文档库 最新最全的文档下载
当前位置:文档库 › 数值分析试题及答案

数值分析试题及答案

数值分析试题及答案
数值分析试题及答案

数值分析试题

一、 填空题(2 0×2′)

1. ??

????-=??????-=32,1223X A 设x =0.231是精确值x *=0.229的近似值,

则x 有 2 位有效数字。

2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。

3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,

‖AX ‖∞≤_15_ __。

4. 非线性方程f (x )=0的迭代函数x =

(x )在有解区间满足 |’(x )| <1 ,则使用该迭代函数的迭代解法一定是局部收敛的。

5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。

6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。

7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0

)( 1 ;所以当系数a i (x )

满足 a i (x )>1 ,计算时不会放大f (x i )的误差。

8. 要使20的近似值的相对误差小于0.1%,至少要取 4 位有效数字。

9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方

程组的精确解x *的充分必要条件是 (B)<1 。

10. 由下列数据所确定的插值多项式的次数最高是 5 。

x 0 0.5 1 1.5 2 2.5

y =f (x ) -2 -1.75 -1 0.25 2 4.25

11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。

12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。

13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )的二阶导数不变号,则初始点x 0的选取依据为 f(x0)f ”(x0)>0 。

14. 使用迭代计算的步骤为建立迭代函数、 选取初值 、迭代计算。

二、 判断题(10×1′)

1、 若A 是n 阶非奇异矩阵,则线性方程组AX =b 一定可以使用高斯消元法求解。( × )

2、 解非线性方程f (x )=0的牛顿迭代法在单根x *附近是平方收敛的。 (

) 3、 若A 为n 阶方阵,且其元素满足不等式

)

,...,2,1( 1n i a a n i

j j ij ii =≥∑≠=

则解线性方程组AX =b 的高斯——塞德尔迭代法一定收敛。 ( × )

4、 样条插值一种分段插值。 (

)

5、 如果插值结点相同,在满足相同插值条件下所有的插值多项式是等价的。 ( )

6、 从实际问题的精确解到实际的计算结果间的误差有模型误差、观测误差、截断误差及舍入误差。 ( )

7、 解线性方程组的的平方根直接解法适用于任何线性方程组AX =b 。 ( × )

8、 迭代解法的舍入误差估计要从第一步迭代计算的舍入误差开始估计,直到最后一步迭代计算的舍入误差。 ( × )

9、 数值计算中的总误差如果只考虑截断误差和舍入误差,则误差的最佳分配原则是截断误差=舍入误差。 ( )

10、插值计算中避免外插是为了减少舍入误差。 ( × )

三、 计算题(5×10′)

1、用列主元高斯消元法解线性方程组。

?????=++-=+--=+-112123454 3

21321321x x x x x x x x x 解答:

(1,5,2)最大元5在第二行,交换第一与第二行:

?????=++-=+--=+-1124 123453

21321321x x x x x x x x x L 21=1/5=0.2,l 31=2/5=0.4 方程化为:

?????=--=+--=+-8.152.06.26.1 0.4 2.0123453

232321x x x x x x x (-0.2,2.6)最大元在第三行,交换第二与第三行:

?????-=+-=--=+-6.1 0.4 2.08.152.06.2123453

232321x x x x x x x L32=-0.2/2.6=-0.076923,方程化为:

?????-==--=+-38466.00.38462 8.152.06.2123453

32321x x x x x x 回代得:?????-===00010.1 99999.500005.33

21x x x 2、用牛顿——埃尔米特插值法求满足下列表中插值条件的四次插值多项式P 4(x ),并写出其截断误差的表达式(设f (x )在插值区间上具有直到五阶连续导数)。

解答:

做差商表 x i F (xi) F[xi,xi +1] F[xi.xi+1.x i+2] F[xi,xi+1,xi+2,x i+3] F[xi,xi+1,xi+2,xi+3,x

i+4] 0 1

1

-1 -2

1

-1 1 3

2 3 4 3 0

2 3 5 1 -2 -1

P4(x)=1-2x-3x(x-1)-x(x-1)(x-1)(x-2)

R4(x)=f(5)()/5!x(x-1)(x-1)(x-2)(x-2)

