文档库 最新最全的文档下载
当前位置:文档库 › 1KVA单相逆变器设计

1KVA单相逆变器设计

1KVA单相逆变器设计
1KVA单相逆变器设计

目录

摘要....................................................................... II 1 概述及设计要求.. (1)

1.1概述 (1)

1.2 设计要求 (1)

2 总体设计方案介绍及原理框图 (2)

2.1 方案概述 (2)

2.2 逆变电路及换流原理介绍 (2)

2.3 电压型逆变电路的特点及主要类型 (3)

2.4 系统原理框图 (3)

3 各电路模块设计 (4)

3.1 逆变电路的主电路设计 (4)

3.2 驱动电路设计 (5)

3.2.1 CMOS管介绍 (5)

3.2.2 信号放大器介绍 (6)

3.3 触发电路设计 (6)

3.4 过流保护设计 (7)

3.5 滤波设计 (7)

4 参数计算 (8)

5 心得体会 (9)

参考文献 (10)

摘要

本系统是根据无源逆变的实用原理,采用单相全桥逆变电路工作方式,实现把直流电源(48v)转换成交流电(1KVA 220V)。在本设计电路中,将48V直流电压经逆变器转变为交流电压,再由工频变压器升压,最后通过低频滤波器滤波实现输出为220V的交流电压。

逆变器的日常用途

1.汽车上的逆变器所获得的220V电,是220V 50HZ,高档点的是正弦波的,便宜的一般是方波的。正弦波的那种和接插座上用的电,是一样的,而方波的其实也可以用,只不过如果用风扇等有电机的设备,会有一些噪音,之所以用方波,就是因为这种调制方式成本比较低。

2.接笔记本,电视,碟机之类的东西,只要在他的额定功率下使用,都没问题。但是需要注意他是接在汽车蓄电池上的,虽然他一般都是11V就自动保护断电,避免电压过低导致车无法启动,但是还是不适宜在引擎不运转的情况下用,所以如果用负载比较大,还是建议启动引擎。如果是给手机充电没什么问题。

关键字:单相、全桥、逆变、升压、滤波

1KVA单相逆变器设计

1 概述及设计要求

1.1概述

逆变器(inverter)是把直流电能(电池、蓄电瓶)转变成交流电(一般为220v50HZ 正弦或方波)。应急电源,一般是把直流电瓶逆变成220V交流的。通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。它由逆变桥、触发电路和滤波电路组成。

日常用途:汽车上的逆变器所获得的220V电,是220V 50HZ,高档点的是正弦波的,便宜的一般是方波的。正弦波的那种和接插座上用的电,是一样的,而方波的其实也可以用,只不过如果用风扇等有电机的设备,会有一些噪音,之所以用方波,就是因为这种调制方式成本比较低。一般,车载的这个逆变器,功率最大不过500瓦,空调一般都700多瓦,而且,你真的那么想把家用空调装车上?汽车里的空调,包括那些大客车,都是让引擎直接驱动压缩机的,不是用电的,如果中间多一个电的转换过程,损耗就更大了。而且也不好装,还不如用汽车空调。

1.2 设计要求

要求设计一个输入为48V直流电压,输出容量为1KVA,输出电压为220V单相交流电的逆变器。

2 总体设计方案介绍及原理框图

2.1 方案概述

本次课程设计的主要目标,是设计一个单相桥式逆变电路,且本设计采用电压型逆变器,同时要设计相应的触发电路和过电流过电压保护电路。由题,我根据书本的知识,采用了单相全桥逆变电路。

经过比较晶闸管,IGBT ,及CMOS 管等可控器件,最终选择了CMOS 管作为控制臂桥通断的器件。因为CMOS 管分为N 沟道和P 沟道2个类型,结合起来可以更为方便。相对于晶闸管来说,CMOS 管只需要2个相反的触发脉冲即可实现电路的控制。而晶闸管则需要4个,对每个臂桥的器件进行控制。

采用了555定时器来进行触发。因为是逆变电路,不要求对 进行控制,所以选择了555定时器来输出50HZ 、0~5V 的矩形波。并通过FET (场效应晶体管)放大,用以驱动MOS 管。555定时器的输出频率可通过调节R1,RV1和C5来进行设定。

2.2 逆变电路及换流原理介绍

与整流电路相比较,把直流电变成交流电的电路称为逆变电路。当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变。在不加说时,逆变电路一般指无源逆变。逆变电路在生活中有很广泛的应用。

逆变器的主体为逆变电路。其基本工作原理如下:图1中41~S S 为全桥电路的4个臂,由电力电子器件及其辅助电路组成。当1S 、4S 闭合,2S 、3S 断开时,负载电压0u 为正;当2S 、3S 闭合,1S 、4S 断开时,0u 为负。由此,把直流电变成了交流电,改变两组开关切换的频率,即可控制输出交流电的频率。

图1 系统简略原理图

交流电路在工作过程中不断发生电流从一个支路向另一个支路的转移,这称为换流。换流是实现逆变的基础。通过控制开关器件的开通和关断来控制电流通过支路,这是实现换流的基本原理。换流方式有多种,其中主要分为器件换流、电网换流、负载换流、和强迫换流四种方式。

2.3 电压型逆变电路的特点及主要类型

根据直流测电源的性质不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的称为电流型逆变电路。

电压型逆变电路有以下特点:

1) 直流侧为电压源,或并联有大电容,相当于电压源。直流侧电压基本无脉动,直流回路呈现低阻抗。

2) 由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关,而交流侧输出电流波形和相位应为负载阻抗的情况不同而不同。

