC 中,AB =AC =3,BC =2,则6cosB 等于 ( ) (A )3 (B )2 (C )33 (D ) 32 3. 为测楼房BC 的高,在距楼房30米的A 处,测得楼顶B 的仰角 为α,则楼房BC 的高为( ) E D C B A 四川03/3 D A B C α

《解直角三角形》典型例题

《解直角三角形》典型例题 例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形. 分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解 (1) ; (2)由a b B = tan ,知 ; (3)由c a B = cos ,知860cos 4 cos =? == B a c . 说明 此题还可用其他方法求b 和c . 例 2在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形. 解法一 ∵ ∴ 设 ,则 由勾股定理,得 ∴ . ∴ . 解法二 13 3 330tan =? =?=b a 说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3 设 中, 于D ,若 ,解三 角形ABC .

分析“解三角形ABC”就是求出的全部未知元素.本题CD不是 的边,所以应先从Rt入手. 解在Rt中,有: 在Rt中,有 说明(1)应熟练使用三角函数基本关系式的变形,如: (2)平面几何中有关直角三角形的定理也可以结合使用,本例中 “”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值: 所以解直角三角形问题,应开阔思路,运用多种工具. 例4在中,,求. 分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差; (2)不是直角三角形,可构造直角三角形求解.

解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有 ,且有 ; 在中,,且 , ∴; 于是,有 , 则有 说明还可以这样求:

解直角三角形知识点整理

在RT ABC ?中,∠C=90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,则: sin A a A c ∠= =的对边斜边 cos A b A c ∠==的邻边斜边 tan A a A A b ∠= =∠的对边的邻边 c o t A b A A a ∠==∠的邻边的对边 常用变形:sin a c A = ;sin a c A =等,。 二、 锐角三角函数的有关性质: 1、 当0°<∠A<90°时,0sin 1A <<;0cos 1A <<;tan 0A >;cot 0A > 2、 在0°--90°之间,正弦、正切(sin 、tan )的值,随角度的增大而增大;余弦、余切(cos 、 cot )的值,随角度的增大而减小。 三、 同角三角函数的关系: 22sin cos 1A A += t a n c o t 1A A = sin tan cos A A A = c o s c o t sin A A A = 常用变形:2 sin 1cos A A =- 2c o s 1s i n A A =- 四、 正弦与余弦,正切与余切的转换关系: 如图1,由定义可得:sin cos cos(90)a A B A c = ==?- 同理可得: sin cos(90)A A =?- cos sin(90)A A =?-tan cot(90)A A =?- c o t t a n (90A A =?- 五、 特殊角的三角函数值: 三角函数 sin α cos α tan α cot α 30° 12 32 33 3 45° 22 22 1 1 60° 32 12 3 33 六、 解直角三角形的基本类型及其解法总结: 类型 已知条件 解法 两边 两直角边a 、b 2 2c a b =+,tan a A b = ,90B A ∠=?-∠ 直角边a ,斜边c 22 b c a =-,sin a A c =,90B A ∠=?-∠ 一边 一锐角 直角边a ,锐角A 90B A ∠=?-∠,cot b a A =,sin a c A = 斜边c ,锐角A 90B A ∠=?-∠,sin a c A = ,cos b c A = 60° 30° 32 1 B C A 45° 22 2 B C A

专题42:解直角三角形和应用

专题42:解直角三角形和应用 一、选择题 1. (2012广东深圳3分)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300 ,同一时 刻,一根长为l 米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为 【 】 A.(6米 B.12米 C.(4+米 D .10米 【答案】A 。 【考点】解直角三角形的应用(坡度坡角问题),锐角三角函数 定义,特殊角的三角函数值,相似三角形的判定和性质。 【分析】延长AC 交BF 延长线于E 点,则∠CFE=30°。 作CE⊥BD 于E ,在Rt△CFE 中,∠CFE=30°,CF=4, 在Rt△CED 中,CE=2, ∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,∴DE=4。 ∵△DCE∽△DAB,且CE :DE=1:2, ∴在Rt△ABD 中,AB=12BD=(12=A 。 2. (2012浙江嘉兴、舟山4分)如图,A 、B 两点在河的两岸,要测量这两点之间的距离,测量者在与A 同侧的河岸边选定一点C ,测出AC=a 米,∠A=90°,∠C=40°,则AB 等于【 】米.