3、对下面的线性方程组变化为等价的线性方程组,使之应用雅克比迭代法和高斯——赛德尔迭代法均收敛,写出变化后的线性方程组及雅克比迭代法和高斯——赛德尔迭代法的迭代公式,并简单说明收敛的理由。

????=-+=+-=+-8

4 6

5 1 2432431421x x x x x x x x x

解答:

交换第二和第四个方程,使系数矩阵为严格对角占优: 雅克比迭代公式:

《计算机数学基础(2)》数值分析试题

一、单项选择题(每小题3分,共15分)

1. 已知准确值x *与其有t 位有效数字的近似值x =0.0a 1a 2…a n ×10s (a 10)的绝对误差x *-x ( ).

(A) 0.5×10 s -1-t (B) 0.5×10 s -t (C) 0.5×10s +1-t (D) 0.5×10 s +t

2. 以下矩阵是严格对角占优矩阵的为( ).

???????=+-=-+=-+-=+-6

5 8

4 3

3 1 2431432321421x x x x x x x x x x x x ???????=+-=-+=-+-=+-6

5 8 4 3

3 1

2431432321421x x x x x x x x x x x x

(A) ?????

???????------2100121001210012, (B)????????????2100141101410125 (C) ?????

???????--2100141212410125 (D) ????????????-5131141201411124 3. 过(0,1),(2,4),(3,1)点的分段线性插值函数P (x )=( )

(A) ?????≤<+-≤≤+3210320123x x x x (B) ??

???≤<+-≤≤+32103201232x x x x

(C) ?????≤<+-≤≤-3210320123x x x x (D) ?????≤<+-≤≤+3

2420123x x x x 4. 等距二点的求导公式是( )

(A) ???

????-='+-='+++)(1)()(1)(111k k k k k k y y h x f y y h x f (B) ???????-='-='+++)(1)()(1)(111k k k k k k y y h x f y y h x f (C) ???????-='+-='+++)(1)()(1)(111k k k k k k y y h x f y y h x f (D)

5. 解常微分方程初值问题的平均形式的改进欧拉法公式是

)(2

11c p k y y y +=+

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

泰勒定理及其在数值分析中的应用

摘要 因为泰勒公式的形式简单易懂,由此,适用在很多学科。在计算机与物理等各个方面均有着极其广泛的应用,除此之外,也在数值分析、常微分方程、最优化理论这些数学分支中产生着至关重要的作用。可见,泰勒公式的用处很多,所以,更要弄清楚泰勒公式的概念和数学原理。这是数学中非常基础的东西,对学生今后的数学学习将起到非常好的作用。本论文的目的,主要是对泰勒定理在数值分析中的应用做研究,从利用泰勒公式近似计算函数值、利用泰勒公式近似计算导数值、泰勒公式在常微分方程数值求解中的应用等方面,对泰勒公式在数值分析方面的应用进行研究。泰勒公式在数值分析的各个方面都有着重要的应用,深入探讨泰勒公式的应用,对于我们解决一些复杂问题起到事半功倍的效果.只要在解题中注意分析并注重归纳总结,就能很好地运用泰勒公式.正确的应用泰勒公式使我们的证明和计算题变得简明快捷。 关键词:泰勒公式;数值分析;应用

ABSTRACT Because of the Taylor formula is very simple, so, can be applied to many subjects. In various physical and computer etc, have a very wide range of applications, in addition, also in the ordinary differential equations, numerical analysis, optimization theory, the branch of mathematics plays an extremely important role. Therefore, a lot of, Taylor formula. So, to clarify concepts and mathematical principle of Taylor formula. This is the very basis of mathematics of mathematics learning things, the students will play a very good role. The purpose of this thesis, mainly to do research on the application of Taylor theorem in numerical analysis, calculating the function value, using the Taylor formula to calculate the value of Taylor formula, the numerical solution of ordinary differential equation application, from using Taylor's formula approximation, the Taylor formula is analyzed in terms of the application in the numerical study. Taylor formula has important applications in the numerical analysis, in-depth study of the application of Taylor formula, for us to solve some complex problems play a multiplier effect. As long as the attention and focus on solving problems of the summary, will be able to use Taylor formula. Using Taylor formula to correct the proof and calculation problems we became fast and simple. Key words: Taylor formula; numerical analysis; application