3) 当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。为了给交流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管,又称为续流二极管。

逆变电路分为三相和单相两大类。其中,单相逆变电路主要采用桥式接法。主要有:单相半桥和单相全桥电路。而三相电压型逆变电路则是由三个单相逆变电路组成。最常见的是三相桥式逆变电路。

2.4 系统原理框图

系统原理框图如下图2所示:

图2 系统原理框图

过流保护

触发电路

220V AC

48V DC 供电 逆变主电路 工频变压器

一阶RC 低通滤波器

3 各电路模块设计

图2为本次设计的完整电路,具体各部分电路如后文所示。

图2 单相全桥逆变电路完整电路图

3.1 逆变电路的主电路设计

在本次设计中,主要采用单相全桥式逆变电路作为设计的电路。其主电路结构图如下图3所示:

图3 单相全桥逆变电路主电路及升压结构图

如上图2所示,单相全桥逆变电路主电路主要有四个桥臂,可以看成由两个半桥电路组合而成。其中5Q 、4Q 为一对,3Q 、6Q 为一对。每个桥臂有一个可控器件MOSFET 以

及一个反并联的二极管组成。在直流侧接有足够大的电容,负载接在桥臂之间。它的具体工作过程如下:在最初时刻t1时,给MOSFET 5Q 、4Q 触发信号,使其导通。则电流流过桥臂1,负载。桥臂4构成一个导通回路。当t2时刻时,给3Q 、6Q 触发信号,给5Q 、4Q 关断信号。但由于负载电感较大,通过它的电流不能突变,所以二极管D2,D3导通进行续流。当电流逐渐减小为0,桥臂1、4关断,桥臂2、3导通,构成一个回路,从而实现换流。

3.2 驱动电路设计

3.2.1 CMOS 管介绍

对于场效应管,在栅极没有电压时,由分析可知,在源极与漏极之间不会有电流流过,此时场效应管处于截止状态。当有一个正电压加在N 沟道的MOS 场效应管栅极上时,由于电场的作用,此时N 型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N 沟道之间的P 型半导体中,从而形成电流,使源极和漏极之间导通。我们也可以想象为两个N 型半导体之间为一条沟,栅极电压的建立相当于为他们之间搭了一座桥梁,该桥梁的大小由栅压决定。

电路将一个增强型P 沟道MOS 场效应管和一个增强型N 沟道MOS 场效应管组合在一起使用。当输入端为低电平时,P 沟道MOS 场效应管导通,输出端与电源正极接通。当输入端为高电平时,N 沟道MOS 场效应管导通,输出端与电源地接通。在该电路中,P 沟道MOS 场效应管和N 沟道场效应管总是在相反的状态下工作,其相位输入端和输出端相反。通过这种工作方式我们可以获得较大的电流输出。同时由于漏电流的影响,使得栅压在还没有到0V ,通常在栅极电压小于1V 到2V 时,MOS 场效应管即被关断。不同场效应管关断电压略有不同。也以为如此,使得该电路不会因为两管同时导通而造成电源短路。图4为MOS 管的结构图及电气图。

N

+

G

S D

P 沟道b )

N

+N

-S G

D P

P

N

+N +N

+沟道

a )

G

S D N 沟道

图1-19

图4 MOFET 结构图和电气图

3.2.2 信号放大器介绍

由于555定时器输出振荡信号为0~5V ,为充分驱动电源开关电路,通过FET 1Q 、2Q 将振荡信号电压放大。FET 的主要作用:

1.场效应管可应用于放大。由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。

2.场效应管很高的输入阻抗非常适合作阻抗变换。常用于多级放大器的输入级作阻抗变换。

3.3 触发电路设计

在本次设计中,触发电路采用了555定时器来实现。题目要求是设计逆变器,主体使用了逆变电路,所以不考虑α角的取值,因此使用了高低电平时间相等的555定时器作为触发电路的主体。由于导通条件恰好相反,所以可以再引出一路信号,经过反相器,实现对一个触发脉冲控制两路器件通断的功能。

由于输出的交流电压的频率取决于两组臂桥通断的频率,即555定时器输出方波信号的频率。因此要保证Hz f 50=,取决于555定时器连接器件的参数选择。由于555定时器的输出频率由C R R C R R T )2(7.0)2(2ln 2121+≈+=决定。在此次实验中,Ω=2001R ,

Ω

==K R R V 32.112,F C C μ105==。所以02.010*10*)2.064.2(*7.03≈+=-T ,即

Hz

T f 50/1==。

具体的电路图如5所示:

图5 触发电路电路图

3.4 过流保护设计

对任何一个电路来说,对应的保护是不可缺少的。由于是直流电压源,因此过电压保护暂时不予以考虑,仅考虑过电流保护。

我选择在直流电源输入的地方加上一个快速熔断器。由于整个逆变器的容量为

.

