文档库 最新最全的文档下载
当前位置:文档库 › 管道应力分析和计算

管道应力分析和计算

管道应力分析和计算
管道应力分析和计算

新生培训教材

管道应力分析和计算

(机务专业篇)

国核电规划设计研究院机械部 二零一零年十一月 北京

校核人:

编写人:

目次

1 概述

1.1 管道应力计算的主要工作

1.2 管道应力计算常用的规范、标准1.3 管道应力分析方法

1.4 管道荷载

1.5 变形与应力

1.6 强度指标与塑性指标

1.7 强度理论

1.8 蠕变与应力松弛

1.9 应力分类

1.10 应力分析

2 管道的柔性分析与计算

2.1 管道的柔性

2.2 管道的热膨胀补偿

2.3 管道柔性分析与计算的主要工作2.4 管道柔性分析与计算的基本假定2.5 补偿值的计算

2.6 冷紧

2.7 柔性系数与应力增加系数

2.8 作用力和力矩计算的基本方法

2.9 管道对设备的推力和力矩的计算

3 管道的应力验算

3.1 管道的设计参数

3.2 钢材的许用应力

3.3 管道在内压下的应力验算

3.4 管道在持续荷载下的应力验算

3.5 管道在有偶然荷载作用时的应力验算3.6 管系热胀应力范围的验算

3.7 力矩和截面抗弯矩的计算

3.8 应力增加系数

3.9 应力分析和计算软件

1 概述

1.1 管道应力计算的主要工作

火力发电厂管道(以下简称管道)应力计算的主要工作是验算管道在内压、自重和其他外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力;判断计算管道的安全性、经济性、合理性,以及管道对设备产生的推力和力矩应在设备所能安全承受的范围内。

管道的热胀应力应按冷、热态的应力范围验算。管道对设备的推力和力矩应按冷状态下和工作状态下可能出现的最大值分别进行验算。

1.2 管道应力计算常用的规范、标准

(1)DL/T 5366-2006火力发电厂汽水管道应力计算技术规程及其勘误

(2)ASME B 31.1-2007动力管道

(3 ) DL/T 5054-1996 火力发电厂汽水管道设计技术规定

在一般情况下,对国内工程采用DL/T 5366进行管道应力验算。对涉外工程或用户有要求时,可采用B 31.1进行管道应力验算。

1.5.3 应力

在外力作用下,构件发生变形,这说明构件材料内部在外力作用下变形时原子间的相对位置产生了改变,同时原子间的相互作用力(吸引力与排斥力)也发生了改变。这种力的改变量称为内力。

内力是沿整个断面连续分布的,单位面积上的内力强度,即应力,以“σ”表示。

1.5.4 应变与弹性模量

(1)应变:构件或物体受外力(荷载)作用下将产生变形,为表明变形的程度,需计算单位长度内的变形,即应变,以“ε”表示。

(2)弹性模量:弹性模量E ,代表材料在受到拉伸(或压缩)作用时对弹性变形的抵抗能力。当杆件长度、断面积、外力以及温度均相同的条件下,E 的数值越大,杆件的轴向伸长(变形)越小。因此,E 也可说是衡量材料刚度的指标。

在弹性范围内,应力=弹性模数×应变,即σ=E·ε。

(3)泊松比:在弹性范围内,横向线应变与轴向线应变之比为一常数,此常数的绝对值称为泊松比,以“υ”表示。

泊松比的数值,对汽水管道常用的钢材,由试验得出,在弹性状态下约在0.25至0.35之间,在实用计算中取为0.3。但是,它随着钢材塑性变形的发展而增加,对塑性状态下可近似地取为0.5。

(4)剪切弹性模量:表示材料在线性弹性性态时抵抗剪切变形的能力。剪应力与剪应变也服从虎克定律。剪切弹性模量G 与弹性模量E 和泊松比有以下关系:G = ,若取常用管道钢材在弹性状态下的泊松比υ=0.3,则剪切弹性模量G 将等于

6

.2E 。 )+υ1(2E

1.6 强度指标与塑性指标

钢材的强度特征与变形特征是用一定的强度指标与塑性指标来衡量的,这两类指标都是表示钢材力学性能(机械性能)的物理量,它们都可以通过钢材的拉伸试验来得到。

1.6.1 强度极限σb:在拉伸应力-应变曲线上的最大应力点,单位为MPa。

1.6.2 屈服极限σS:材料在拉伸应力超过弹性范围,开始发生塑性变形时的应力。有些材料的拉伸应力-应变曲线并不出现明显的屈服平台,即不能明确地确定其屈服点。对此种情况,工程上规定取试样产

表示,单位生0.2%残余变形的应力值作为条件屈服极限,用σs

(0.2%)

为MPa。

1.6.3 持久强度σD t:在给定温度下,使试样经过一定时间发生蠕变断裂时的应力。在工程上通常采用试样在设计温度下10万小时断裂时的平均值σD t表示,单位为MPa。

1.6.4 蠕变极限σD t:在给定温度下和规定的持续时间内,使试样产生一定蠕变量的应力值。工程上通常采用钢材在设计温度下,经10

万小时,蠕变率为1%时的应力值,单位为MPa。

1.6.5 延伸率δ:试样在拉伸试验中发生破坏时,产生了百分之几的塑性伸长量,是衡量钢材拉伸试验时塑性的一个指标。试样的原始长度,一般选择为试样直径的5倍或10倍,因此,试样有δ5和δ10值,单位为百分率(%)。

1.6.6 断面收缩率ψ:断面收缩率表明试样在拉伸试验发生破坏时,缩颈处所产生的塑性变形率,它是衡量材料塑性的另一指标,单位为百分率(%)。

1.6.7 冲击功:钢材在进行缺口冲击试验时,消耗在试样上的能量,称为冲击功,用A k表示,单位为焦耳(J)。消耗在试样单位截面上的冲击功,即冲击韧性(也称冲击值),用αk表示,单位为J/cm2。

