文档库

最新最全的文档下载
当前位置:文档库 > 2017届苏教版 两个计数原理 课后限时自测

2017届苏教版 两个计数原理 课后限时自测

课后限时自测(五十六)

[A级基础达标练]

一、填空题

1.奥运选手选拔赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有_______________种.

[解析]分两步安排这8名运动员.

第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排,所以安排方式有4×3×2=24(种).

第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道上安排,所以安排方式有5×4×3×2×1=120种.

∴安排这8人的方式有24×120=2 880(种).

[答案]2880

2.将一个四面体ABCD的六条棱上涂上红、黄、白三种颜色,要求共端点的棱不能涂相同颜色,则不同的涂色方案有________种.[解析]因为只有三种颜色,又要涂六条棱,所以应该将四面体的对棱涂成相同的颜色.

故有3×2×1=6种涂色方案.

[答案] 6

3.(2011·北京高考)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个(用数字作答).

[解析]用2,3组成四位数共有2×2×2×2=16(个),其中不出现2或不出现3的共2个,

免费下载Word文档免费下载: 2017届苏教版 两个计数原理 课后限时自测

(共6页)