72

22。算上安全裕量,考KVA

1,而输出端电压为V

220,所以可以算得一次侧电流为A

虑使用50A的快速熔断器。

3.5 滤波设计

在经过变压器升压之后,经过一个低通滤波器,得到V

50的交流电。这里

220、Hz

采用了一阶RC低通滤波器,形式简单,易于设置。由于)

R

=,所以设置

1C

*

/(

*

2

100=

=。如图6所示:

,

Ω

30

F

C

图6 一阶RC低通滤波器

4 参数计算

逆变基波幅值V U U d m o 96.6027.11== 基波有效值电压V U U d o 2.439.01== 变压器副边输出电压V U 2202=

理想变压器原副边线圈匝数比25/1/5/12202.4321=

=

≈=L L N

理想变压器原边电流值A I 231=,副边电流值A I 6.42= 滤波器参数:F C R μ30,100=Ω=

开关器件参数:MOS 管流经电流的平均值A I 0.12= MOS 管流经电流的最大值A

I m 0.70=

5 心得体会

为期一个多星期的电力电子课程设计终于基本告一段落了,过程是辛苦的,但收获不小。设计期间我不断与同学交流并翻阅书本,上网查资料,在学到很多知识的同时,也培养了积极思考、精益求精的良好习惯。培养我独立思考问题、解决问题的能力,重要的是增加了我学习的兴趣,让我知道可以从哪方面入手,解决相应的问题。

经过这次设计,我深深体会到理论联系实际的重要行。做出的设计,有时并不能满足理论的结果,必须反复的检查考虑,调整参数,才能做到与理论相符合。理论是一个指导,指引你进行实践。所以学好理论知识,会在实际应用中,给予极大的方便。同时,这次课设也显露出我理论知识及动手操作能力的不足,所以在以后的学习生活中,我会进一步加强理论知识与实践的学习,不断充实自己,让今后再遇到同类的问题时能够做的更好。

参考文献

[1] 王兆安、刘进军主编,电力电子技术(第五版),北京,机械工业出版社,2009

[2] 林渭勋主编,现代电力电子技术,北京,机械工业出版社,2006

[3] 曲学基曲敬凯于明扬主编,逆变技术基础与应用,电子工业出版社,2006

[4] 康华光主编,电子技术基础数字部分(第五版),北京,高等教育出版社,2005

[5] 陈伯时主编,电力拖动自动控制系统,北京,机械工业出版社,2005

大学毕设论文__单相正弦波逆变电源的设计

第1章概述 任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高。电子设备的小型化和低成本化使电源以轻、薄、小和高效率为发展方向。传统的晶体管串联调整正弦波逆变电源是连续控制的线性正弦波逆变电源。这种传统正弦波逆变电源技术比较成熟,并且已有大量集成化的线性正弦波逆变电源模块,具有稳定性能好、输出纹波电压小、使用可靠等优点、但其通常都需要体积大且笨重的工频变压器与体积和重量都不得和很大的滤波器。由于调整管工作在线性放大状态,为了保证输出电压稳定,其集电极与发射极之间必须承受较大的电压差,导致调整管功耗较大,电源效率很低,一般只有45%左右。另外,由于调整管上消耗较大的功率,所以需要采用大功率调节器整管并装有体积很大的散热器,很难满足现代电子设备发展的要求。在近半个多世纪的发展过程中,正弦波逆变电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的连续工作电源,并广泛的应用,正弦波逆变电源技术进入快速发展期。 正弦波逆变电源采用功率半导体器件作为开关,通过控制开关的占空比调整输出电压。它的功耗小,效率高,正弦波逆变电源直接对电网电压进行整流、滤波、调整,然后由开关调整管进行稳压,不需要电源变压器,此外,开关工作频率为几十千赫,滤波电容器、电感器数值较小。因此正弦波逆变电源具有重量轻、体积小等优点。另外,于功耗小,机内温升低,提高了整机的稳定性和可靠性。而且其对电网的适应能力也有较大的提高,一般串联稳压电源允许电网波动范围为220V±10%,而正弦波逆变电源在电网电压在110~260V范围变化时,都可获得稳定的输出阻抗电压。正弦波逆变电源的高频化是电源技术发展的创新技术,高频化带来的效益是使正弦波逆变电源装置空前的小型化,并使正弦波逆变电源进入更广泛的领域,特别是在高新技术领域的应用,扒动了高新技术产品的小型化、轻便化。另外正弦波逆变电源的发展与应用在节约资源及保护环境方面都具

PWM 控制的单相逆变电路的设计及其研究

电力电子技术课程设计 班级 学号 姓名 电气工程及其自动化 二零一五年一月

目录 1 绪论 (2) 1.1 电力电子简介 (2) 1.2 课程设计的目的与要求 (2) 1.3 课程设计题目 (3) 1.4 仿真软件的使用 (3) 2 工作原理 (4) 2.1 逆变电路原理 (4) 2.1.1 电压型逆变电路 (4) 2.1.2 电流型逆变电路 (6) 2.2单相桥式PWM逆变电路的基本原理 (10) 2.2.1 单极调制法 (11) 2.2.2 双极调制法 (12) 3 电路的设计过程 (13) 3.1 逆变控制电路的设计 (13) 3.2 正弦波输出变压变频电源调制方式 (14) 3.2.1 正弦脉宽调制技术 (14) 3.2.2单极性调制方式 (15) 3.2.3 双极性调制方式 (15) 3.2.4 单极性倍频调制方式 (15) 3.3 3种调制方式下逆变器输出电压谐波分析 (16) 4 仿真实验与结果 (17) 4.1 单相桥式PWM逆变主电路原理图 (17) 4.2 仿真所得波形 (17) 5 仿真结果分析 (19) 6 心得体会 (20) 7 参考文献 (21)