1.6.8 硬度:反映材料对局部塑性变形的抗力及材料的耐磨性。硬度有三种表示方法,即布氏硬度HB、洛氏硬度HR和维氏硬度HV,其测定方法和适用范围各异。

1.7 强度理论

常用的材料强度理论有四种,分别是:

1.7.1 第一强度理论-最大拉应力理论,其当量应力为

S=σ1(式1.7.1)它认为引起材料断裂破坏的主要因素是最大拉应力。亦即不论材料处于何种应力状态,只要最大拉应力达到材料单向拉伸断裂时的最大应力值,材料即发生断裂破坏。

1.7.2 第二强度理论-最大伸长线应变理论,其当量应力为

S=σ1-υ(σ2+σ3)(式1.7.2)它认为引起材料断裂破坏的主要因素是最大伸长线应变。亦即不论材料处于何种应力状态,只要最大伸长线应变达到材料单向拉伸断

裂时的最大应变值,材料即发生断裂破坏。

1.7.3 第三强度理论-最大剪应力理论,其当量应力为

S =σ1-σ3

(式1.7.3) 它认为引起材料破坏或失效的主要因素是最大剪应力。亦即不论材料处于何种应力状态,只要最大剪应力达到材料屈服极限值,材料即发生屈服破坏。

1.7.4 第四强度理论-变形能理论,其当量应力为

S =()()()22213322121

σ?σ+σ?σ+σ?σ (式1.7.4)

它认为引起材料屈服破坏的主要因素是材料内的变形能。亦即不论材料处于何种应力状态,只要其内部积累的变形能达到材料单向拉伸屈服时的变形能值,材料即发生屈服破坏。

在管道强度设计中,主要采用最大剪应力强度理论。

1.8 蠕变与应力松弛

蠕变和应力松弛是金属材料在高温下的机械性能。

1.8.1 蠕变是指金属在高温和应力同时作用下,应力保持不变,其非弹性变形随时间的延长而缓慢增加的现象。高温、应力和时间是蠕变发生的三要素。应力越大、温度越高,且在高温下停留的时间越长,则蠕变越甚。

1.8.2 应力松弛是指高温下工作的金属构件,在总变形量不变的条件下,其弹性变形随着时间的延长不断转变成非弹性变形,从而引起金属中应力逐步下降并趋于一个稳定值的现象。

1.8.3 蠕变和应力松弛两种现象的实质是相同时,都是高温下随时间发生的非弹性变形的积累过程。所不同的是应力松弛是在总变形量一定的特定条件下一部分弹性变形转化为非弹性变形;而蠕变则是在恒定应力长期作用下直接产生非弹性变形。

1.9 应力分类

对于管道上的应力,一般分为一次应力、二次应力和峰值应力三类。

1.9.1 一次应力

一次应力是由压力、重力与其他外力荷载的作用所产生的应力。它是平衡外力荷载所需的应力,随外力荷载的增加而增加。一次应力的特点是没有自限性,即当管道内的塑性区域扩展达到极限状态,使之变成几何可变的机构时,即使外力荷载不再增加,管道仍将产生不可限制的塑性流动,直至破坏。

一次应力有三种类型:一次一般薄膜应力、一次局部薄膜应力和一次弯曲应力。

(1)一次一般薄膜应力,是在所研究的截面厚度上均匀分布的,且等于该截面应力平均值的法向应力(即正应力)的分量。如果这种应力达到屈服极限时,将引起截面整体屈服,不出现荷载的再分配。

(2)一次局部薄膜应力,是由内压或其它机械荷载产生的,由于结构不连续或其它特殊情况的影响,而在管道或附件的局部区域有所增强的一次薄膜应力。这类应力虽然具有二次应力的一些特征,但为安全计,通常划为一次应力。

(3)一次弯曲应力,是在所研究的截面上法向应力(即正应力)从平均值算起的沿厚度方向变化的分量。这种应力达到屈服极限时,也只引起局部屈服。在应力验算中,通常不单独评价一次弯曲应力强度。

1.9.2 二次应力

二次应力是由管道变形受约束而产生的应力,它由管道热胀、冷缩、端点位移等位移荷载的作用而引起。它不直接与外力平衡,而是为满足位移约束条件或管道自身变形的连续要求所必需的应力。二次

应力的特点是具有自限性,即局部屈服或小量变形就可以使位移约束条件或自身变形连续要求得到满足,从而变形不再继续增大。二次应力引起的是疲劳破坏。

二次应力也有二次薄膜应力和二次弯曲应力两部分。

1.9.3 峰值应力

峰值应力是管道或附件由于局部结构不连续或局部热应力效应(包括局部应力集中)附加到一次应力或二次应力的增量。它的特点是不引起显著的变形,而且在短距离内从它的根源衰减,它是一种导致疲劳裂纹或脆弱破坏的可能原因。例如,管道由于温度分布不均匀,不同膨胀几乎全部被限制,不引起显著变形的局部热应力,以及管道附件上小半径圆角处,焊缝未焊透处的应力,均属于峰值应力。

1.10 应力分析

应力分析是研究应力和应变的理论。大多数应力分析,都是以结构的弹性理论为基础的,同时对塑性理论的应用给予充分的重视。采用比较广泛的应力分析有下面几种。

1.10.1 弹性分析

采用最早的应力分析是弹性分析。它通常是在不发生屈服的条件下,利用应力与应变间的线性关系(即虎克定律),计算由荷载引起的应力变化和挠度变化。按照弹性分析,应力是限定在材料的屈服极限以内,并留有适当的裕度。