A . asin40° B . acos40° C . atan40° D .0a tan40 【答案】C 。 【考点】解直角三角形的应用,锐角三角函数定义。 【分析】∵△ABC 中,AC=a 米,∠A=90°,∠C=40°, ∴AB=atan40°。故选C 。 3. (2012福建福州4分)如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热 气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点煌距离是【 】 A .200米 B .2003米 C .2203米 D .100(3+1)米 【答案】D 。 【考点】解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值。 【分析】图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可: 由已知,得∠A=30°,∠B=45°,CD =100, ∵ CD⊥AB 于点D , ∴在Rt△ACD 中,∠CDA=90°,tanA =CD AD ,∴ AD=CD tanA =1003 3 =1003。 在Rt△BCD 中,∠CDB=90°,∠B=45°,∴ DB=CD =100。 ∴ AB=AD +DB =1003+100=100(3+1)(米)。故选D 。 4. (2012湖北宜昌3分)在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳 光线与水平面的夹角为27°,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为【 】

解直角三角形的知识点总结

解直角三角形 一、锐角三角函数 (一)、锐角三角函数定义 在直角三角形ABC 中,∠C=900,设BC=a ,CA=b ,AB=c ,锐角A 的四个三角函数是: (1) 正弦定义:在直角三角形中ABC ,锐角A 的对边与斜边的比叫做角A 的正弦,记作sinA ,即 sin A = c a , (2)余弦的定义:在直角三角行ABC ,锐角A 的邻边与斜边的比叫做角A 的余弦,记作cosA ,即 cos A = c b , (3)正切的定义:在直角三角形ABC 中,锐角A 的对边与邻边的比叫做角A 的正切,记作tanA ,即 tan A =b a , (4)锐角A 的邻边与对边的比叫做∠A 的余切,记作cotA 即 a A A A b 的对边的邻边cot =∠∠= 锐角A 的正弦、余弦,正切、余切都叫做角A 的锐角三角函数。 这种对锐角三角函数的定义方法,有两个前提条件: (1)锐角∠A 必须在直角三角形中,且∠C=900; (2)在直角三角形 ABC 中,每条边均用所对角的相应的小写字母表示。 否则,不存在上述关系

注意:锐角三角函数的定义应明确(1) c a , c b ,b a ,a b 四个比值 的大小同△ABC 的三边的大小无关,只与锐角的大小有关,即当锐角A 取固定值时,它的四个三角函数也是固定的; (2)sinA 不是sinA 的乘积,它是一个比值,是三角函数记号,是一个整体,其他三个三角函数记号也是一样; (3)利用三角函数定义可推导出三角函数的性质,如同角三角函数关系,互余两角的三角函数关系、特殊角的三角函数值等; (二)、同角三角函数的关系 (1)平方关系: 12 2 s i n =?+C O S α (2)倒数关系:tan a cota=1 (3)商数关系:? ? =???= sin cos cot ,cos sin tan 注意:(1)这些关系式都是恒等式,正反均可运用,同事还要注 意它们的变形公式。 (2)()??sin sin 2 2 是 的简写,读作“?sin 的平方”,不能将 ??2 2 sin 写成sin 前者是a 的正弦值的平方,后者无意义; (3)这里应充分理解“同角”二字,上述关系式成立的前提是所涉及的角必须相同,如1cot tan ,12 2 3030 cos sin 2 2 =?=? +? ,而 1cos sin 2 2 =+ ?β就不一定成立。 (4)同角三角函数关系用于化简三角函数式。 (三)余角的函数关系式 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它

解直角三角形应用专题带答案-

解直角三角形应用专题带答案

解直角三角形应用专题练习 一?解答题(共21小题) 1 ?在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的 高度?用测角仪在A处测得雕塑顶端点C的仰角为30。,再往雕塑方向前进4 米至B 处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值?) A B 2?如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处, 它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处, 求此时船距灯塔的距离(参考数据:匚"1.414,二"1.732,结果取整数). 3. 2018年4月12日,菏泽国际牡丹花会拉开帷幕,菏泽电视台用直升机航拍技术全程直播.如图,在直升机的镜头下,观测曹州牡丹园A处的俯角为30°, B处的俯角为45°,如果此时直升机镜头C处的高度CD为200米,点A B、D在同一条直线上,则A、B两点间的距离为多少米?(结果保留根号) 4.小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮 通过操控器指令无人机测得桥头B,C的俯角分别为/ EAB=60,/ EAC=30,第2页(共 31页)

且D, B, C在同一水平线上?已知桥BC=30米,求无人机飞行的高度AD.(精 确到0.01米.参考数据:匚~ 1.414 , 7^ 1.732 ) 5?我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其 中山脚A C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由 B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据 1.732 ) 6.随着航母编队的成立,我国海军日益强大. 2018年4月12日,中央军委在南海海域隆重举行海上阅兵,在阅兵之前我军加强了海上巡逻,如图,我军巡