1 绪论 1.1 电力电子简介 随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。它的并联不成问题,由于本身的关断延迟很短,其串联也容易。尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外绝缘材料的缺陷也是一个问题。在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。该调制方法的最大缺点是它的4个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。本次课程设计研究单相桥式PWM逆变电路,通过该电路实现逆变电源变压、变频输出。 1.2 课程设计的目的与要求 1. 进一步熟悉和掌握电力电子原器件的特性; 2. 进一步熟悉和掌握电力电子电路的拓扑结构和工作原理; 3. 掌握电力电子电路设计的基本方法和技术,掌握有关电路参数的计算方 法;

单相正弦波变频电源自动化毕业设计(论文)

单相正弦波变频电源 摘要:本设计是通过模拟和数字的方法来产生SPWM信号。采用89C51单片机产生正弦波基波,采用NE555芯片产生高度线性等腰三角波载波。基波和载波通过高速电压比较器LM311比较产生与之对应的SPWM驱动信号。SPWM驱动信号经整形电路、死区电路、驱动功放隔离电路完成对全桥场效应管的开通和关断,从而完成将直流电压逆变成所需频率的正弦交流电。而调压电路采用前级DC-DC独立调压来实现,实现直流稳压。改变单片机正弦波输出频率来实现逆变输出SPWM 交流调频的功能。采用芯片AD637对输出电压、电流进行真有效值变换,经A/DTLC549变换后送单片机处理,实时对逆变输出进行监控,保证输出电压的稳定性。输出电压波形为正弦波,输出频率可变,能够测量和显示电源输出电压、电流、具有过流保护、过压保护电路、空载报警电路等。同时基于UC3845多路隔离反击式开关电源为系统供电。 在研究和设计的基础上制作了样机,完成了大部分的调试工作,达到了预期的目的。 关键词:升压;场效应管;检测电路;逆变

Abstract:The SPWM signal is produced by the way of analog and digita in the design.The fundamental wave is produced by 89C51 chip,and the sine t riangle carrier wave is produced by NE555 chip.SPWM drive signal is generated by the high-speed voltage comparator LM311. The turn-on and turn-off of mosfet are controlled by SPWM drive signal from the shaping circuit, the dead zone circuit, the power am plifier circuit to bring out the required frequency of the sinusoidal alternating current in DC/AC convertion.The voltage regulating circuit uses DC-DC independent voltage regulating to realize, Change the frequence of the sine wave that is the output of the MCU will realize the function of inverse output SPWM AC frequency modulation .Use AD637 to complete voltage and current true effective value transform and then send the result to A/DTLC549. Through AD exchange the output will be send to the MCU to be processed,according to the result to monitor the inverse output and to ensure the stability of the output voltage. The waveform of the output voltage is sine-wave,its frequence can be changed.The voltage and current of the Power source can be e over-current and over-voltage protection circuit, an o-load alarm circuit and smeasured and the result can be displayed on the LCD.The power source include tho on. At the same time use multi-channel isolate Counter type switch power as system power supply. On the basis of research and design,a prototype of principle is produced.the most of debugging of the whole system is completed. Keyword:boost;mosfet;detection circuit;inverter

单相逆变器的软件设计

单相逆变器的软件设计

摘要 随着电力电子技术的迅猛发展,逆变技术广泛应用于航空、航海等国防领域和电力系统,交通运输、邮电通信、工业控制等民用领域。特别是随着石油、煤和天然气等主要能源日益紧张,新能源的开发和利用越来越受到人们的重视。利用新能源的关键技术--逆变技术,能将蓄电池、太阳能电池和燃料电池等其他新能源转化的直流电能变换成交流电能与电网并网发电。因此,逆变技术在新能源的开发和利用领域有着至关重要的地位。理论联系实际,将书本上所学到的知识与实际设计结合起来,学习电力电子基本理论,掌握单相电压型逆变器的工作原理和SPWM原理,并进行详细的设计分析,掌握其控制方式及在电力系统中的重要作用。 关键词:逆变技术,单相电压型逆变器,SPWM原理

ABSTRACT With the rapid development of power electronics technology, the inverter technology is widely used in aviation, navigation and other fields of national defense and the electric power system, transportation, telecommunications, industrial control and other civilian areas. Especially with the oil, coal and natural gas and other major energy shortage, the development and utilization of new energy has been paid more and more attention. The key technology of new energy, inverter technology, the battery, DC can be converted into AC power grid connected power generation solar cell and fuel cell and other new energy conversion. Therefore, inverter technology plays a very important role in the field of new energy development and utilization. The theory with practice, apply on the books knowledge and practical design combine learning power electronics basic theory, master the working principle and the principle of SPWM single-phase voltage type inverter, and design a detailed analysis, palm Hold the control mode and the important role in the power system. Keywords: Inverter technology ,Single phase voltage source inverter ,SPWM principle

单相半桥无源逆变器设计

电气与电子信息工程学院计算机控制课程设计

单相半桥无源逆变电路设计设计题目:(专升本)班专业班级:电气工程及其自动化2010 学号: 2 勇姓名:朱 组人:严康孙希凯同黄松柏指导教师:南光群 2011/11/21 设计时间:2011/11/13~ 电力电子室设计地点:课程设计成绩评定表电力电子 学勇 2 姓名朱单相半桥无源逆变电路设计课程设计题 26 / 1

26 / 2 指导教师签字: 日20 12 月2011年 《电力电子课程设计》课程设计任务书 1学期2012 学年第~2011 2010电气工程及其自动化勇专业班级学生姓名:朱