数值分析试卷及答案

二 1 求A的LU分解,并利用分解结果求 解由紧凑格式 故 从而 故 2求证:非奇异矩阵不一定有LU分解 证明设非奇异,要说明A不一定能做LU分解,只需举出一个反例即可。现考虑矩阵,显然A为非奇异矩阵。若A有LU分解,则 故,而,显然不能同时成立。这矛盾说明A不能做LU分解,故只假定A非奇异并不能保证A能做LU分解,只有在A的前阶顺序主子式时才能保证A一定有LU分解。 3用追赶法求解如下的三对角方程组 解设有分解 由公式 其中分别是系数矩阵的主对角线元素及其下边和上边的次对角线元素,故有 从而有 故,,, 故,,, 4设A是任一阶对称正定矩阵,证明是一种向量范数 证明(1)因A正定对称,故当时,,而当时, (2)对任何实数,有 (3)因A正定,故有分解,则 故对任意向量和,总有 综上可知,是一种向量范数。 5 设,,已知方程组的精确解为 (1)计算条件数; (2)若近似解,计算剩余; (3)利用事后误差估计式计算不等式右端,并与不等式左边比较,此结果说明了什么?解(1) (2)

(3)由事后误差估计式,右端为 而左端 这表明当A为病态矩阵时,尽管剩余很小,误差估计仍然较大。因此,当A病态时,用大小作为检验解的准确度是不可靠的。 6矩阵第一行乘以一数成为,证明当时,有最小值 证明设,则 又 故 从而当时,即时,有最小值,且 7 讨论用雅可比法和高斯-赛德尔法解方程组时的收敛性。如果收敛,比较哪一种方法收敛较快,其中 解对雅可比方法,迭代矩阵 , 故雅可比法收敛。 对高斯-赛德尔法,迭代矩阵 ,故高斯-赛德尔法收敛。 因=故高斯-赛德尔法较雅可比法收敛快。 8设,求解方程组,求雅可比迭代法与高斯-赛德尔迭代法收敛的充要条件。 解雅可比法的迭代矩阵 , 故雅可比法收敛的充要条件是。 高斯-赛德尔法的迭代矩阵 , 故高斯-赛德尔法收敛的充要条件是。 9 设求解方程组的雅可比迭代格式为,其中,求证:若,则相应的高斯-赛德尔法收敛。证明由于是雅可比法的迭代矩阵,故 又,故, 即,故故系数矩阵A按行严格对角占优,从而高斯-赛德尔法收敛。 10设A为对称正定矩阵,考虑迭代格式 求证:(1)对任意初始向量,收敛; (2)收敛到的解。 证明(1)所给格式可化为 这里存在是因为,由A对称正定,,故也对称正定。 设迭代矩阵的特征值为,为相应的特征向量,则与做内积,有 因正定,故,从而,格式收敛。

非线性方程数值解法及其应用

非线性方程数值解法及其应用 摘要:数值计算方法主要研究如何运用计算机去获得数学问题的数值解的理论和算法。 本文主要介绍非线性方程的数值解法以及它在各个领域的应用。是直接从方程出发,逐步缩小根的存在区间,或逐步将根的近似值精确化,直到满足问题对精度的要求。我将从二分法、Steffensen 加速收敛法、Newton 迭代法、弦截法来分析非线性方程的解法及应用。 关键字:非线性方程;二分法;Steffensen 加速收敛法;代数Newton 法;弦截法 一、前言 随着科技技术的飞速发展,科学计算越来越显示出其重要性。科学计算的应用之广已遍及各行各业,例如气象资料的分析图像,飞机、汽车及轮船的外形设计,高科技研究等都离不开科学计算。因此经常需要求非线性方程 f(x) = O 的根。方程f(x) = O 的根叫做函数f(x)的零点。由连续函数的特性知:若f(x)在闭区间[a ,b]上连续,且f(a)·f(b)

