文档库 最新最全的文档下载
当前位置:文档库 › 使用matlab2014a做数据曲线拟合

使用matlab2014a做数据曲线拟合

使用matlab2014a做数据曲线拟合
使用matlab2014a做数据曲线拟合

Matlab有一个功能强大的曲线拟合工具箱cftool ,使用方便,能实现多种类型的线性、非线

性曲线拟合。下面结合我使用的Matlab R2007b 来简单介绍如何使用这个工具箱。

假设我们要拟合的函数形式是y=A*x*x + B*x, 且A>0,B>0 。

1、在命令行输入数据:

》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475]

》y=[5 10 15 20 25 30 35 40 45 50]

2、启动曲线拟合工具箱

》cftool

3、进入曲线拟合工具箱界面“Curve Fitting tool”

(1)点击“Data”按钮,弹出“Data”窗口;

(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数

据集的曲线图;

(3)点击“Fitting”按钮,弹出“Fitting”窗口;

(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单

选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类

型有:

Custom Equations:用户自定义的函数类型

Exponential:指数逼近,有2种类型,a*exp(b*x) 、a*exp(b*x) + c*exp(d*x) Fourier:傅立叶逼近,有7种类型,基础型是a0 + a1*cos(x*w) + b1*sin(x*w) Gaussian:高斯逼近,有8种类型,基础型是a1*exp(-((x-b1)/c1)^2)

Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape- preserving

Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~ Power:幂逼近,有2种类型,a*x^b 、a*x^b + c

Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型

Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)

Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是a1*sin(b1*x + c1) Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)

选择好所需的拟合曲线类型及其子类型,并进行相关设置:

——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改

待估计参数的上下限等参数;

——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear Equations线性等式”和“General Equations构造等式”两种标签。

在本例中选Custom Equations,点击“New”按钮,选择“General Equations”标签,输入函数类型y=a*x*x + b*x,设置参数a、b的上下限,然后点击OK。

(5)类型设置完成后,点击“Apply”按钮,就可以在Results框中得到拟合结果,如下例:general model:

f(x) = a*x*x+b*x

Coefficients (with 95% confidence bounds):

a = 0.009194 (0.009019, 0.00937)

b = 1.78e-011 (fixed at bound)

Goodness of fit:

SSE: 6.146

R-square: 0.997

Adjusted R-square: 0.997

RMSE: 0.8263

同时,也会在工具箱窗口中显示拟合曲线。

这样,就完成一次曲线拟合啦,十分方便快捷。当然,如果你觉得拟合效果不好,还可以在“

Fitting”窗口点击“New fit”按钮,按照步骤(4)~(5)进行一次新的拟合。

不过,需要注意的是,cftool 工具箱只能进行单个变量的曲线拟合,即待拟合的公式中,变量只能有一个。对于混合型的曲线,例如y = a*x + b/x ,工具箱的拟合效果并不好。下一篇文章我介绍帮同学做的一个非线性函数的曲线拟合。

曲线拟合的数值计算方法实验

曲线拟合的数值计算方法实验 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。 3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过 实验或观测得到量x与y的一组数据对(X i ,Y i )(i=1,2,...m),其中各X i 是彼此不同的。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或 拟合已知数据。f(x,c)常称作拟合模型,式中c=(c 1,c 2 ,…c n )是一些待定参 数。当c在f中线性出现时,称为线性模型,否则称为非线性模型。有许多衡量拟合优度的标准,最常用的一种做法是选择参数c使得拟合模型与实际观测值在

曲线拟合的方法及过程

一、课程设计题目: 对于函数 x e x x f --=)( 从00=x 开始,取步长1.0=h 的20个数据点,求五次最小二乘拟合多项式 5522105)()()()(x x a x x a x x a a x P -++-+-+= 其中 ∑ ===19 95.020 i i x x 二、原理分析 (1)最小二乘法的提法 当数据量大且由实验提供时,不宜要求近似曲线)(x y φ=严格地经过所有数据点),(i i y x ,亦即不应要求拟合函数)(x ?在i x 处的偏差(又称残差) i i i y x -=)(φδ (i=1,2,…,m) 都严格的等于零,但是,为了使近似曲线能尽量反应所给数据点的变化趋势,要求偏差i δ适当的小还是必要的,达到这一目标的途径很多,例如,可以通过使最大偏差i δmax 最小来实现,也可以通过使偏差绝对值之和∑i i δ最小来实 现……,考虑到计算方便等因素,通常用使得偏差平方和∑i i 2δ最小(成为最小 二乘原则)来实现。 按最小二乘原则选择近似函数的方法称为最小二乘法。 用最小二乘法求近似函数的问题可以归结为:对于给定数据),(i i y x (i=1,2,…,m),要求在某个函数类Φ中寻求一个函数)(x * ?,使 [][]2 1 )(2 1 * )()(mi n ∑∑=Φ∈=-=-m i i i x m i i i y x y x ??? (1-1) 其中)(x ?为函数类Φ中任意函数。 (1)确定函数类Φ,即确定)(x ?的形式。这不是一个单纯的数学问题,还与其他领域的一些专业知识有关。在数学上,通常的做法是将数据点),(i i y x 描