解直角三角形的方法与技巧

解直角三角形常用解题方法与技巧 解直角三角形所涉及的知识面较广,题目灵活性、综合性较强,因而学习起来可能会有一定的困难,为帮助大家理解并掌握其中的解题方法与解题技巧,现结合实例归纳总结如下: 一、巧妙应变,走出解题陷阱 例1 如图①,在Rt △ABC 中,AB =c ,AC =b ,BC =a ,∠A =90°, ⑴、若a =15,b =12,求c ;⑵、若b =8,c=15,求a . 简析 由∠A =90°知,本题a 才是斜边,故应运用勾股定理 222b c a +=求解. 解 ⑴、∵∠A =90°,AB =c ,AC =b ,BC =a ,∴222b c a +=, 又∵c >0,∴9c ===. ⑵、由⑴知222b c a +=,∴17a ==. 评注 解直角三角形问题,审题很重要,有时候稍一疏忽就有可能导致错解或者漏解的产生.本例在求解时正是注意到了斜边这一特殊边长的变化从而避免了解题错误的发生. 二、巧设参数,化繁难为简易 例2 如图②,在△ABC 中,∠C =90°,sin A =45 ,求tan B 的值. 简析 要算tan B ,必须先求出直角边AC 、BC 的长,注意到题中只 有“sin A =35 ”而没有给出相应线段的长,故考虑采用设参数的办法进行解决. 解 设BC =4k ,则AB =5k (k >0). ∵在△ABC 中,∠C =90°,∴AC 3k ==, ∴tan AC B BC ==3344 k k =. 评注 对于已知特殊角而求三角函数值(或线段比值)的解直角三角形问题,有时候适当引入参数可以帮助我们在解题过程中少走不少弯路. 三、巧建模型,以不变应万变 例3 如图③所示,某小岛周围40海里内布满暗礁,一艘船由西向 东航行,起初在A 处测得小岛在北偏东60°方向,航行30海里后在B 处 又测得小岛在东北方向,如果该船不改变航行方向而继续向前航行,那 么它会有触礁危险吗? 简析 过O 作OH ⊥AB 于H ,将实际问题转化为解直角三角形问

解直角三角形的应用典型习题(方位角)

1.如下图,某船以每小时36海里的速度向正东方向航行,在点A 测得某岛C 在北偏东60°方向上,航行半小时后到达点B 测得该岛在北偏东30°方向上,已知该岛周围16海里内有暗礁。(1)说明点B 是否在暗礁区域内;(2)若继续向东航行有无触礁的危险?请说明理由。 2.如图,海岛A 四周20海里周围内为暗礁区,一艘货轮由东向西航行,在B 处见岛A 在北偏西60?,航行24海里到C ,见岛A 在北偏西15?,货轮继续向西航行,有无触礁的危险 3.如图所示, A 、 B 两城市相距 100km .现计划在这两座城市间修筑一条高速公路(即线段 AB ),经测 量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上.已知森林保护区的范围在 以P 点为圆心,50km 为半径的圆形区域内.请问计划修筑的这条高速公路 1.732 1.414) 4.为打击索马里海盗,保护各国商船的顺利通行,我海军某部奉命前往该海域执行护航任务.某天我护航 舰正在某小岛A 北偏西45°并距该岛20海里的B 处待命.位于该岛正西方向C 处的某外国商船遭到海盗袭击,船长发现在其北偏东60°的方向有我军护航舰(如图所示),便发出紧急求救信号.我护航舰接警后,立即沿BC 航线以每小时60海里的速度前去救援.问我护航舰需多少分钟可以到达该商船所在的位置C 处?(结果精确到个位) 5.如图,某天然气公司的主输气管道从A 市的东偏北30°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N ,使到该小区铺设的管道最短,并求AN 的长. 6.如图,A 城气象台测得台风中心在A 城的正西方300千米处,以每小时10千米的速度向北偏东60o 的BF 方向移动,距台风中心200千米的范围内是受这次台风影响的区域。(1) 问A 城是否会受到这次台风的影响?为什么?(2) 若A 城受到这次台风的影响,那么A 城遭受这次台风影响的时间有多长? 7. 在东西方向的海岸线l 上有一长为1km 的码头MN (如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东60°,且与A 相 距的C 处.(1)求该轮船航行的速度(保留精确结果); (2)如果该轮船不改变航向继续航行,那么轮船能否正 好行至码头MN 靠岸?请说明理由. A B F E P 45° 30 ° 东 l

相关文档
相关文档 最新文档