1.10.2 极限分析

极限分析是涉及由于材料屈服而使结构发生塑性流动并达到全塑性状态时的荷载(或压力)的计算,是一个防止过度变形的准则。

根据一次应力没有自限性的特征,它超过一定的限度,将使管道变形增加直至破坏。因此,必须防止过度的塑性变形,并为爆破压力

和蠕变失效留有足够的裕度。对一次应力的限定,采用极限分析。1.10.3 安定分析

安定性是指不发生塑性变形的连续循环,如果在少数反复加载之后,变形稳定下来,并且随后的结构,除蠕变效应以外,表现是弹性的,或者可以说,管道在有限量塑性变形之后,能安定在弹性状态。安定分析限制的最大应力范围不超过两倍屈服极限。

安定分析适用于高应变低循环疲劳。为防止交替塑性或增量破坏,对管道的一次应力加二次应力的验算,采用安定分析。

1.10.4 疲劳分析

在周期性或交变荷载作用下,管道将产生交变应力(或应变),并且将引起材料疲劳破坏。

管道在使用期间内,要经历冷、热交变的循环,交变次数不象转动机械设备那样高,管道的疲劳属于高应变低循环疲劳。

疲劳分析主要是估计峰值应力的影响,限制累积疲劳损伤,确定使用的应力范围和交变疲劳次数。管道热胀应力主要是弯曲力矩所产生的应力,因此,在验算一定交变次数下的许用应力范围时,采取了管道弯曲疲劳试验的数据,是工程上采用的一种简单的方法。正规的疲劳分析采用的疲劳曲线都是基于应变疲劳数据由实验测得的,以求出在一定循环荷载作用下允许的循环次数。

1.10.5 非弹性分析

随着科学技术的发展,对于高温蠕变管道的应力分析的研究已开始应用非弹性分析,有的还采用蠕变-疲劳重迭效应的验算。非弹性应力分析需要计算管道总的应变,并对管道的平均应变、弯曲应变和局部应变分别给予不同的限定。

1.3 管道应力分析方法

管道应力分析方法分为静力分析和动力分析。

对于静荷载,例如:管道内压、自重和其他外载以及热胀、冷缩和其他位移荷载作用的应力计算,采用静力分析法。DL/T 5366和ASME B 31.1规定的应力验算属于静力分析法。同时,它们也用简化方法计及了地震作用的影响,适用于火力发电厂管道和一般动力管道。

对于动载荷,例如:往复脉冲载荷、强迫振动载荷、流动瞬态冲击载荷和地震载荷作用的应力计算采用动力分析法。核电站管道和地震烈度在8度及以上地区的火力发电厂管道应力计算采用动力分析法。

1.4 管道荷载

管道上可能承受的荷载有:

(1) 重力荷载:包括管道自重、保温重、介质重和积雪重等;

(2)压力荷载:包括内压力和外压力;

(3)位移荷载:包括管道热胀冷缩位移、端点附加位移、支承沉降等;

(4)风荷载;

(5)地震荷载;

(6)瞬变流动冲击荷载,如安全阀启跳或阀门的快速启闭时的压力冲击;

(7)两相流脉动荷载;

(8)压力脉动荷载,如往复压缩机往复运动所产生的压力脉动;

(9)机械振动荷载,如回转设备的简谐振动。

上述荷载根据其作用时间的长短,可以分为恒荷载和活荷载两类;根据其作用的性质,可以分为静力荷载和动力荷载。由于不同特征的荷载产生的应力性态及其对破坏的影响不同,因此,在应力分析与计算中也将采用与之相适应的方法。

1.5 变形与应力

1.5.1 变形

在外力(荷载)作用下,结构的总体或构件的形状和尺寸都会发生不同程度的变化,这种形状的改变,一般称为变形。

1.5.2 变形的分类

(1)按照变形的性态,可分为弹性变形和塑性变形两大类。

弹性变形:构件或物体在外力作用下产生的变形,外力除去后能完全恢复其原有形状,不遗留外力作用过的任何痕迹,这种变形叫做弹性变形。

塑性变形:构件或物体在外力作用下产生的变形,当外力除去后,构件或物体的形状不能复原,即遗留了外力作用下的残余变形,这种

变形称为塑性变形。

(2)按照变形的形式,可分为轴向拉伸(或压缩)、弯曲、扭转和剪切变形四种基本形式。

拉(压)变形:这种变形是由一对大小相等、方向相反、作用线与杆件轴线重合的外力所引起的。在这种外力作用下,杆的长度将伸长(或缩短)。

弯曲变形:当杆件承受与它的纵轴线垂直的荷载或纵向轴线平面内的力偶作用时,杆的纵向轴线由原来的直线变成了弧线,这种变形称为弯曲变形。

剪切变形:这种变形是杆件受到一对大小相等、方向相反、作用线相距很近的外力作用时所产生的。它的特征是在上述外力作用下杆的两个外力作用线间的各断面将力的作用方向(垂直于杆件轴线方

向)发生相对错动。

扭转变形:杆件在受到一对大小相等、转向相反、作用面垂直于杆件轴线的力偶作用时,使杆件的任意的两个断面绕杆件轴线作相对

的转动,即产生扭转变形。

2 管道的柔性分析与计算

2.1 管道的柔性

管道的柔性是反映管道变形难易程度的概念,表示管道通过自身变形吸收热胀、冷缩和其它位移变形的能力。

管道必须设计成具有足够的柔性,防止管道因热胀、冷缩、端点附加位移、管道支撑设置不当等原因造成的下列问题:

(1)管道应力过大或材料疲劳引起的管道破坏;

(2)管道连接处产生泄漏;

(3)管道推力或力矩过大,使与其相连接的设备产生过大的应力或变形,影响设备正常运行;