数值分析试卷及答案

二 1求A的LU分解,并利用分解结果求 解由紧凑格式 故 从而 故 2求证:非奇异矩阵不一定有LU分解 证明设非奇异,要说明A不一定能做LU分解,只需举出一个反例即可。现考虑矩阵,显然A为非奇异矩阵。若A有LU分解,则 故,而,显然不能同时成立。这矛盾说明A不能做LU分解,故只假定A非奇异并不能保证A能做LU分解,只有在A的前阶顺序主子式 时才能保证A一定有LU分解。

3用追赶法求解如下的三对角方程组 解设有分解 由公式 其中分别是系数矩阵的主对角线元素及其下边和上边的次对角线元素,故有 从而有 故,,, 故,,,

4设A是任一阶对称正定矩阵,证明是一种向量范数 证明(1)因A正定对称,故当时,,而当时, (2)对任何实数,有 (3)因A正定,故有分解,则 故对任意向量和,总有 综上可知,是一种向量范数。 5 设,,已知方程组的精确解为 (1)计算条件数; (2)若近似解,计算剩余; (3)利用事后误差估计式计算不等式右端,并与不等式左边比较,此结果说明了什么?解(1) (2) (3)由事后误差估计式,右端为 而左端

这表明当A为病态矩阵时,尽管剩余很小,误差估计仍然较大。因此,当A病态时,用大小作为检验解的准确度是不可靠的。 6矩阵第一行乘以一数成为,证明当时,有最小值 证明设,则 又 故 从而当时,即时,有最小值,且 7讨论用雅可比法和高斯-赛德尔法解方程组时的收敛性。如果收敛,比较哪一种方 法收敛较快,其中 解对雅可比方法,迭代矩阵 , 故雅可比法收敛。 对高斯-赛德尔法,迭代矩阵

,故高斯-赛德尔法收敛。 因=故高斯-赛德尔法较雅可比法收敛快。 8设,求解方程组,求雅可比迭代法与高斯-赛德尔迭代法收敛的充要条件。 解雅可比法的迭代矩阵 , 故雅可比法收敛的充要条件是。 高斯-赛德尔法的迭代矩阵 ,

华南理工大学数值分析试题-14年下-C

华南理工大学研究生课程考试 《数值分析》试卷C (2015年1月9日) 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 本试卷共八大题,满分100分,考试时间为150分钟。 一、(12分)解答下列问题: 1)设近似值0x >,x 的相对误差为δ,试证明ln x 的绝对误差近似为δ。 2)利用秦九韶算法求多项式 542()681p x x x x x =-+-+ 在3x =时的值(须写出计算形式),并统计乘法次数。 (12分)解答下列问题: 1)设()235f x x =+,求[]0,1,2f 和[]0,1,2,3f 。 2)利用插值方法推导出恒等式: 33220,0[]j j i i x j i x i j =≠=-=-∑∏ 。

(1)设{}∞ =0)(k k x q 是区间[]1,0上带权1=ρ而最高次项系数为1的正交多项式族,其中1)(0=x q ,求1()q x 和2()q x 。 (2)求形如2y a bx =+的经验公式,使它与下列数据拟合: 四、(14分)对积分()10I f x dx = ?,试 (1)构造一个以012113,,424 x x x ===为节点的插值型求积公式; (2)指出所构造公式的代数精度; (3)用所得数值求积公式计算积分1 203x dx ?的精确值; (4)指出所得公式与一般的Newton-Cotes 型公式在形式上的重要区别。

(1)设?? ????=4321A ,计算1A 、()Cond A ∞和()A ρ。 (2)用列主元Gauss 消去法解方程组: 12312315410030.112x x x ????????????=????????????-?????? 六、(13分)对2阶线性方程组 11112212112222 a x a x b a x a x b +=??+=? (11220a a ≠ ) (1)证明求解此方程组的Jacobi 迭代与Gauss-Seidel 迭代同时收敛或同时发散; (2)当同时收敛时,试比较它们的收敛速度。