专升本 工作部门:电气学院电气自动化教指导教师:南光群、黄松柏研室 一、课程设计题目: 单相桥式晶闸管整流电路设计1. 2. 三相半波晶闸管整流电路设计 3. 三相桥式晶闸管整流电路设计降压斩波电路设计 4. 升压斩波电路设计5. 单相半桥无源逆变电路设计6. 7. 单相桥式无源逆变电路设计单相交流调压电路设计8. 逆变器设计SPWM9. 三相桥式26 / 3 二、课程设计内容 1. 根据具体设计课题的技术指标和给定条件,能独立而正确地进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整; 2. 学会查阅有关参考资料和手册,并能正确选择有关元器件和参数; 3. 编写设计说明书,参考毕业设计论文格式撰写设计报告(5000字以上)。

注:详细要求和技术指标见附录。 三、进度安排 1.时间安排 .执行要求2电力电子课程设计共9个选题,每组不得超过6人,要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。严禁抄袭,严禁两篇设计报告基本相同,甚至完全一样。 四、基本要求 (1)参考毕业设计论文要求的格式书写,所有的内容一律打印;

(完整版)单相光伏并网逆变器的研究40本科毕业设计41

单相光伏并网逆变器的研究

轮机工程学院

摘要 能源危机和环境问题的不断加剧,推动了清洁能源的发展进程。太阳能作为一种清洁无污染且可大规模开发利用的可再生能源,具有广阔应用前景。并且伴随“智能电网”理论的兴起,分布式电力系统正日益受到关注,光伏逆变系统作为分布式电力系统的一种重要形式,使得对该领域的研究具有重要的理论与现实意义。 论文在分析光伏逆变系统发展现状与研究热点的基础上,探讨了光伏逆变系统的主要关键技术,对直接影响光伏逆变系统的工作效率以及工作状态的最大功率点跟踪控制、光伏逆变器控制等技术进行了详细研究。 为研究光伏逆变系统,本文建立了一套完整的光伏逆变系统模型,主要包括光伏电池模块,前级DCDC变换器,后级DCAC逆变器,以及相应的控制模块。为了提高系统模型的准确性及稳定性,论文设计了一种输出电压随温度光照改变的光伏电池模型,提出了一种基于Boost 升压变换器的最大功率点跟踪(MPPT)控制策略,并且将正弦脉冲宽度调制技术(SPWM)应用于逆变器控制。最后在MatlabSimulink软件环境下搭建了光伏逆变系统的整体模型,完成系统性的实验验证。 经过仿真实验验证,所提出的光伏逆变系统设计方案正确可行,且输出达到了设计要求,为进一步实现并网功能提供了条件,具有较高的实用参考价值。 关键词:光伏电池;最大功率点跟踪;光伏逆变系统;正弦脉冲调制技术

ABSTRACT With intensify of the energy crisis and environmental problems, the development of clean energy . The solar energy because of its friendly-environmental advantage and renewable property. With the proposition of the Smart Grid, Distributed Power System . As an important form of Distributed Power System, photovoltaic inverter system is the key of the research in this field. This paper discusses the key techniques of photovoltaic inverter system on the basis of analysis of development and research techniques such as maximum power point tracking (MPPT) which work efficiency and work condition and technology of PV inverter. In order to research PV inverter system, this paper builds an integral model, including PV battery model and DCDC converter and DCAC single phase inverter as well as corresponding control models. In order to improve the validity and the stability of the system, the paper

小功率单相逆变电源毕业设计

德州职业技术学院 毕业设计(论文) (2012届毕业生) 题目小功率单相逆变电源的设计制作 指导教师张洪宝 系部电子与新能源工程技术系 专业应用电子技术 班级09级应用电子技术 学号 200902050124 姓名张艳霞 2011年 9月 19 日至 2011年 11月 18日共 9 周

该设计主要应用电力电子电路技术和开关电源电路技术有关知识。涉及模拟集成电路、电源集成电路、直流稳压电路、开关稳压电路等原理,充分运用芯片KA7500B的固定频率脉冲宽度调制电路及场效应管(N沟道增强型MOSFET)的开关速度快、无二次击穿、热稳定性好的优点而组合设计的电路。该逆变电源的主要组成部分为:DC/DC电路、输入过压保护电路、输出过压保护电路、过热保护电路、DC/AC变换电路、振荡电路、全桥电路。 在工作时的持续输出功率为150W,具有工作正常指示灯、输出过压保护、输入过压保护以及过热保护等功能。该电源的制造成本较为低廉,实用性强,可作为多种便携式电器通用的电源。 关键词:过热保护;过压保护;集成电路;振荡频率;脉宽调制

The main application of power electronic circuit design technology and switching power supply circuit technology knowledge. Involves analog integrated circuits, power supply integrated circuits, DC circuit, the switching regulator circuit theory, make full use of the chip KA7500B fixed frequency pulse width modulation circuit and FET (N-channel enhancement mode MOSFET) switching speed, no second breakdown, thermal stability, good benefits and the modular design of the circuit. The inverter main components: DC / DC circuit, input over-voltageprotection circuit, output over-voltage protection circuit, overheat protection circuit, DC / AC conversion circuit, oscillation circuit, full-bridge circuit. In the work of continuous output power of 150W, with a normal light work, output overvoltage protection, input over-voltage protection and thermal overload protection. The power of the relatively low manufacturing cost, practical, and a variety of portable electronic devices can be used as a common power supply. Keywords: thermal protection; over-voltage protection; integrated circuits; oscillation frequency; pulse width modulation

单相全桥逆变电路毕业设计

2008级应用电子技术 毕业设计报告 设计题目单相电压型全桥逆变电路设计姓名及 学号 学院 专业应用电子技术 班级2008级3班 指导教师老师 2011年05月1日