(4)管道推力或力矩过大引起管道支架破坏。

2.2 管道的热膨胀补偿

管道设计中应充分重视热膨胀补偿,增大管系的柔性,以减小由管道热胀、冷缩等位移荷载作用产生的力、力矩和应力。

管道的热膨胀补偿可采用自然补偿和利用补偿器补偿两种方式。

(1) 管道的自然补偿

是利用管道布置自身的长度、弯曲和扭转产生的变形来吸收管道的热伸长,以增大管系的柔性。当自补偿无法满足补偿要求时,可设置补偿器进行补偿。

(2)补偿器补偿

常用的管道补偿器有:П形补偿器、波形补偿器、套管式补偿器或球形补偿器。选择补偿器时应注意它适用的压力、温度和补偿量条件,保证可靠的运行。

2.3 管道柔性分析与计算的主要工作

2.3.1 主要工作

计算管道在热胀、冷缩、端点附加位移和支吊架约束(限位)等位移荷载作用下产生的力和力矩(含冷、热交替下的力和力矩范围,下同)。

2.3.2 结果

管道柔性计算得到的力和力矩,做为应力计算的输入,可用于判断管道对设备的推力和力矩是否在设备所能安全承受的范围内。

柔性计算得到的支吊架荷载和位移作为管道支吊架的设计输入。

2.4 管道柔性分析与计算的基本假定

(1)假定整个管系为弹性体。管道由弹性材料组成,服从虎克定律。

(2)管系是一个连续的整体,材料的一些物理量,例如应力、应变、能够用连续函数来描述。

(3)管道材料的各种物理性质,在各个方向都是相同的。

2.5 冷紧

冷紧是指在安装时使管道产生一个预变形的一种方法。通过这种预变形使管道在安装状态下对设备或固定点预先施加一个与操作(运行)状态时相反的作用力。

冷紧可以减少管道运行初期的热态应力和管道对于端点或设备的热态推力,并可减少管系的局部过应变。由于冷紧并不改变热胀应力范围,所以它不能改善热胀二次应力的校核结果。

冷紧比为冷紧值与全补偿值(安装状态到热状态的总变形值)的比值。冷紧比的数值在0-1之间,冷紧比为0时表示没有冷紧,冷紧比为1时表示100%冷紧。

冷紧有效系数是指实际有效的冷紧值与理论冷紧值之比。考虑到在实际管道安装过程中理论冷紧值往往难以完全实现,所以一般将冷

管道应力分析基础知识

管道应力分析基础知识 2009-04-09 13:55 1. 进行应力分析的目的是 1) 使管道应力在规范的许用范围内; 2) 使设备管口载荷符合制造商的要求或公认的标准; 3) 计算出作用在管道支吊架上的荷载; 4) 解决管道动力学问题; 5) 帮助配管优化设计。 2. 管道应力分析主要包括哪些内容?各种分析的目的是什么? 答:管道应力分析分为静力分析和动力分析。 1) 静力分析包括: (l)压力荷载和持续荷载作用下的一次应力计算――防止塑性变形破坏; (2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算――防止疲劳破坏; (3)管道对设备作用力的计算――防止作用力太大,保证设备正常运行; (4)管道支吊架的受力计算――为支吊架设计提供依据; (5)管道上法兰的受力计算――防止法兰泄漏; (6)管系位移计算――防止管道碰撞和支吊点位移过大。 2) 动力分析包括: (l)管道自振频率分析――防止管道系统共振; (2)管道强迫振动响应分析――控制管道振动及应力; (3)往复压缩机气柱频率分析――防止气柱共振; (4)往复压缩机压力脉动分析――控制压力脉动值。 3. 管道应力分析的方法 管道应力分析的方法有:目测法、图表法、公式法、和计算机分析方法。选用什

么分析方法,应根据管道输送的介质、管道操作温度、操作压力、公称直径和所连接的设备类型等设计条件确定。 4. 对管系进行分析计算 1) 建立计算模型(编节点号),进行计算机应力分析时,管道轴测图上需要提供给计算机软件数据的部位和需要计算机软件输出数据的部位称作节点: (1)管道端点 (2)管道约束点、支撑点、给定位移点 (3)管道方向改变点、分支点 (4)管径、壁厚改变点 (5)存在条件变化点(温度、压力变化处) (6)定义边界条件(约束和附加位移) (7)管道材料改变处(包括刚度改变处,如刚性元件) (8)定义节点的荷载条件(保温材料重量、附加力、风载、雪载等) (9)需了解分析结果处(如跨距较长的跨中心点) (10) 动力分析需增设点 2) 初步计算(输入数据符合要求即可进行计算) (1) 利用计算机推荐工况(用CASWARII计算,集中荷载、均布荷载特别加入) (2) 弹簧可由程序自动选取 (3) 计算结果分析 (4) 查看一次应力、二次应力的核算结果 (5) 查看冷态、热态位移 (6) 查看机器设备受力 (7) 查看支吊架受力(垂直荷载、水平荷载) (8) 查看弹簧表

管道培训材料3doc-管道应力

3 管道应力 3.1 石油化工管道应力分析常用规范、标准有哪些? 答:石油化工管道应力分析常用规范、标准有: (1)《工业金属管道设计规范》(国标报批稿); (2)《石油化工企业管道柔性设计规范》(SHJ41-91); (3)《石油化工企业非埋地管道抗震设计通则》(SHJ39-91); (4)《石油化工企业管道设计器材选用通则》(SH3059-94); (5)《石油化工企业管道支吊架设计规范》(SH3073-95); (6) 化工管道设计规范(HG20695-1987); (7) 化工部设计标准《管架标准图》(HG/T21629-1991)。 3.2 管道应力分析主要包括哪些内容?各种分析的目的是什么? 答:管道应力分析分为静力分析和动力分析。 静力分析包括: (1) 压力荷载和持续荷载作用下的一次应力计算—防止塑性变形破坏; (2) 管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算—防止疲劳破坏; (3) 管道对设备作用力的计算—防止作用力太大,保证设备正常运行; (4) 管道支吊架的受力计算—为支吊架设计提供依据; (5) 管道上法兰的受力计算—防止法兰泄漏。 动力分析包括: (1) 管道自振频率分析—防止管道系统共振; (2) 管道强迫振动响应分析—控制管道振动及应力; (3) 往复压缩机(泵)气(液)柱频率分析—防止气柱共振; (4) 往复压缩机(泵)压力脉动分析—控制压力脉动值。 3.3 管道上可能承受的荷载有哪些? 答:管道上可能承受的荷载有: (1) 重力荷载,包括管道自重、保温重、介质重和积雪重等; (2) 压力荷载,压力荷载包括内压力和外压力; (3) 位移荷载,位移荷载包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4) 风荷载; (5) 地震荷载; (6) 瞬变流冲击荷载,如安全阀启跳或阀门的快速启闭时的压力冲击; (7) 两相流脉动荷载; (8) 压力脉动荷载,如往复压缩机往复运动所产生的压力脉动;