数值分析试卷及其答案

1、(本题5分)试确定7 22 作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22 =3.142857…=1103142857 .0-? π=3.141592… 所以 312102 11021005.0001264.0722--?=?=<=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22 作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3102 1 0005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:??? ?? ??=????? ??????? ??--654131*********x x x ; 解 设???? ? ??????? ? ?????? ??===????? ??--11111 1 131321112323121 32 132 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,215 27 ,25,2323121321- ==-== -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23 ,97,910(,)563, 7,4(== (3分) 3、(本题6分)给定线性方程组???????=++-=+-+=-+-=-+17 7222382311387 510432143213 21431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

数值分析第五版全答案chap1

第一章 绪 论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值*x 的相对误差为* **** r e x x e x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'()||() p xf x C f x = 又1'()n f x nx -= , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*5 7 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) *** 124x x x ++,(2) ***123x x x ,(3) **24 /x x . 其中****1234,,,x x x x 均为第3题所给的数。 解:

*4 1*3 2*13*3 4*1 51 ()102 1()102 1()102 1()102 1()102x x x x x εεεεε-----=?=?=?=?=? ***124***1244333 (1)() ()()() 111101010222 1.0510x x x x x x εεεε----++=++=?+?+?=? ***123*********123231132143 (2)() ()()() 1111.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ **24****24422 *4 33 5 (3)(/)()() 110.0311056.430102256.43056.430 10x x x x x x x εεε---+≈??+??=?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π= 则何种函数的条件数为 2 3 '4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=

数值分析简述及求解应用

数值分析简述及求解应用 摘要:数值分析是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,本文主要介绍了数值分析的一些求解方法的原理和过程,并应用在电流回路和单晶硅提拉过程中的,进一步体现数值分析的实际应用。 关键字:解方程组插值法牛顿法 一、引言 随着科学技术的发展,提出了大量复杂的数值计算问题,在建立电子计算机成为数值计算的主要工具以后,它以数字计算机求解数学问题的理论和方法为研究对象。有可靠的理论分析,要有数值实验,并对计算的结果进行误差分析。数值分析的主要内容包括插值法,函数逼近,曲线拟和,数值积分,数值微分,解线性方程组的直接方法,解线性方程组的迭代法,非线性方程求根,常微分方程的数值解法。运用数值分析解决问题的过程包括: 实际问题→数学建模→数值计算方法→程序设计→上机计算求出结果。 在自然科学研究和工程技术中有许多问题可归结为求解方程组的问题,方程组求解是科学计算中最常遇到的问题。如在应力分析、电路分析、分子结构、测量学中都会遇到解方程组问题。在很多广泛应用的数学问题的数值方法中,如三次样条、最小二乘法、微分方程边值问题的差分法与有限元法也都涉及到求解方程组。 在工程中常会遇到求解线性方程组的问题,解线性方程组的方法有直接法和迭代法,直接法就是经过有限步算术运算,可求的线性方程组精确解的方法(若计算过程没有舍入误差),但实际犹如舍入误差的存在和影响,这种方法也只能求得近似解,这类方法是解低阶稠密矩阵方程组级某些大型稀疏矩阵方程组的有效方法。直接法包括高斯消元法,矩阵三角分解法、追赶法、平方根法。迭代法就是利用某种极限过程去逐步逼近线性方程组精确解的方法。将方程组的解看作是某极限过程的极限值,且计算这一极限值的每一步是利用前一步所得结果施行相同的演算步骤而进行。迭代法具有需要计算机的存储单元少,程序设计简单,原始系数矩阵在计算过程始终不变等优点,但存在收敛性级收敛速度问题。迭代法是解大型稀疏矩阵方程组(尤其是微分方程离散后得到的大型方程组)的重要方法。迭代法包括Jacobi法SOR法、SSOR法等多种方法。非线性是实际问题中经常用到出现的并在科学和工程中的低位也越来越重要,很多线性模型都是在一定条件下由非线性简化得到的。所以往往需要非线性的研究。非线性的数值解法有牛顿法,迭代收敛的加速解法,弦解法和抛物线法等。还有很多问题都可用常微分方程的定解来描述,主要有处置问题和边值问题。常微分方程是描述连续变化的数学语言,微分方程的求解是确定满足给定方程的可微函数y(x)。下面就数值分析中常用的一些方法和实例进行阐述。 二、数值分析中的一些方法 1、插值法 许多实际问题都用y=f(x)来表示,有的函数虽然有解析式,但由于计算复杂实用不方便,为了找一个既能反映函数的特性又便于计算的函数,我们利用插值法可以得到这个简单函数,插值法包括拉格朗日插值,牛顿插值,Hermite插值等多种方法。 拉格朗日插值是n次多项式插值,其成功地用构造插值基函数的方法解决了