题目:单相电压型全桥逆变电路设计

目录 第一章绪论 1.1整流技术的发展概况 (4) 第二章设计方案及其原理 2.1电压型逆变器的原理图 (5) 2.2电压型单相全桥逆变电路 (6) 第三章仿真概念及其原理简述 3.1 系统仿真概述 (6) 3.2 整流电路的概述 (8) 3.3 有源逆变的概述 (8) 3.4逆变失败原因及消除方法 (9) 第四章参数计算 4.1实验电路原理及结果图 (10) 第五章心得与总结 (14) 参考文献 (15)

第一章绪论 1.1整流技术的发展概况 正电路广泛应用于工业中。整流与逆变一直都是电力电子技术的热点之一。桥式整流是利用二极管的单向导通性进行整流的最常用的电路。常用来将交流电转化为直流电。从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。基本原理和方法已成熟十几年了,随着我国交直流变换器市场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。 目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。从而大大提高了通信网运行可靠和通信质量。高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。

A单相逆变电源设计

题目:18KV A 单相逆变器设计与仿真 院系:电气与电子工程学院 专业年级:电气工程及其自动化2010级 姓名:郑海强 学号:1010200224 同组同学:钟祥锣王敢方骞 2013年11月20号

单相逆变器设计一.设计的内容及要求 0.8 1.0,滞后

方案简述 将直流电变成交流电的电路叫做逆变电路。根据交流侧接在电网和负载相接可分为有源逆变和无源逆变,所以本次设计的逆变器设计为无源逆变。换流是实现逆变的基础。通过控制开关器件的开通和关断,来控制电流通过的支路这是实现换流的方法。 直流侧是电压源的为电压型逆变器,直流侧是电流源的为电流型逆变器,综上本次设计为电压型无源逆变器。 三.主电路原理图及主要参数设计 3.1 主电路原理图如图1所示 图1 3.2输出电路和负载计算 3.2.1 负载侧参数设计计算 负载侧的电路结构图如图2所示,根据图2相关经计算结果如下:

图2 负载侧电路结构图 1. 负载电阻最小值: cos ?=1.0时,R=2o V /23 300/(1810)5o P =?W ; cos ?=0.8时,R=2 o V /(o P ?23cos )300/(18100.8) 6.25j =创=W 2. 负载电感最小值: 'L ='L Z /(2f π)=8.3/(2100p 创)=0.0132H μ 3. 滤波电容: 取滤波电容的容抗等于负载电感感抗的2倍,则: C =1/(2πf c Z )=1/(2?π′100′32)=95.92F μ 取电容为100F μ,将10个10F μ的AC 电容进行并联, c() Z 实= 1/(2πf C )=1/6(210010010)p -创创=15.9 W 4.滤波电抗L 的计算 选取主开关器件工作频率K f =N ?O f =32′100=3200Hz 由于移相原因,输出线电压的开关频率变为:2K f =6400HZ 取滤波电路固有谐振频率 'f =1/(2πK f /6=533.3Hz 则:L = 1/(42π2'f C )= 1/(4?2π?2533?100610-?)=880H μ 实选用 L=900uH 由此 特征阻抗 3.2.2 逆变电路输出电压 3 T Z =

SG3525正弦波逆变电源设计要点

等级: 湖南工程学院 课程设计 课程名称电力电子技术 课题名称 SG3525正弦波逆变电源设计 专业 班级 学号 姓名 指导教师 2013年12 月16 日

湖南工程学院 课程设计任务书 课程名称单片机原理及应用 课题智能密码锁设计 专业班级 学生姓名 学号 指导老师 审批 任务书下达日期2013 年12 月16 日 设计完成日期2013 年12 月27 日

设计内容与设计要求 一.设计内容: 1.电路功能: 1)逆变就是将直流变为交流。由波形发生器产生50Hz、幅度可变的正弦波,与锯齿波比较后,再通过PWM电路,输出SPWM波,经 过驱动电路驱动逆变电路进行逆变,再经过高频变压器与滤波电 路输出-50Hz的正弦波。 2)电路由主电路与控制电路组成,主电路主要环节:高频逆变电路、滤波环节。控制电路主要环节:正弦信号发生电路、脉宽调制PWM、 电压电流检测单元、驱动电路。 3)功率变换电路中的高频开关器件采用IGBT或MOSFET。 4)系统具有完善的保护 2. 系统总体方案确定 3. 主电路设计与分析 1)确定主电路方案 2)主电路元器件的计算及选型 3)主电路保护环节设计 4. 控制电路设计与分析 1)检测电路设计 2)功能单元电路设计 3)触发电路设计 4)控制电路参数确定 二.设计要求: 1.要求输出正弦波的幅度可调。 2.用SG3525产生脉冲。 3.设计思路清晰,给出整体设计框图; 4.单元电路设计,给出具体设计思路和电路; 5.分析所有单元电路与总电路的工作原理,并给出必要的波形分析。 6.绘制总电路图 7.写出设计报告;