管道应力分析程序使用说明

管道应力分析程序(GLIF)使用说明 第一章概述 本程序吸收了国内管道应力计算程序和美国2010管道应力计算程序的优点,采用结构程序设计方法,开发的符合《火力发电厂汽水管道应力计算技术规定(SDGJ6-90)》的程序。 11功能 程序计及了内压、自重、外载、设备接口附加位移、冷紧、安全阀排放产生的载荷、以及风载、静力地震载荷等,既能对持续荷载,又能对临时荷载、偶然荷载进行分析计算。 程序可对正常运行条件下的热状态、冷状态,由热至冷及由冷至热状态进行计算。其中对冷状态考虑了管道运行初期和应变达到自均衡后两种情况。 程序可对水压试验工况进行分析计算。程序可对异常运行条件下的安全阀排放荷载、风载、地震荷载的静力分析计算。 本程序管道结构分析和应力验算更趋于精细和合理,提高了管道投资的经济性和运行的安全性。 12特点 程序的编制,按功能采用模块型结构,使其可读性和可维护性好。尽量用标准语言而避免采用依赖于机型和硬件的特殊语句,使程序可

移植性好。程序功能强,使用简便,程序对管道的结构没有限制,按管道的设计模型组织数据文件,为CAD绘图创造了良好条件。输入灵活易学,输出集中简明。输入数据、输出成果的单位可分别选取工程制和法定单位制。程序应力验算符合SDGJ6-90标准,为了使用户计算方便、便于掌握程序按照定工况进行组织,可自动检查出输入数据的错误。减少对错误题目进行运算的可能性,节省时间和费用。 13计算内容 a.管道在工作状态下,由持续荷载(即内压、自重等)作用下产 生的应力进行验算,计算持续荷载对设备或端点的推力。 b.管道在运行初期工作状态下,计算管道约束装置的荷载及管道 对设备(或端点)的推力。考虑自重、热膨胀、有效冷紧和端点附加位移的影响。 c.管道应变自均衡后在冷状态下,计算管道刚性约束装置的荷载 及管道对设备(或端点)的推力。 d.管道由冷状态到工作状态的热位移计算,按管道沿坐标轴的全 补偿值和钢材在20℃时的弹性模量计算,并考虑弹簧附加力的影响。 e.管道热膨胀应力范围的验算。 f.管道在运行初期冷状态下,计算管道约束装置的荷载及对设备 (或端点)的推力。 g.管道由于冷紧和弹簧附加力作用下的冷位移的计算,以其作为

管道应力分析和计算

管道应力分析和计算

目次 1 概述 1.1 管道应力计算的主要工作 1.2 管道应力计算常用的规范、标准1.3 管道应力分析方法 1.4 管道荷载 1.5 变形与应力 1.6 强度指标与塑性指标 1.7 强度理论 1.8 蠕变与应力松弛 1.9 应力分类 1.10 应力分析 2管道的柔性分析与计算 2.1管道的柔性 2.2管道的热膨胀补偿 2.3管道柔性分析与计算的主要工作2.4 管道柔性分析与计算的基本假定2.5 补偿值的计算 2.6 冷紧 2.7 柔性系数与应力增加系数 2.8 作用力和力矩计算的基本方法2.9 管道对设备的推力和力矩的计算

3 管道的应力验算 3.1管道的设计参数 3.2钢材的许用应力 3.3管道在内压下的应力验算 3.4 管道在持续荷载下的应力验算 3.5管道在有偶然荷载作用时的应力验算3.6 管系热胀应力范围的验算 3.7力矩和截面抗弯矩的计算 3.8 应力增加系数 3.9 应力分析和计算软件

1 概述 1.1 管道应力计算的主要工作 火力发电厂管道(以下简称管道)应力计算的主要工作是验算管道在内压、自重和其他外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力;判断计算管道的安全性、经济性、合理性,以及管道对设备产生的推力和力矩应在设备所能安全承受的范围内。 管道的热胀应力应按冷、热态的应力范围验算。管道对设备的推力和力矩应按冷状态下和工作状态下可能出现的最大值分别进行验算。 1.2 管道应力计算常用的规范、标准 (1)DL/T 5366-2006火力发电厂汽水管道应力计算技术规程(2)ASME B 31.1-2004动力管道 在一般情况下,对国内工程采用DL/T 5366进行管道应力验算。对涉外工程或顾客有要求时,采用B 31.1进行管道应力验算。 1.3 管道应力分析方法 管道应力分析方法分为静力分析和动力分析。 对于静荷载,例如:管道内压、自重和其他外载以及热胀、冷缩和其他位移荷载作用的应力计算,采用静力分析法。DL/T 5366和B31.1规定的应力验算属于静力分析法。同时,它们也用简化方法计及了地震作用的影响,适用于火力发电厂管道和一般动力管道。 对于动载荷,例如:往复脉冲载荷、强迫振动载荷、流动瞬态冲击载荷和地震载荷作用的应力计算采用动力分析法。核电站管道和地震烈度在9度及以上地区的火力发电厂管道应力计算采用动力分析法。 1.4 管道荷载