数值分析试卷及其答案2

1、(本题5分)试确定7 22作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22=3.142857…=1103142857.0-? π=3.141592… 所以 3 12 10 2 110 21005.0001264.07 22--?= ?= <=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3 10 2 10005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:???? ? ??=????? ??????? ??--654131321 112321x x x ; 解 设???? ? ? ?????? ? ?????? ??===????? ? ?--11 1 11113 1321 11232312132 1 32 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,21527,25,2323121321- == - == -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23,97,910( ,)5 63, 7,4(== (3分) 3、(本题6分)给定线性方程组??? ? ? ??=++-=+-+=-+-=-+17722238231138751043214321 321431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

数值分析习题集及答案Word版

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?

数值分析试题及答案

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110l x = B . ()00l x =0, ()111l x = C .() 00l x =1,()111 l x = D . () 00l x =1,()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 1231231 220223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A . 232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得 分 评卷人 二、填空题(每小题3分,共15分)

1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数()()() 33301213,88C C C ===,那么 () 33C = 4. 因为方程()420 x f x x =-+=在区间 []1,2上满足 ,所以()0f x =在区间 内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公式 . 填空题答案 1. 9和29 2. ()() 0101 f x f x x x -- 3. 1 8 4. ()()120 f f < 5. ()12 00.1 1.1,0,1,210.11k k y y k k y +???? ?=+? ?=+???? =??L 得 分 评卷人 三、计算题(每题15分,共60分) 1. 已知函数 21 1y x = +的一组数据: 求分 段线性插值函数,并计算 () 1.5f 的近似值. 计算题1.答案 1. 解 []0,1x ∈, ()1010.510.50110x x L x x --=?+?=---% []1,2x ∈,()210.50.20.30.81221x x L x x --=?+?=-+--%

数值分析习题

习题一 1.1 求下列各数的具有四位有效数字的近似值, 并指出其绝对误差限和相对误差限 )1.0ln(,121,101 1,1014321== = = x x x x 1.2 下列各数都是对准确值进行四舍五入得到的近似值, 指出它们的绝对误差限、相对误差限和有效数字的位 数。 3 * 5* 4* 3* 2* 1100.5,5000,50.31,3015.0,0315.0?=====x x x x x 1.3 为了使 3 1的近似值的相对误差不超过0.1%, 问应取几位有效数字? 1.4 怎样计算下列各题才能使得结果比较精确? (1) x x sin )sin(-+ε,其中ε充分小 (2) ? ++1 2 1N N x dx ,其中N 是充分大的正数 (3) x x sin cos 1-,其中x 充分小 (4) o 1cos 1- (5) 1001.0-e (6) )11010ln(84-- 1.5 求方程01562=+-x x 的两个根, 使至少具有四位有效数字。 习题二 2.1 证明方程043 =-+x x 在区间[1,2]内有且仅有一个根。如果用二分法求它具有五位有效数字的根,试问需对 分多少次?(不必求根) 2.2 用二分法求方程0134 =+-x x 在[0.3, 0.4]内的一个根, 精度要求2 10 2 1-?= ε。 2.3 找出下列方程的有根区间,选择适当的初始点用二分法求方程的根,精度要求2 10 -=ε。 (1) 02 =--x x ; (2) 06cos 2 =-++-x e x x ; (3) 01tan =--x x ; (4) 0sin 2=--x e x 。 2.4 考虑方程032 =-x e x ,将其改写为3 x e x ± =,取00=x ,用两种迭代公式迭代,分别收敛到1.0和-0.5附 近的两个根(取精度要求3 10-=ε)。