实验数据与曲线拟合

实验数据与曲线拟合 1. 曲线拟合 1. 曲线拟合的定义 2. 简单线性数据拟合的例子 2. 最小二乘法曲线拟合 1. 最小二乘法原理 2. 高斯消元法求解方程组 3. 最小二乘法解决速度与加速度实验 3. 三次样条曲线拟合 1. 插值函数 2. 样条函数的定义 3. 边界条件 4. 推导三次样条函数 5. 追赶法求解方程组 6. 三次样条曲线拟合算法实现 7. 三次样条曲线拟合的效果 4. 12.1 曲线拟合 5. 12.1.1 曲线拟合的定义 6. 曲线拟合(Curve Fitting)的数学定义是指用连续曲线近似地刻画或比拟平面上一组离散点所表示的坐 标之间的函数关系,是一种用解析表达式逼近离散数据的方法。曲线拟合通俗的说法就是“拉曲线”,也就是将现有数据透过数学方法来代入一条数学方程式的表示方法。科学和工程遇到的很多问题,往往只能通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,如果能够找到一个连续的函数(也就是曲线)或者更加密集的离散方程,使得实验数据与方程的曲线能够在最大程度上近似吻合,就可以根据曲线方程对数据进行数学计算,对实验结果进行理论分析,甚至对某些不具备测量条件的位置的结果进行估算。 7. 12.1.2 简单线性数据拟合的例子 8. 回想一下中学物理课的“速度与加速度”实验:假设某物体正在做加速运动,加速度未知,某实验人员 从时间t0 = 3秒时刻开始,以1秒时间间隔对这个物体连续进行了12次测速,得到一组速度和时间的离散数据,请根据实验结果推算该物体的加速度。 9. 表 12 – 1 物体速度和时间的测量关系表 10. 在选择了合适的坐标刻度之后,我们就可以在坐标纸上画出这些点。如图12–1所示,排除偏差明显 偏大的测量值后,可以看出测量结果呈现典型的线性特征。沿着该线性特征画一条直线,使尽量多的测量点能够位于直线上,或与直线的偏差尽量小,这条直线就是我们根据测量结果拟合的速度与时间的函数关系。最后在坐标纸上测量出直线的斜率K,K就是被测物体的加速度,经过测量,我们实验测到的物体加速度值是1.48米/秒2。

如何用EXCEL做数据线性拟合和回归分析

如何用Excel做数据线性拟合和回归分析 我们已经知道在Excel自带的数据库中已有线性拟合工具,但是它还稍显单薄,今天我们来尝试使用较为专业的拟合工具来对此类数据进行处理。 在数据分析中,对于成对成组数据的拟合是经常遇到的,涉及到的任务有线性描述,趋势预测和残差分析等等。很多专业读者遇见此类问题时往往寻求专业软件,比如在化工中经常用到的Origin和数学中常见的MATLAB等等。它们虽很专业,但其实使用Excel 就完全够用了。我们已经知道在Excel自带的数据库中已有线性拟合工具,但是它还稍显单薄,今天我们来尝试使用较为专业的拟合工具来对此类数据进行处理。 注:本功能需要使用Excel扩展功能,如果您的Excel尚未安装数据分析,请依次选择“工具”-“加载宏”,在安装光盘支持下加载“分析数据库”。加载成功后,可以在“工具”下拉菜单中看到“数据分析”选项 实例某溶液浓度正比对应于色谱仪器中的峰面积,现欲建立不同浓度下对应峰面积的标准曲线以供测试未知样品的实际浓度。已知8组对应数据,建立标准曲线,并且对此曲线进行评价,给出残差等分析数据。 这是一个很典型的线性拟合问题,手工计算就是采用最小二乘法求出拟合直线的待定参数,同时可以得出R的值,也就是相关系数的大小。在Excel中,可以采用先绘图再添加趋势线的方法完成前两步的要求。 选择成对的数据列,将它们使用“X、Y散点图”制成散点图。

在数据点上单击右键,选择“添加趋势线”-“线性”,并在选项标签中要求给出公式和相关系数等,可以得到拟合的直线。 拟合的直线是y=15620x+6606.1,R2的值为0.9994。 因为R2>0.99,所以这是一个线性特征非常明显的实验模型,即说明拟合直线能够以大于99.99%地解释、涵盖了实测数据,具有很好的一般性,可以作为标准工作曲线用于其他未知浓度溶液的测量。 为了进一步使用更多的指标来描述这一个模型,我们使用数据分析中的“回归”工具来详细分析这组数据。 在选项卡中显然详细多了,注意选择X、Y对应的数据列。“常数为零”就是指明该模型是严格的正比例模型,本例确实是这样,因为在浓度为零时相应峰面积肯定为零。先前得出的回归方程虽然拟合程度相当高,但是在x=0时,仍然有对应的数值,这显然是一个可笑的结论。所以我们选择“常数为零”。 “回归”工具为我们提供了三张图,分别是残差图、线性拟合图和正态概率图。重点来看残差图和线性拟合图。 在线性拟合图中可以看到,不但有根据要求生成的数据点,而且还有经过拟和处理的预测数据点,拟合直线的参数会在数据表格中详细显示。本实例旨在提供更多信息以起到抛砖引玉的作用,由于涉及到过多的专业术语,请各位读者根据实际,在具体使用