管道柔性分析与应力计算

今天借这个机会和大家共同学习和探讨一下管道柔性分析与应力计算以及应力计算软件CAESARⅡ。 我们作为管道工程师,配管是我们的主要工作,占据了我们大部分工作时间。一般情况下,管道工程师在配管完成后,应将临界管系提给管道机械工程师进行管道柔性分析与应力计算,通常也简称为应力分析。我们在配管完成后,为什么要进行管道应力分析呢? 主要有以下几个原因: 第一个原因是为了使管道应力在规的许用围,保证所设计的管系及其连接部分的安全性。 第二个原因是为了使管口荷载符合标准规的要求。 第三个原因是为了计算支撑和约束的设计荷载。 第四个原因是为了计算管道位移,从而选择合适的管架。 第五个原因是为了解决管道动力学问题,比如说:机械振动,声频振动,流体锤,压力脉动,安全阀的排放等等。 最后一个原因是为了帮助配管优化设计。 这些原因呢也构成了管机工程师需要完成的工作任务,对这些容呢后面我们会作进一步学习。 今天我们学习的容包括以下五个部分: 1.管道应力分析的相关理论和基础知识。我们简单的学习一下与管 道应力分析相关的一些理论和基础知识。 2.管道应力分析的理解和工作任务。 3.实际工作中的管道应力分析的工作过程。

4.管道的柔性设计。 5. CAESARⅡ管道应力计算程序。 我们首先一起学习一下应力分析的理论基础 一管道应力分析的相关理论和基础知识。 应力分析的相关理论和基础知识涉及的容是非常广泛的,象是材料力学,结构力学,有限元,弹塑性力学等等。今天我们只学习和它关系最为密切的一些容。如果有兴趣的话,大家可以在以后时间里进一步学习其他相关知识。 我们学习的第一点是强度理论 在管系上的任一受力点,往往受到多方向应力的作用,例如:轴向应力,环向应力,剪切应力的作用。这些应力会对管道材料的力学性能产生影响,严重时将使管道材料失效或产生破坏。这种影响程度通常用“当量应力强度”来衡量,而定量求解应力强度则要依据相应的强度理论。 涉及的强度理论主要有四种: 第一种是最大主应力理论。最大主应力理论指出材料发生断裂破坏时,其受力横截面上的最大主应力既是最危险的应力。 第二种是最大变形理论。最大变形理论是指材料发生断裂破坏时,最大变形是受力横截面上最危险的情况。 第三种是最大剪切应力理论。最大剪切应力理论是指材料的破坏或性能失效,仅取决于材料所受的最大剪切应力。 第四种是变形能理论。变形能理论是指材料的破坏或性能失效,取决

管道应力分析报告概述

管道应力分析概述 CAESARII软件介绍 CAESARII管道应力分析软件是由美国COADE公司研发的压力管道应力分析专业软件。它既可以分析计算静态分析,也可进行动态分析。CAESARII向用户提供完备的国际上的通用管道设计规范,使用方便快捷。交互式数据输入图形输出,使用户可直观查看模型(单线、线框,实体图)强大的3D计算结果图形分析功能,丰富的约束类型,对边界条件提供最广泛的支撑类型选择、膨胀节库和法兰库,并且允许用户扩展自己的库。钢结构建模,并提供多种钢结构数据库.结构模型可以同管道模型合并,统一分析膨胀节可通过标准库选取自动建模、冷紧单元/弯头,三通应力强度因子(SIF)的计算、交互式的列表编辑输入格式用户控制和选择的程序运行方式,用户可定义各种工况。 一、管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 二、管道应力分析的主要内容 管道应力分析分为静力分析和动力分析。 静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算——防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据; 5)管道上法兰的受力计算——防止法兰汇漏。 动力分析包括:

l)管道自振频率分析——防止管道系统共振; 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析——防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 三、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等; (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载; (5)地震荷载; (6)瞬变流冲击荷载:如安全阀启跳或阀门的快速启闭时的压力冲击: (7)两相流脉动荷载; (8)压力脉动荷载:如往复压缩机往复运动所产生的压力脉动; (9)机械振动荷载:如回转设备的振动。 四、管道应力分析的目的 1)为了使管道和管件内的应力不超过许用应力值; 2)为了使与管系相连的设备的管口荷载在制造商或国际规范(如 NEMA SM-23、API-610、API-6 17等)规定的许用范围内; 3)为了使与管系相连的设备管口的局部应力在 ASME Vlll的允许范围内; 4)为了计算管系中支架和约束的设计荷载;

管道应力分析设计规定——寰球标准

2003年 月 日发布 2003年 月 日实施 质 量 管 理 体 系 文 件 HQB-B06-05.306PP-2003 设计规定 管道应力分析设计规定 版 号:0 受控号:

管道应力分析设计规定HQB-B06-05.306PP- 2003版号编制校核审核批准批准日期 主编部室:管道室参编部室: 参编人员: 参校人员: 会签部室 签署 会签部室 签署 会签部室 签署 说明: 1.文件版号为A、B、C......。 2.每版号中局部修改版次为1/A、2/A……,1/B、2/B……,1/C、2/C……。

本规定(HQB-B06-05.306PP-2003)自2003年月实施。 目录 1. 总则 (1) 2. 应力分析管线的分类及应力分析方法 (2) 3. 管道应力分析设计输入和设计输出 (6) 4. 管道应力分析条件的确定 (9) 5. 管道应力分析评定准则 (11) 附件1 管线应力分析分类表 (14) 附件2 设备管口承载能力表 (15) 附件3 柔性系数k和应力增强系数i (16) 附件4 API 610《一般炼厂用离心泵》(摘录) (17) 附件5 NEMA SM23 (摘录) (22) 附件6 API 661 《一般厂用空冷器》(摘录) (23)