最新数值分析课程第五版课后习题答案(李庆扬等)1

第一章 绪论(12) 1、设0>x ,x 的相对误差为δ,求x ln 的误差。 [解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=* ****1)()(ln )(ln x x x x x , 相对误差为* * ** ln ln ) (ln )(ln x x x x r δ εε= = 。 2、设x 的相对误差为2%,求n x 的相对误差。 [解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为n n x x n x n x x n x x x ** 1 *** %2%2) ()()()(ln * ?=='=-=εε, 相对误差为%2) () (ln )(ln *** n x x x n r == εε。 3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字: 1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5 ?=x 。 [解]1021.1*1 =x 有5位有效数字;0031.0* 2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56* 4 =x 有5位有效数字;0.17*5?=x 有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中* 4*3*2*1,,,x x x x 均为第3题所给 的数。 (1)* 4*2*1x x x ++; [解]3 334* 4*2*11** *4*2*1*1005.1102 1 10211021)()()()()(----=?=?+?+?=++=? ??? ????=++∑x x x x x f x x x e n k k k εεεε; (2)* 3*2 *1x x x ;

泛函分析在数值分析中的应用

泛函分析在数值分析中 的应用 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

泛函分析在数值分析中的应用 刘肖廷工程力学 一、数学概述 数学是一门从集合概念角度去研究物质世界数量关系与空间形式的基础的自 然学科。它从应用的角度可以分为基础数学与应用数学两大范畴,而基础数学 又可以划分为纯数学和基础应用数学两大范畴。其中,纯数学是建立在基础应 用数学基础上进行的单纯的数学研究。可见基础应用数学是数学学科的基础。 基础应用数学以代数学,几何学,分析学与拓扑学为基础研究物质世界的数 学关系与空间形式。分而言之,代数学主要是从集合概念角度去研究物质世界 的数量关系;几何学主要是从集合概念的角度去研究物质世界的空间形式;分 析学则主要研究集合间的映射关系及其运算;而拓扑学则包含点集拓扑,代数 拓扑,微分拓扑,辛拓普等几个分支,融合与代数学与几何学之中。 应用数学则是以基础数学的基本方法(代数,几何,分析)为基础,去探讨 物质世界不同类型的数量关系与空间形式的。它主要包括三角学,概率论,数 理统计,随机过程,积分变换,运筹学,微分方程,积分方程,模糊数学,数 值分析,数值代数,矩阵论,测度论,李群与李代数等领域。当然,我们同样 不能忽视应用数学对基础数学在理论上的支持与贡献。 由此可见,集合概念是数学的核心概念,代数、几何与分析是是数学的三大 基本方法,代数学、几何学、分析学与拓扑学是支撑数学大厦的四根最紧要的 支柱,此四者同时又是相互联系,不可分割的。这一点印证了一句名言,数学 的魅力正在于其中各个分支之间的相互联系。 泛函分析的基本内容和基本特征 (一)度量空间和赋范线性空间 1、度量空间是现代数学中一种基本的、重要的、最接近于欧几里得空间的抽 象空间。19 世纪末,德国数学家G.康托尔创立了集合论,为各种抽象空间的 建立奠定了基础。20 世纪初期,法国数学家M. R. 弗雷歇发现许多分析学的 成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度盘空间的 d?→。若对于任何x, 概念。定义:设x 为一个集合,一个映射: X X R y,z属于x,有(1) (正定性)(x,y)0 d=。当且仅当x y d≥,且(x,y)0 =; (2)

数值计算方法试题集及答案要点

《数值计算方法》复习试题 一、填空题: 1、 ?? ??? ?????----=410141014A ,则A 的LU 分解为 A ? ???????? ???=????????? ?? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(, 0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求 得?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 3、1)3(,2)2(, 1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数 为 ,拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对 1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公