实验数据曲线拟合方法研究

本科毕业设计论文题目实验数据曲线拟合方法研究 专业名称 学生姓名 指导教师 毕业时间

毕业 一、题目 实验数据曲线拟合方法研究 二、指导思想和目的要求 通过毕业设计,使学生对所学自动控制原理、现代控制原理、控制系统仿真、电子技术等的基本理论和基本知识加深理解和应用;培养学生设计计算、数据处理、文件编辑、文字表达、文献查阅、计算机应用、工具书使用等基本事件能力以及外文资料的阅读和翻译技能;掌握常用的实验数据曲线拟合方法,培养创新意识,增强动手能力,为今后的工作打下一定的理论和实践基础。 要求认真复习有关基础理论和技术知识,认真对待每一个设计环节,全身心投入,认真查阅资料,仔细分析被控对象的工作原理、特性和控制要求,按计划完成毕业设计各阶段的任务,重视理论联系实际,写好毕业论文。 三、主要技术指标 设计系统满足以下要求: 数据拟合误差要尽量的小的同时保证曲线的线形形状最佳。 四、进度和要求 1、搜集中、英文资料,完成相关英文文献的翻译工作,明确本课题的国内外研 究现状及研究意义;(第1、2周) 2、撰写开题报告;(第 3、4周) 3、应用最小二乘法进行曲线拟合;(第5、6周) 4、应用Matlab命令曲线拟合;(第7、8周) 5、应用Matlab图形用户界面曲线拟合;(第9、10周) 6、研究其他曲线拟合方法;(第11周) 7、整理资料撰写毕业论文; (1)初稿;(第12、13周)(2)二稿;(第14周)

8、准备答辩和答辩。(第15周) 五、主要参考书及参考资料 [1]卢京潮,《自动控制原理》,西北工业大学出版社,2010.6 [2]胡寿松,《自动控制原理》,科学出版社,2008,6 [3]薛定宇,陈阳泉,《系统仿真技术与应用》,清华大学出版社,2004.4 [4]王正林,《Matlab/Simulink与控制系统仿真》,电子工业出版社,2009.7 [5]李桂成,《计算方法》,电子工业出版社,2013.8 [6]蒋建飞,胡良剑,唐俭.数值分析及其Matlab实验【M】.北京:科学出版社,2008 学生指导教师系主任

origin两条曲线拟合步骤

o r i g i n两条曲线拟合步 骤 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

以英文版origin75为例: 首先是输入数据(以两个拟合曲线为例): 一、在origin里面增加两列:点击鼠标右键,选择add new column, 二、选择C列,并将 其设为X(点击鼠标 右键选择) 三、从excel表格中选择需要的数据复制过来 然后是曲线拟合: 一、画散点图 全选数据后点击表格左下角的散点符号即可画出散点图 二、断开两组数据的关联 任选一点,双击,将dependent改为independent 三、第一条曲线拟合 单击最小梯度数据点,然后选择analysis→fit exponential decay→ first order 这样第一条线就拟合出来了 四、第二条曲线拟合 拟合之前需要将第一条线的拟合方程剪切,因为直接拟合第二条会将第 一条曲线方程覆盖 先选择需要拟合的数据,选择data→2g1 data1:C(X),D(Y) 然后依旧是analysis→fit exponential decay→first order,然后将剪切的方程粘贴上去,这样两个方程 然后双击进行修 改。

去掉方程的文本框:鼠标放在文本框上,右键→properties→选择none即可 增加图名,右键add text即可。 最后是输出图件 一、输出图片格式 二、输出工程文件 file→export page file→save project as 单曲线拟合在输入数据的时候不需要增加列数,直接输入,然后拟合即可。 带有异常值的数据在输入时就要再增加两列输入异常值,并将其中一列设置为X,然后和两条曲线一样进行拟合即可。

实验6 曲线拟合与数据分析

实验6 曲线拟合与数据分析 【实验目的】 1.掌握利用Origin进行(非)线性拟合的方法。 2.掌握如何由自定义函数对数据拟合。 3.掌握利用Origin对数据进行插值与外推。 4.掌握如何实现重叠图形的分离。 实验6.1非线性拟合 【实验内容】 1.利用安装目录中的D:\OriginLab\Origin8\Samples\Curve Fitting\ Polynomial Fit.dat数据文件进行二次 多项式拟合,拟合结果如下图。 图6- 1二次多项式拟合结果 2.利用安装目录中的D:\OriginLab\Origin8\Samples\Curve Fitting\ Gaussian.dat文件进行非线性拟合, 拟合结果如下图 图6- 2非线性拟合结果 3.分析分析报表,评估上面两题的拟合效果。 【实验步骤】 1)多项式拟合

1. 导入数据,通过【File 】→【Import 】命令打开安装目录中的D:\OriginLab\Origin8\Samples\Curve Fitting\ Polynomial Fit.dat 文件。 2. 选中A 、B 列数据,生成散点图。 3. 通过【Analysis 】→【Fitting 】→【Fit Polynomial 】命令打开Polynomial Fit 对话框。 图6- 3多项式拟合对话框 4. 如图6-3示,输入输出数据关系Recalculate 选为Manual ,多项式次数Polynomial Order 设置为2。 单击OK 即可得6-1结果。 2) 非线性拟合 1. 导入数据,通过【File 】→【Import 】命令打开安装目录中的D:\OriginLab\Origin8\Samples\Curve Fitting\ Gaussian.dat 文件。 2. 选中A 、B 列数据,生成散点图。 3. 通过【Analysis 】→【Fitting 】→【NonLinear Curve Fit 】命令打开NLFit 对话框。 4. 如图6-4示,拟合函数选择Gauss 函数,单击OK ,得6-2所示结果。 图6- 4非线性拟合对话框 实验6.2自定义函数拟合 【实验内容】 1. 有自定义函数 0bx y y ae =+ 利用安装目录D:\OriginLab\Origin8\Samples\Curve Fitting 下的Exponential Decay.dat 数据文件拟合出函数参数y0,a,b 。