1. 总则 1.1 适用范围 1.1.1 本规定适用于石油化工生产装置及辅助设施中的碳钢、合金钢及不锈钢管道的应力分析设计工作。 本规定所列内容为管道应力分析设计工作的最低要求。 1.1.2 管道应力分析设计应保证管道在设计和工作条件下,具有足够的强度和合适的刚度,防止管道因热胀冷缩、支承或端点的附加位移及其它的荷载(如压力、自重、风、地震、雪等)造成下列问题: 1)管道的应力过大或金属疲劳引起管道或支架破坏。 2)管道连接处泄漏。 3)管道作用在与其相联的设备上的载荷过大,或在设备上产生大的变形或应 力,而影响了设备的正常运行。 4)管架因强度或刚度不够而造成管架破坏。 5)管道的位移量过大而引起的管道自身或其它管道的非正常运行或破坏。 6)机械振动、声频振动、流体锤、压力脉动、安全阀泄放等动荷载造成的管 道振动及破坏。 1.2 应力分析设计工作相关的标准、规范: 1) GB150-1999 《钢制压力容器》 2) GB50316-2000 《工业金属管道设计规范》 3) HG/T20645-1998 《化工装置管道机械设计规定》 4) JB/T8130.2-95 《可变弹簧支吊架》 5) JB/T8130.1-95 《恒力弹簧支吊架》

钢管应力计算

第一章总则 第1.0.1条管道应力计算的任务是:验算管道在内压、自重和其它外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力,以判明所计算的管道是否安全、经济、合理以及管道对设备的推力和力矩是否在设备所能安全承受的范围内。 第1.0.2条本规定适用于以低碳钢、低合金钢和高铬钢为管材的火力发电厂汽水管道的应力计算。 油、空气介质的管道应力计算,可参照本规定执行。 核电站常规岛部分管道应力计算,可参照本规定执行。 第1.0.3条管道的热胀应力按冷热态的应力范围验算。管道对设备的推力和力矩按在冷状态下和在工作状态下可能出现的最大值分别进行验算。 第1.0.4条恰当的冷紧可减少管道运行初期的热态应力和管道对端点的热态推力,并可减少管系的局部过应变。冷紧与验算的应力范围无关。 第1.0.5条进行管系的挠性分析时,可假定整个管系为弹性体。 第1.0.6条使用本规定进行计算的管道,其设计还应遵守《火力发电厂汽水管道设计技术规定》。管道零件和部件的结构、尺寸、加工等,应符合《火力发电厂汽水管道零件及部件典型设计》的要求。

第二章 钢材的许用应力 第2.0.1条 钢材的许用应力,应根据钢材的有关强度特性取下列三项中的最小值: σb 20/3,σs t /1.5或σ s t (0.2%) /1.5,σ D t /1.5 其中 σb 20——钢材在20℃时的抗拉强度最小值(MPa ); σs t ——钢材在设计温度下的屈服极限最小值(MPa ); σs t (0.2%) ——钢材在设计温度下残余变形为0.2%时的屈服极限最 小值(MPa ); σ D t ——钢材在设计温度下105h 持久强度平均值。 常用钢材的许用应力数据列于附录A 。 国产常用钢材和附表中所列的德国钢材的许用应力按本规定的安全系数确定。 美国钢材的许用应力摘自美国标准ASME B31.1。 对于未列入附录A 的钢材,如符合有关技术条件可作为汽水管道的管材时, 它的许用应力仍按本规定计算。

管道应力分析主要内容及要点

管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 ASME B31《压力管道规范》由几个单独出版的卷所组成,每卷均为美国国家标准。它们是子ASME B31 压力管道规范委员会领导下的编制的。 每一卷的规则表明了管道装置的类型,这些类型是在其发展过程中经考虑而确定下来的,如下所列: B31.1 压力管道:主要为发电站、工业设备和公共机构的电厂、地热系统以及集中和分区的供热和供冷系统中的管道。 B31.3 工艺管道:主要为炼油、化工、制药、纺织、造纸、半导体和制冷工厂,以及相关的工艺流程装置和终端设备中的管道。 B31.4 液态烃和其他液体的输送管线系统:工厂与终端设备剑以及终端设备、泵站、调节站和计量站内输送主要为液体产品的管道。 B31.5 冷冻管道:冷冻和二次冷却器的管道 B31.8 气体输送和配气管道系统:生产厂与终端设备(包括压气机、调节站和计量器)间输送主要为气体产品的管道以及集汽管道。 B31.9 房屋建筑用户管道:主要为工业设备、公共结构、商业和市政建筑以及多单元住宅内的管道,但不包括B31.1 所覆盖的只寸、压力和温度范围。 B31.11 稀浆输送管道系统:工厂与终端设备间以及终端设备、泵站和调节站内输送含水稀浆的管道。 管道应力分析的主要内容 一、管道应力分析分为静力分析析 1.静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算一一防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据: 5)管道上法兰的受力计算一防止法兰汇漏。 2.动力分析包括: 1)管道自振频率分析一一防止管道系统共振: 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析一一防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 二、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等 (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载;