主要设计条件 1.设计依据主要参数 1)输入输出电压:输入(DC)+15V、10V(AC) 2)输出电流:1A 3)电压调整率:≤1% 4)负载调整率:≤1% 5)效率:≥0.8 2. 可提供实验与仿真条件 说明书格式 1.课程设计封面; 2.任务书; 3.说明书目录; 4.设计总体思路,基本原理和框图(总电路图); 5.单元电路设计(各单元电路图); 6.故障分析与电路改进、实验及仿真等。 7.总结与体会; 8.附录(完整的总电路图); 9.参考文献; 11、课程设计成绩评分表 进度安排 第一周星期一:课题内容介绍和查找资料; 星期二:总体电路方案确定 星期三:主电路设计 星期四:控制电路设计 星期五:控制电路设计; 第二周星期一: 控制电路设计 星期二:电路原理及波形分析、实验调试及仿真等 星期四~五:写设计报告,打印相关图纸; 星期五下午:答辩及资料整理

单相恒压恒频逆变器的设计

单相恒压恒频逆变器的设计 学生姓名: **** 学号: ********* 系别:电气工程系专业: 电气工程及其自动化 指导教师: ****** 评阅教师: 论文答辩日期 答辩委员会主席 摘要 随着现代科学技术的迅速发展,逆变电源的应用越来越广泛,各行各业对其性能的要求也越来越高。单相正弦逆变电源是将直流电逆变成单相交流电的装置,它可将蓄电池逆变成交流电,为用电器提供交流电,也可作为计算机的UPS电源等。 本文首先介绍了逆变电源技术的应用与发展,分类与性能,及其控制技术。并在此基础上进行了方案论证,选取了合理的方案,以实现将12V直流电源升压为320V/50kHz的高频交流电,再经过整流滤波将高频交流电整流为高压直流电,然后采用正弦波脉宽调制法,通过脉冲控制IGBT的导通时间及顺序生成PWM波形,最后经过LC工频滤波电路,输出稳定的220V/50Hz标准正弦波电压,以达到供负载使用的目的。 本文基于已选定方案为前提进行了各部分电路的设计与分析,完成了主电路及相应的输入输出保护电路的设计,并进行了参数计算,分别简要介绍了各部分的原理,阐述了产生SPWM波的实现办法,以及基于DSP的系统软件设计和实现方案。 同时利用MATLAB 建立了单相逆变器的仿真模型,对其进行了仿真和实验,从各种情况下的试验结果可以看出,通过该逆变电路而得到的单相正弦波稳定性高且失真度小,设计成功。 关键词:逆变电源,整流,滤波,正弦脉宽调制

I Abstract With the rapid development of modern science and technology, the application of inverter power supply is more and more extensive, and the requirement of all walks of life on it is higher and higher. Single-phase sine inverter power supply is the device which can reverse DC into single-phase AC power. It can reverse the battery into AC which can be used by appliances, and it can also be used as the computer UPS power supply etc. This paper first introduces the application and development of the inverter power supply technology, its classification and performance, and its control technology. On this basis, the demonstration program has been done. It selects the reasonable solution to achieve the 12V DC power supply boosting for 320V/50kHz high frequency alternating current, which the rectifier filter will rectify it for high voltage DC. Then use the SPWM method to control the conduction time and sequence of the IGBT by outputting PWM waves generated, finally, after LC industrial frequency filtering, the output of the stable 220V/50Hz quasi-sine wave of voltage will achieve the purpose of load use. Based on the selected program, this paper has done the design and analysis of each circuit and has completed the design of the main circuit and the corresponding input and output protection circuits and parameter calculation. The principle of each part has been briefly

1KVA单相逆变器设计

目录 1 概述及设计要求 (1) 1.1概述 (1) 1.2 设计要求 (1) 2 总体设计方案介绍及原理框图 (2) 2.1 方案概述 (2) 2.3 电压型逆变电路的特点及主要类型 (3) 3 各电路模块设计 (4) 3.1 逆变电路的主电路设计 (4) 3.2 驱动电路设计 (4) 3.2.1 CMOS管介绍 (4) 3.2.2 信号放大器介绍 (5) 3.4 过流保护设计 (7) 3.5 滤波设计 (7) 3.6设计系统总电路图 (8) 参考文献 (11)

1KVA单相逆变器设计 1 概述及设计要求 1.1概述 逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220v50HZ正弦或方波)。应急电源,一般是把直流电瓶逆变成220V交流的。通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。它由逆变桥、触发电路和滤波电路组成。 日常用途:汽车上的逆变器所获得的220V电,是220V 50HZ,高档点的是正弦波的,便宜的一般是方波的。正弦波的那种和接插座上用的电,是一样的,而方波的其实也可以用,只不过如果用风扇等有电机的设备,会有一些噪音,之所以用方波,就是因为这种调制方式成本比较低。在电动车上,有一个叫DC-DC 的模块,他也叫直流转换器,这个模块输入48V,输出12V,那么你只要购买一个12V输入的车载逆变器就可以使用。当然若你能买到48V输入的逆变器更好,但估计很难买到而且,这个模块一般只能提供5A电流,最多不过10A,而且车灯什么的也要用,所以很容易过载,建议,如果可以,多买一个直流转换器,这个转换器专门给你那逆变器供电,然后如果直流转换器只能提供5A,那么逆变器输入就应当小于5A,否则可能会损坏那模块,当然有一些直流转换器电流是很大的,如果修车的地方没有,可以到一些电器店或叫他们修理的给你进一个大电流的,或者多个直流转换器并联也可以,总之,不要让他过载就可以。1.2 设计要求 要求设计一个输入为48V直流电压,输出容量为1KVA,输出电压为220V 单相交流电的逆变器。

A单相逆变电源设计

题目:18KVA 单相逆变器设计与仿真 院系:电气与电子工程学院 专业年级:电气工程及其自动化2010级 姓名:郑海强 学号: 24 同组同学:钟祥锣王敢方骞 2013年11月20号