SPSS 10.0高级教程十二:多元线性回归与曲线拟合

SPSS 10.0高级教程十二:多元线性回归与曲线拟合 回归分析是处理两个及两个以上变量间线性依存关系的统计方法。在医学领域中,此类问题很普遍,如人头发中某种金属元素的含量与血液中该元素的含量有关系,人的体表面积与身高、体重有关系;等等。回归分析就是用于说明这种依存变化的数学关系。 §10.1Linear过程 10.1.1 简单操作入门 调用此过程可完成二元或多元的线性回归分析。在多元线性回归分析中,用户还可根据需要,选用不同筛选自变量的方法(如:逐步法、向前法、向后法,等)。 例10.1:请分析在数据集Fat surfactant.sav中变量fat对变量spovl的大小有无影响? 显然,在这里spovl是连续性变量,而fat是分类变量,我们可用用单因素方差分析来解决这个问题。但此处我们要采用和方差分析等价的分析方法--回归分析来解决它。 回归分析和方差分析都可以被归入广义线性模型中,因此他们在模型的定义、计算方法等许多方面都非常近似,下面大家很快就会看到。 这里spovl是模型中的因变量,根据回归模型的要求,它必须是正态分布的变量才可以,我们可以用直方图来大致看一下,可以看到基本服从正态,因此不再检验其正态性,继续往下做。 10.1.1.1 界面详解 在菜单中选择Regression==>liner,系统弹出线性回归对话框如下:

除了大家熟悉的内容以外,里面还出现了一些特色菜,让我们来一一品尝。 【Dependent框】 用于选入回归分析的应变量。 【Block按钮组】 由Previous和Next两个按钮组成,用于将下面Independent框中选入的自变量分组。由于多元回归分析中自变量的选入方式有前进、后退、逐步等方法,如果对不同的自变量选入的方法不同,则用该按钮组将自变量分组选入即可。下面的例子会讲解其用法。 【Independent框】 用于选入回归分析的自变量。

1、曲线拟合及其应用综述

曲线拟合及其应用综述 摘要:本文首先分析了曲线拟合方法的背景及在各个领域中的应用,然后详细介绍了曲线拟合方法的基本原理及实现方法,并结合一个具体实例,分析了曲线拟合方法在柴油机故障诊断中的应用,最后对全文内容进行了总结,并对曲线拟合方法的发展进行了思考和展望。 关键词:曲线拟合最小二乘法故障模式识别柴油机故障诊断 1背景及应用 在科学技术的许多领域中,常常需要根据实际测试所得到的一系列数据,求出它们的函数关系。理论上讲,可以根据插值原则构造n 次多项式Pn(x),使得Pn(x)在各测试点的数据正好通过实测点。可是, 在一般情况下,我们为了尽量反映实际情况而采集了很多样点,造成了插值多项式Pn(x)的次数很高,这不仅增大了计算量,而且影响了函数的逼近程度;再就是由于插值多项式经过每一实测样点,这样就会保留测量误差,从而影响逼近函数的精度,不易反映实际的函数关系。因此,我们一般根据已知实际测试样点,找出被测试量之间的函数关系,使得找出的近似函数曲线能够充分反映实际测试量之间的关系,这就是曲线拟合。 曲线拟合技术在图像处理、逆向工程、计算机辅助设计以及测试数据的处理显示及故障模式诊断等领域中都得到了广泛的应用。 2 基本原理 2.1 曲线拟合的定义 解决曲线拟合问题常用的方法有很多,总体上可以分为两大类:一类是有理论模型的曲线拟合,也就是由与数据的背景资料规律相适应的解析表达式约束的曲线拟合;另一类是无理论模型的曲线拟合,也就是由几何方法或神经网络的拓扑结构确定数据关系的曲线拟合。 2.2 曲线拟合的方法 解决曲线拟合问题常用的方法有很多,总体上可以分为两大类:一类是有理论模型的曲线拟合,也就是由与数据的背景资料规律相适应的解析表达式约束的曲线拟合;另一类是无理论模型的曲线拟合,也就是由几何方法或神经网络的拓扑结构确定数据关系的曲线拟合。 2.2.1 有理论模型的曲线拟合 有理论模型的曲线拟合适用于处理有一定背景资料、规律性较强的拟合问题。通过实验或者观测得到的数据对(x i,y i)(i=1,2, …,n),可以用与背景资料规律相适应的解析表达式y=f(x,c)来反映x、y之间的依赖关系,y=f(x,c)称为拟合的理论模型,式中c=c0,c1,…c n是待定参数。当c在f中线性出现时,称为线性模型,否则称为非线性模型。有许多衡量拟合优度的标准,最常用的方法是最小二乘法。 2.2.1.1 线性模型的曲线拟合 线性模型中与背景资料相适应的解析表达式为: ε β β+ + =x y 1 (1) 式中,β0,β1未知参数,ε服从N(0,σ2)。 将n个实验点分别带入表达式(1)得到: i i i x yε β β+ + = 1 (2) 式中i=1,2,…n,ε1, ε2,…, εn相互独立并且服从N(0,σ2)。 根据最小二乘原理,拟合得到的参数应使曲线与试验点之间的误差的平方和达到最小,也就是使如下的目标函数达到最小: 2 1 1 ) ( i i n i i x y Jε β β- - - =∑ = (3) 将试验点数据点入之后,求目标函数的最大值问题就变成了求取使目标函数对待求参数的偏导数为零时的参数值问题,即: ) ( 2 1 1 = - - - - = ? ?∑ = i i n i i x y J ε β β β (4)