数值分析试题1

数值分析试卷1 一、填空题(每空2分,共30分) 1. 近似数231.0=*x 关于真值229.0=x 有____________位有效数字; 2. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是_______________________________________________; 3. 对1)(3++=x x x f ,差商=]3,2,1,0[f _________________; =]4,3,2,1,0[f ________; 4. 已知??? ? ??-='-=1223,)3,2(A x ,则=∞||||Ax ________________,=)(1A Cond ______________________ ; 5. 求解线性方程组?????=+=+045 11532121x x x x 的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径=)(G ρ_______________; 二、(12分)(1)设LU A =,其中L 为下三角阵,U 为单位上三角阵。已知 ?????? ? ??------=2100121001210012A ,求L ,U 。 (2)设A 为66?矩阵,将A 进行三角分解:LU A =,L 为单位下三角阵,U 为上三角阵,试写出L 中的元素65l 和U 中的元素56u 的计算公式。 三、给定数据表如下 x 0.20.40.60.81 1.2f(x)212523202124 (1) 用三次插值多项式计算f ( 0.7 ) 的近似值; (2) 用二次插值多项式计算f ( 0.95 ) 的近似值: (3) 用分段二次插值计算 f ( x ) )2.12.0(≤≤x 的近似值能保证有几位有

数值分析论文

题目:论数值分析在数学建模中的应用 学院: 机械自动化学院 专业: 机械设计及理论 学号: 学生姓名: 日期: 2011年12月5日

论数值分析在数学建模中的应用 摘要 为了满足科技发展对科学研究和工程技术人员用数学理论解决实际的能力的要求,讨论了数值分析在数学建模中的应用。数值分析不仅应用模型求解的过程中,它对模型的建立也具有较强的指导性。研究数值分析中插值拟合,解线性方程组,数值积分等方法在模型建立、求解以及误差分析中的应用,使数值分析作为一种工具更好的解决实际问题。 关键词 数值分析;数学建模;线性方程组;微分方程 the Application of Numerical Analysis in Methmetical Modeling Han Y u-tao 1 Bai Y ang 2 Tian Lu 2 Liu De-zheng 2 (1 College of Science ,Tianjin University of Commerce ,Tianjin ,300134 2 College of Science ,Tianjin University of Commerce ,Tianjin ,300134) Abstract In order to meet the technological scientific researchers who use mathematical theory to solve practical problems, the use of numerical analysis in mathematical modeling is discussed.Numerical analysis not only solve the model,but also relatively guide the model.Research on some numerical methods in numerical analysis which usually used in mathmetical modeling and error analysis will be a better way to solve practical problems. Key Words Numerical Analysis ;Mathematical Modeling; Linear Equations ;differential equation 1. 引言 数值分析主要介绍现代科学计算中常用的数值计算方法及其基本原理,研究并解决数值问题的近似解,是数学理论与计算机和实际问题的有机结合[1]。随着科学技术的迅速发展,运用数学方法解决科学研究和工程技术领域中的实际问题,已经得到普遍重视。数学建模是数值分析联系实际的桥梁。在数学建模过程中,无论是模型的建立还是模型的求解都要用到数值分析课程中所涉及的算法,如插值方法、最小二乘法、拟合法等,那么如何在数学建模中正确的应用数值分析内容,就成了解决实际问题的关键。 2. 数值分析在模型建立中的应用 在实际中,许多问题所研究的变量都是离散的形式,所建立的模型也是离散的。例如,对经济进行动态的分析时,一般总是根据一些计划的周期期末的指标值判断某经济计划执行的如何。有些实际问题即可建立连续模型,也可建立离散模型,但在研究中,并不能时时刻刻统计它,而是在某些特定时刻获得统计数据。例如,人口普查统计是一个时段的人口增长量,通过这个时段人口数量变化规律建立离散模型来预测未来人口。另一方面,对常见的微分方程、积分方程为了求解,往往需要将连续模型转化成离散模型。将连续模型转化成离散模型,最常用的方法就是建立差分方程。 以非负整数k 表示时间,记k x 为变量x 在时刻k 的取值,则称k k k x x x -=?+1为k x 的一阶差分,称k k k k k x x x x x +-=??=?++1222)(为k x 的二阶差分。类似课求出k x 的n 阶差分k n x ?。由k ,k x ,及k x 的差分给出的方程称为差分方程[2]。例如在研究节食与运动模型时,发现人们往往采取节食与运动方式消耗体内存储的脂肪,引起体重下降,达到减肥目的。通常制定减肥计划以周为时间单位比较方便,所以采用差分方程模型进行讨论。记第k 周末体重为)(k w ,第k 周吸收热量为)(k c ,热量转换系数α,代谢消耗系数β,在不考虑运动情况下体重变化的模型

相关文档
相关文档 最新文档