单相逆变器设计一.设计的内容及要求 0.8 1.0,滞后

方案简述 将直流电变成交流电的电路叫做逆变电路。根据交流侧接在电网和负载相接可分为有源逆变和无源逆变,所以本次设计的逆变器设计为无源逆变。换流是实现逆变的基础。通过控制开关器件的开通和关断,来控制电流通过的支路这是实现换流的方法。 直流侧是电压源的为电压型逆变器,直流侧是电流源的为电流型逆变器,综上本次设计为电压型无源逆变器。 三.主电路原理图及主要参数设计 主电路原理图如图1所示 图 1 输出电路和负载计算 负载侧参数设计计算 负载侧的电路结构图如图2所示,根据图2相关经计算结果如下:

图2 负载侧电路结构图 1. 负载电阻最小值: cos ?=时,R=2 o V /23300/(1810)5o P ; cos ?=时,R=2o V /(o P ?23cos )300/(18100.8) 6.25 2. 负载电感最小值: 'L ='L Z /(2f π)=(2 100)=H μ 3. 滤波电容: 取滤波电容的容抗等于负载电感感抗的2倍,则: C =1/(2πf c Z )=1/(2?π 10032)=F μ 取电容为100F μ,将10个10F μ的AC 电容进行并联,c() Z 实= 1/(2πf C )=1/6(2 10010010)= 4.滤波电抗L 的计算 选取主开关器件工作频率K f =N ?O f =32100=3200Hz 由于移相原因,输出线电压的开关频率变为:2K f =6400HZ 取滤波电路固有谐振频率'f =1/(2π)=K f /6= 则:L = 1/(42π2'f C )= 1/(4?2π?2533?100610-?)=880H μ 实选用 L=900uH 由此 特征阻抗 逆变电路输出电压 900/1003 T Z L C

毕业设计(论文)-单相正弦波逆变电源

单相正弦波逆变电源 摘要:本单相正弦波逆变电源的设计,以12V蓄电池作为输入,输出为36V、50Hz的标准正弦波交流电。该电源采用推挽升压和全桥逆变两级变换,在控制电路上,前级推挽升压电路采用SG3525芯片控制,闭环反馈;逆变部分采用驱动芯片IR2110进行全桥逆变,采用U3990F6完成SPWM的调制,后级输出采用电流互感器进行采样反馈,形成双重反馈环节,增加了电源的稳定性;在保护上,具有输出过载、短路保护、过流保护、空载保护等多重保护功能电路,增强了该电源的可靠性和安全性;输出交流电压通过AD637的真有效值转换后,再由STC89C52单片机的控制进行模数转换,最终将电压值显示到液晶12864上,形成了良好的人机界面。该电源很好的完成了各项指标,输入功率为46.9W,输出功率为43.6W,效率达到了93%,输出标准的50Hz正弦波。 关键词:单相正弦波逆变DC-DC DC-AC SPWM 1

Abstract: The single-phase sine wave inverter power supply design, battery as a 12V input and output for the 36V, 50Hz standard AC sine wave. The use of push-pull power booster and two full-bridge inverter transform,in the control circuit, the pre-boost push-pull circuit using SG3525 chip control,closed-loop feedback;inverter driver IC IR2110 in part to the use of full-bridge inverter using SPWM modulation U3990F6 completed,level after the use of current transformer output sampling feedback. The feedback link in the formation of a double and increase the stability of power. In protection, with output overload, short circuit protection, over current protection, the protection of multiple no-load protection circuit, which enhancing the reliability of the power supply and safety.AC voltage output of the AD637 True RMS through conversion, and then from the control of single-chip STC89C52 analog-digital conversion, the final value of the voltage to the liquid crystal display 12864 on the formation of a good man-machine interface. The completion of the power good indicators, input power to 46.9W, output power of 43.6W, the efficiency reached 93%, 50Hz sine wave output standards. Key words: Single-phase sine wave inverter DC-DC DC-AC SPWM 2

单相逆变器设计

目录 摘要 (3) 1 概述及设计要求 (4) 1.1概述 (4) 1.2 设计要求 (4) 2 总体设计方案介绍及原理框图 (5) 2.1 方案概述 (5) 2.2 逆变电路及换流原理介绍 (5) 2.3 电压型逆变电路的特点及主要类型 (5) 2.4 系统原理框图 (6) 3 各电路模块设计 (7) 3.1 逆变电路的主电路设计 (7) 3.2 驱动电路设计 (7) 3.2.1 MOSFET介绍 (7) 3.2.2 SG3524及IR2110芯片介绍 (8) 3.3保护电路设计 (11) 4 心得体会 (13) 参考文献 (14) 附录

摘要 本系统是根据无源逆变的实用原理,采用单相全桥逆变电路工作方式,实现把直流电源(48v)转换成交流电(1KVA 220V)。在本设计电路中,将48V直流电压经逆变器转变为交流电压,再由工频变压器升压,最后通过低频滤波器滤波实现输出为220V 的交流电压。 关键字:单相、全桥、逆变、升压、滤波 abstract this system is according to the practical principle passive inverter, single-phase bridge inverter circuits work method, realize the dc power supply (48 v) convert alternating current (1 KVA 220 v). In this circuit design, 48 V dc voltage inverter into the ac voltage, again by industrial frequency transformer booster, finally through the low frequency filters filter realize output for 220 V ac voltage. key word: single phase, the whole bridge, inverter, and boost, filtering

相关文档
相关文档 最新文档