数值计算_第6章 曲线拟合的最小二乘法

第6章曲线拟合的最小二乘法 6.1 拟合曲线 通过观察或测量得到一组离散数据序列,当所得数据比较准确时,可构造插值函数逼近客观存在的函数,构造的原则是要求插值函数通过这些数据点,即。此时,序列与 是相等的。 如果数据序列,含有不可避免的误差(或称“噪音”),如图6.1 所示;如果数据序列无法同时满足某特定函数,如图6.2所示,那么,只能要求所做逼近函数最优地靠近样点,即向量与的误差或距离最小。按与之间误差最小原则作为“最优”标准构造的逼近函数,称为拟合函数。 图6.1 含有“噪声”的数据

图6.2 一条直线公路与多个景点 插值和拟合是构造逼近函数的两种方法。插值的目标是要插值函数尽量靠近离散点;拟合的目标是要离散点尽量靠近拟合函数。 向量与之间的误差或距离有各种不同的定义方法。例如: 用各点误差绝对值的和表示: 用各点误差按模的最大值表示: 用各点误差的平方和表示: 或(6.1) 其中称为均方误差,由于计算均方误差的最小值的方法容易实现而被广泛采用。按 均方误差达到极小构造拟合曲线的方法称为最小二乘法。本章主要讲述用最小二乘法构造拟合曲线的方法。 在运筹学、统计学、逼近论和控制论中,最小二乘法都是很重要的求解方法。例如,它是统计学中估计回归参数的最基本方法。

关于最小二乘法的发明权,在数学史的研究中尚未定论。有材料表明高斯和勒让德分别独立地提出这种方法。勒让德是在1805年第一次公开发表关于最小二乘法的论文,这时高斯指出,他早在1795年之前就使用了这种方法。但数学史研究者只找到了高斯约在1803年之前使用了这种方法的证据。 在实际问题中,怎样由测量的数据设计和确定“最贴近”的拟合曲线?关键在选择适当的拟合曲线类型,有时根据专业知识和工作经验即可确定拟合曲线类型;在对拟合曲线一无所知的情况下,不妨先绘制数据的粗略图形,或许从中观测出拟合曲线的类型;更一般地,对数据进行多种曲线类型的拟合,并计算均方误差,用数学实验的方法找出在最小二乘法意义下的误差最小的拟合函数。 例如,某风景区要在已有的景点之间修一条规格较高的主干路,景点与主干路之间由各具特色的支路联接。设景点的坐标为点列;设主干路为一条直线 ,即拟合函数是一条直线。通过计算均方误差最小值而确定直线方程(见图6.2)。 6.2线性拟合和二次拟合函数 线性拟合 给定一组数据,做拟合直线,均方误差为 (6.2) 是二元函数,的极小值要满足

一种分段曲线拟合方法研究

一种分段曲线拟合方法研究 摘要:分段曲线拟合是一种常用的数据处理方法,但在分段点处往往不能满足连续与光滑.针对这一问题,本文给出了一种能使分段点处连续的方法.该方法首先利用分段曲线拟合对数据进行处理;然后在相邻两段曲线采用两点三次Hermite插值的方法,构造一条连结两条分段曲线的插值曲线,从而使分段点处满足一阶连续.最后通过几个实例表明该方法简单、实用、效果较好. 关键词:分段曲线拟合Hermite插值分段点连续 Study on A Method of Sub-Curve Fitting Abstract:Sub-curve fitting is a commonly used processing method of data, but at sub-points it often does not meet the continuation and smooth, in allusion to to solve this problem, this paper presents a way for making sub-point method continuous. Firstly, this method of sub-curve fitting deals with the data; and then uses the way of t wo points’ cubic Hermite interpolation in the adjacent, structures a interpolation curve that links the two sub-curves, so the sub-point meets first-order continuation; lastly, gives several examples shows that this method is simple, practical and effective. Key words:sub-curve fitting Hermite interpolation sub-point continuous

曲线拟合方法浅析

曲线拟合方法概述 工业设计张静1014201056 引言:在现代图形造型技术中,曲线拟合是一个重要的部分,是曲面拟合的基础。现着重对最小二乘法、移动最小二乘法、NURBS 三次曲线拟合法和基于RBF 曲线拟合法进行 比较,论述这几种方法的原理及其算法,基于实例分析了上述几种拟合方法的特性,以分析拟合方法的适用场合,从而为图形造型中曲线拟合的方法选用作出更好的选择。 1 曲线拟合的概念 在许多对实验数据处理的问题中,经常需要寻找自变量和对应因变量之间的函数关系,有的变量关系可以根据问题的物理背景,通过理论推导的方法加以求解,得到相应关系式。但绝大多数的函数关系却很复杂,不容易通过理论推导得到相关的表达式,在这种情况下,就需要采用曲线拟合的方法来求解变量之间的函数关系式。 曲线拟合(Curve Fitting) ,是用连续曲线近似地刻画或比拟平面上离散点组所表示的坐标之问的函数关系的一种数据处理方法。在科学实验或社会活动中,通过实验或观测得到量x与y的一组数据对(X i,y i), i=1 , 2, 3…,m,其中各X i是彼此不同的。人们希望用一类与数据的规律相吻合的解析表达式y=f(x)来反映量x与y之间的依赖关系。即在一定意义下“最佳”地逼近或拟合已知数据。f(x)称作拟合函数,似的图 像称作拟合曲线。 2 曲线拟合的方法 2.1 最小二乘法 最小二乘法通过最小化误差的平方和寻找数据的最佳函数匹配,是进行曲线拟合的一种早期使用的方法一般最小二乘法的拟合函数是一元二次,可一元多次,也可多元多次。该方法是通过求出数据点到拟合函数的距离和 最小的拟合函数进行拟合的方法令f(x)=ax 2+bx+c ,计算数据点到该函数 所表示的曲线的距离和最小即:

数据拟合

数据拟合 数据拟合成曲线的思想,简称为曲线拟合(fitting a curve)。根据一组二维数据,即平面上的若干点,要求确定一个一元函数()y f x =,即曲线,使这些点与曲线总体来说尽量接近,曲线拟合其目的是根据实验获得的数据去建立因变量与自变量之间有效的经验函数关系,为进一步的深入研究提供线索。本章的目的,掌握一些曲线拟合的基本方法,弄清楚曲线拟合与插值方法之间的区别,学会使用Matlab 软件进行曲线拟合。 最小二乘法 给定平面上的点(,)i i x y ,(1,2,)i n =……,进行曲线拟合有多种方法,其中最小二乘法是解决曲线拟合最常用的方法。最小二乘法的原理是: 求()f x ,使2 211[()]n n i i i i i f x y δδ====-∑∑达到最小。 如图1所示,其中i δ为点(,)i i x y 与曲线()y f x =的距离。曲线拟合的实际含义是寻求一个函数()y f x =,使()f x 在某种准则下与所有数据点最为接近,即曲线拟合得最好。最小二乘准则就是使所有散点到曲线的距离平方和最小。拟合时选用一定的拟合函数()f x 形式,设拟合函数可由一些简单的“基函数”(例如幂函数,三角函数等等)01(),(),()m x x x ???…… 来线性表示: 0011()()()()m m f x c x c x x ???=++……+c 图1 曲线拟合示意图 现在要确定系数01,,m c c c ……,,使δ达到极小。为此,将()f x 的表达式代入δ中,δ就成为01,,m c c c ……,的函数,求δ的极小,就可令δ对i c 的偏导数等于零,于是得到1m +个方程组,从中求解出i c 。通常取基函数为231,,,,,m x x x x ……,这时

基础实验五 数据拟合与曲线拟合

基础实验五 数据拟合与曲线拟合 一、实验目的 对于某个变化过程中的相互依赖的变量,可建立适当的数学模型,用于分析、预报、决策或控制该过程。对于两个变量可通过用一个一元函数去模拟这两个变量的取值,但用不同的方法可得到不同的模拟函数。 使用最小二乘法来进行数据拟合,用基本函数曲线及其变化模拟给定的曲线,理解拟合方法。 二、实验材料 2.1 曲线拟合 (1)初等函数包括基本初等函数与它们经过加减乘除复合等运算后所得到的函数的图形及其变换。拟合函数为多项式情形理论上已经解决,称为拉格朗日插值多项式。 (2)光滑曲线的有关内容,包括分段函数的连续性、一阶可导性与高阶可导性。 (3)方程或方程组的求解,包括超越方程或方程组的近似解法,线性方程组的精确解。 2.2最小二乘法 给定平面上一组点(i x ,i y )(n i ,,2,1 =)作曲线拟合有多种方法,其中最小二乘法是常 用的一种。最小二乘法的原理是:求)(x f ,使∑=-=n k k k y x f 1 2])([δ达到最小。拟合时,选取一定的拟合函数形式,设拟合函数的基底函数为 ,)(,,)(,)(10x x x m ??? 拟合函数为 ,)()()()(1100x c x c x c x f m m ???+++= 确定m c c c ,,,10 使方差δ达到极小,此时得到的)(x f 即为所求。为使δ取到极值,将)(x f 的 表达式代入,对δ求i c 的偏导数,令其等于零,得到1+m 方程组成的方程组,从中求解i c 。当m =1时,取拟合函数bx a x f +=)(,此做法称为线性拟合,统计学上叫做线性回归。此时,临界方程组为 ?????=??? ??+=??? ??+∑∑∑∑∑=====n i i i n i i n i i n i i n i i y x b x x y b x na 1121 11, 从中解出a 与b ,有y x x l l x f xx xy +-= )()(,其中∑==n i i x n x 11 ,∑==n i i y n y 11 21)(x x l n i i xx -=∑=, ))((1y y x x l i n i i xy --=∑=。 Mathematica 提供了最基本的数据拟合函数Fit ,这个函数使用最小二乘法产生基函数的线性组合以构造出拟合函数。函数的参数表中包括三项:第一个参数是被拟合的数据;第二个参数是一个表,用于说明拟合用的基函数;第三个参数是拟合变量。 2.3 线性拟合 练习1 为研究某一化学反应过程中温度)(0C x 对产品得率y (%)的影响,测得数据如下:

曲线拟合和插值运算原理和方法

实验10 曲线拟合和插值运算 一. 实验目的 学会MATLAB 软件中软件拟合与插值运算的方法。 二. 实验内容与要求 在生产和科学实验中,自变量x 与因变量y=f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。当要求知道观测点之外的函数值时,需要估计函数值在该点的值。 要根据观测点的值,构造一个比较简单的函数y=t (x),使函数在观测点的值等于已知的数值或导数值,寻找这样的函数t(x),办法是很多的。 根据测量数据的类型有如下两种处理观测数据的方法。 (1) 测量值是准确的,没有误差,一般用插值。 (2) 测量值与真实值有误差,一般用曲线拟合。 MATLAB 中提供了众多的数据处理命令,有插值命令,拟合命令。 1.曲线拟合 已知离散点上的数据集[(1x ,1y ),………(n x ,n y )],求得一解析函数y=f (x),使f(x)在原离散点i x 上尽可能接近给定i y 的值,之一过程叫曲线拟合。最常用的的曲线拟合是最小二乘法曲线拟合,拟合结果可使误差的平方和最小,即使求使21|()|n i i i f x y =-∑ 最小的f(x). 格式:p=polyfit(x,Y ,n). 说明:求出已知数据x,Y 的n 阶拟合多项式f(x)的系数p ,x 必须是单调的。 [例 1.9] >>x=[0.5,1.0,1.5,2.0,2.5,3.0]; %给出数据点的x 值 >>y=[1.75,2.45,3.81,4.80,7.00,8.60]; %给出数据点的y 值 >>p=polyfit (x,y,2); %求出二阶拟合多项式f(x)的系数 >>x1=0.5:0.05:3.0; %给出x 在0.5~3.0之间的离散值 >>y1=polyval(p,1x ); %求出f(x)在1x 的值 >>plot(x,y,?*r ?, 11,x y ?-b ?) %比较拟合曲线效果 计算结果为: p= 0.5614 0.8287 1.1560 即用f(x)=0.56142 x +0.8287x+1.1560拟合已知数据,拟合曲线效果如图所示。

曲线拟合实验报告

数值分析 课程设计报告 学生姓名 学生学号 所在班级 指导教师

一、课程设计名称 函数逼近与曲线拟合 二、课程设计目的及要求 实验目的: ⑴学会用最小二乘法求拟合数据的多项式,并应用算法于实际问题。 ⑵学会基本的矩阵运算,注意点乘和叉乘的区别。 实验要求: ⑴编写程序用最小二乘法求拟合数据的多项式,并求平方误差,做出离散函数(x i ,y i )和拟合函数的图形; ⑵用MATLAB 的内部函数polyfit 求解上面最小二乘法曲线拟合多项式的系数及平方误差,并用MATLAB 的内部函数plot 作出其图形,并与(1)结果进行比较。 三、课程设计中的算法描述 用最小二乘法多项式曲线拟合,根据给定的数据点,并不要求这条曲线精确的经过这些点,而是拟合曲线无限逼近离散点所形成的数据曲线。 思路分析:从整体上考虑近似函数)(x p 同所给数据点) (i i y x ,误差i i i y x p r -=)(的大小,常用的方法有三种:一是误差i i i y x p r -=)(绝对值的最大值i m i r ≤≤0max ,即误差向量的无穷范数;二是误差绝对值的和∑=m i i r 0 ,即误差向量的1 范数;三是误差平方和∑=m i i r 0 2的算术平方根,即类似于误差向量的2范数。前两 种方法简单、自然,但不便于微分运算,后一种方法相当于考虑2范数的平方,此次采用第三种误差分析方案。 算法的具体推导过程: 1.设拟合多项式为: y =a 0+a 1x +a 2x 1+?+a k x k 2.给点到这条曲线的距离之和,即偏差平方和:

R 2= y i ? a 0+a 1x +?+a k x i k 2 n i =1 3.为了求得到符合条件的a 的值,对等式右边求a i 偏导数,因而我们得到了: ?2 y ? a 0+a 1x +?+a k x i k n i =1x =0 ?2 y ? a 0+a 1x +?+a k x i k n i =1 =0 ?? ?2 y ? a 0+a 1x +?+a k x i k x k n i =1 =0 4.将等式左边进行一次简化,然后应该可以得到下面的等式 a 0n +a 1 x i +?+a k x i k n i =1n i =1 a 0 x i +a 1 x i 2+?+ x i k +1n i =1 n i =1n i =1 a 0 x i k +a 1 x i k +1+?+a k x i 2k n i =1 n i =1 n i =1 5.把这些等式表示成矩阵的形式,就可以得到下面的矩阵: ????????? ???????????=???? ????????????????????????????∑∑∑∑∑∑∑∑∑∑∑=====+==+====n i i n i n i i k n i k i n i k i n i k i n i k i n i i n i i n i k i n i i y y y a a x x x x x x x x 11i 1 10121 11 1112111 a n 6. 将这个范德蒙得矩阵化简后得到 ?? ???? ??????=?????????????????? ??? ??? ? ?n k k n n k k y y y a a a x x x x x x 21102211111 7.因为Y A X =*,那么X Y A /=,计算得到系数矩阵,同时就得到了拟合曲线。

实验报告 曲线拟合

实验报告 曲线拟合——最小二乘法 一、目的和要求 1)了解最小二乘法的基本原理,熟悉最小二乘算法; 2)掌握最小二乘进行曲线拟合的编程,通过程序解决实际问题。 二、实习内容 1)最小二乘进行多项式拟合的编程实现。 2)用完成的程序解决实际问题。 三、算法 1)输入数据节点数n ,拟合的多项式次数m ,循环输入各节点的数据x j , y j (j=0,1,…,n-1) 2)由x j 求S ;由x j ,y j 求T : S k = ∑-=10n j k j x ( k=0,1,2, … 2*m ) T k = ∑-=1 0n j k j j x y ( k=0,1,2,… m ) 3)由S 形成系数矩阵数组c i,j :c[i][j]=S[i+j] (i=0,1,2,…m, j=0,1,2,…,m);由T 形成系数矩阵增广部分c i,m+1:c[i][m+1]=T[i] (i=0,1,2,…m) 4)对线性方程组A C A=(a 0,a 1,…,a m )T 四、实验步骤 1)完成最小二乘法进行曲线拟合的程序设计及录入、编辑; 2)完成程序的编译和链接,并进行修改; 3)用书上P105例2的例子对程序进行验证,并进行修改; 4)用完成的程序求解下面的实际问题。 5)完成实验报告。 五、实验结果 1. 经编译、链接及例子验证结果正确的源程序 #include #include #define N 100 #define delta 1e-6

void main() { inti,j,n,m,p,k,e,u,q=0; float a[N],b[N],s[N],t[N],c[N][N+1],sum,z[N],L,r,max,o,h,g; printf("输入n:"); scanf("%d",&n); printf("输入拟合次数m:"); scanf("%d",&m); printf("输入a:"); for(i=0;i

曲线拟合的数值计算方法实验

曲线拟合的数值计算方 法实验 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

曲线拟合的数值计算方法实验 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按原理求出变换后变量的,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。

3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近的一种方法。在或社会活动中,通过实验或观测得到量x 与y 的一组数据对(X i ,Y i )(i=1,2,...m ),其中各X i 是彼此不同的 。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x ,c )来反映量x 与y 之间的依赖关系,即在一定意义下“最佳”地逼近或拟合已知数据。f(x ,c)常称作拟合模型 ,式中c=(c 1,c 2,…c n )是一些待定参数。当c 在f 中出现时,称为线性模型,否则称为。有许多衡量拟合优度的标准,最常用的一种做法是选择参数c 使得拟合模型与实际在各点的(或),c)-f (f y e k k k 的平方和达到最小,此时所求曲线称作在加权最小二乘意义下对数据的拟合曲线。有许多求解拟合曲线的成功方法,对于线性模型一般通过建立和求解来确定参数,从而求得拟合曲线。至于,则要借助求解非线性方程组或用最优化方法求得所需参数才能得到拟合曲线,有时称之为非线性。 曲线拟合:与路径转化时的误差。值越大,误差越大;值越小,越精确。 2.最小二乘法拟合:

数值分析 函数逼近与曲线拟合

第三章 函数逼近与曲线拟合 1 函数的逼近与基本概念 1.1问题的提出 多数计算机的硬件系统只提供加、减、乘、除四种算术运算指令,因此为了计算大多数有解析表达式的函数的值,必须产生可用四则运算进行计算的近似式,一般为多项式和有理分式函数.实际上,我们已经接触到两种逼近多项式,一种是泰乐多项式,一种是插值多项式.泰乐多项式是一种局部方法,误差分布不均匀,满足一定精度要求的泰乐多项式次数太高,不宜在计算机上直接使用.例如,设 ()f x 是[1,1]-上的光滑函数,它的Taylor 级数0 ()k k k f x a x ∞ ==∑, ()(0) ! k k f a k = 在[1,1]-上收敛。当此级数收敛比较快时,1 1()()()n n n n e x f x s x a x ++=-≈。这个误差分布是不均匀的。当0x =时,(0)0n e =,而x 离开零点增加时,()n e x 单调增加,在1x =±误差最大。为了使[1,1]-的所有x 满足()()n f x s x ε-<,必须选取足够大的n ,这显然是不经 济的。插值函数出现的龙格现象表明,非节点处函数和它的插值多项式相差太大。更重要的是,实际中通过观测得到的节点数据往往有各种误差,此时如果要求逼近函数过全部节点,相当于保留全部数据误差,这是不适宜的。如图1所示,给出五个点上的实验测量数据,理论上的结果应该满足线性关系,即图1中的实线。由于实验数据的误差太大,不能用过任意两点的直线逼近函数。如果用过5个点的4次多项式逼近线性函数,显然误差会很大。

1.2范数与逼近 一、线性空间及赋范线性空间 要深入研究客观事物,不得不研究事物间的内在联系,给集合的元素之间赋予某种“确定关系”也正是这样的道理.数学上常把在各种集合中引入某些不同的确定关系称为赋予集合以某种空间结构,并将这样的集合称为空间。最常用的给集合赋予一种“加法”和“数乘”运算,使其构 成线性空间.例如将所有实 n 维数对组成的集合,按照“加法”和“数乘”运算构成实数域上的线 性空间,记作n R ,称为n 维向量空间.类似地,对次数不超过n 的实系数多项式全体,按通常多项式与多项式加法及数与多项式乘法也构成数域R 上一个线性空间,用n H 表示,称为多项式空间。所有定义在[,]a b 上的连续函数集合,按函数加法和数与函数乘法构成数域R 上的线 性空间,记作[,]C a b .类似地,记[,]p C a b 为具有p 阶连续导数的函数空间. 在实数的计算问题中,对实数的大小、距离及误差界等是通过绝对值来度量的.实践中,我们常常会遇到对一般线性空间中的向量大小和向量之间的距离进行度量的问题,因此有必要在一般线性空间上,赋予“长度”结构,使线性空间成为赋范线性空间. 定义1 设 X 是数域K 上一个线性空间,在其上定义一个实值函数g ,即对于任意 ,x y X ∈及K α∈,有对应的实数x 和y ,满足下列条件 (1) 正定性:0x ≥,而且0x =当且仅当0x =; (2) 齐次性:x x αα=; 实验数据 真函数 插值多项式逼近 精确的线性逼近 图1

相关文档