管道应力设计规定

管道应力设计规定 1 范围 1.1 本标准对管道应力分析设计条件、评定标准以及分析方法进行了规定。 1.2 适用于设计压力不大于42 MPa,设计温度不超过材料允许使用温度,非直接埋地且无衬里的低碳素钢、合金钢或不锈钢管道。 2 引用标准 使用本标准时,应使用下列标准的最新版本。 GB 50316 《工业金属管道设计规范》 GB 50009 《建筑结构荷载规范》 SH 3039 《石油化工企业非埋地管道抗震设计通则》 API 610 《石油、化工和气体工业用离心泵》 API 617 《石油、化工和气体工业用离心式压缩机》 NEMA SM23 《机械驱动用汽轮机》 3 设计规定 3.1 一般要求 3.1.1 应兼顾管道热补偿及防振要求。 3.1.2 应兼顾管道及设备安全,应避免管道对相关设备造成危害。 3.1.3 应优先采取自然补偿方法解决管道柔性问题,安装空间狭小而不具备自然补偿条件时方考虑采用金属膨胀节。采用膨胀节应考虑满足工艺条件及防腐要求,不得采用填函式伸缩节和球形补偿器。 3.1.4 可采取冷紧措施减小管道对设备、法兰以及固定架的作用力,但不可以应用在敏感转动设备的管道上。 3.1.5 存在明显振源的管道应优先考虑防止其振动。 3.1.6 往复式压缩机管道应按照与制造商签定的合同要求进行防振计算。 3.2 设计条件 3.2.1 计算基础数据应由相关各专业提供。 3.2.2 计算工况应涵盖最不利工况,如烘炉、催化剂再生、烧焦、吹扫等特殊工况。 3.2.3 另有规定除外,热态计算温度按最高操作温度状态确定。对于有外隔热层管道,计算温度取介质温度;对于无外隔热层管道,计算温度可取95 %介质温度;对于有内隔热层管道,计算温度应根据热传导计算确定。 3.2.4 另有规定除外,安装温度取20 ℃。 3.2.5 另有规定除外,冷态计算温度取安装温度。 3.2.6 另有规定除外,计算压力取最高操作压力。 3.2.7 金属管道的许用应力按GB 50316附录A取值。 3.2.8 柔性系数及应力加强系数按GB 50316附录E计算。

管道应力分析和计算

新生培训教材 管道应力分析和计算 (机务专业篇) 国核电规划设计研究院机械部 二零一零年十一月 北京

校核人: 编写人:

目次 1 概述 1.1 管道应力计算的主要工作 1.2 管道应力计算常用的规范、标准1.3 管道应力分析方法 1.4 管道荷载 1.5 变形与应力 1.6 强度指标与塑性指标 1.7 强度理论 1.8 蠕变与应力松弛 1.9 应力分类 1.10 应力分析 2 管道的柔性分析与计算 2.1 管道的柔性 2.2 管道的热膨胀补偿 2.3 管道柔性分析与计算的主要工作2.4 管道柔性分析与计算的基本假定2.5 补偿值的计算 2.6 冷紧 2.7 柔性系数与应力增加系数 2.8 作用力和力矩计算的基本方法 2.9 管道对设备的推力和力矩的计算 3 管道的应力验算

3.1 管道的设计参数 3.2 钢材的许用应力 3.3 管道在内压下的应力验算 3.4 管道在持续荷载下的应力验算 3.5 管道在有偶然荷载作用时的应力验算3.6 管系热胀应力范围的验算 3.7 力矩和截面抗弯矩的计算 3.8 应力增加系数 3.9 应力分析和计算软件

1 概述 1.1 管道应力计算的主要工作 火力发电厂管道(以下简称管道)应力计算的主要工作是验算管道在内压、自重和其他外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力;判断计算管道的安全性、经济性、合理性,以及管道对设备产生的推力和力矩应在设备所能安全承受的范围内。 管道的热胀应力应按冷、热态的应力范围验算。管道对设备的推力和力矩应按冷状态下和工作状态下可能出现的最大值分别进行验算。 1.2 管道应力计算常用的规范、标准 (1)DL/T 5366-2006火力发电厂汽水管道应力计算技术规程及其勘误 (2)ASME B 31.1-2007动力管道 (3 ) DL/T 5054-1996 火力发电厂汽水管道设计技术规定 在一般情况下,对国内工程采用DL/T 5366进行管道应力验算。对涉外工程或用户有要求时,可采用B 31.1进行管道应力验算。 1.5.3 应力 在外力作用下,构件发生变形,这说明构件材料内部在外力作用下变形时原子间的相对位置产生了改变,同时原子间的相互作用力(吸引力与排斥力)也发生了改变。这种力的改变量称为内力。 内力是沿整个断面连续分布的,单位面积上的内力强度,即应力,以“σ”表示。

管道应力计算书编制规定-试行

热力管道应力计算书 编制规定 (试行) (本稿完成日期,2012-1-5) 中冶南方工程技术有限公司 动力事业部

目录 1.前言 (3) 2.管道应力计算书内容和深度说明 (3) 2.1管道应力计算书封面 (3) 2.2管道应力计算评定表 (3) 2.3管道轴测图 (3) 2.4管道应力计算输出报告 (3) 3.热力管道应力计算书签署及入库 (4) 4.附录1:计算书封面 (5) 5.附录2:管道应力计算评定表 (6) 6.附录3:管道轴测图 (7) 7.附录4:应力计算输入/输出报告选择项目举例 (7)

1.前言 本规定明确了采用CAESARII进行应力分析的热力管道计算书格式和要求。 本规定起草人:周平、阮祥志、毛华芳。 本规定自2012年2月1日起试行。 2.管道应力计算书内容和深度说明 管道应力计算书应包括计算书封面、管道应力计算评定表、管道轴测图、应力计算输出报告等。 2.1管道应力计算书封面 管道应力计算书封面应包括项目名称、图号、库号、设计、校核、审核、批准及页码等。封面格式参照附件1。 2.2管道应力计算评定表 管道应力计算评定表中应包括:管道代号、流体介质、设计温度、设计压力、管道外径、壁厚、材质、免于计算项目、需计算项目等。 管道应力计算评定表还应标明计算时所考虑的各种工况和载荷。 管道应力计算评定表格式参照附件2。 2.3管道轴测图 管道轴测图是在计算完成后供审核和入库的图纸,图纸包括以下内容:管径、壁厚、节点编号(Anchors、Restraint、Hangers)、管道走向、各节点约束型式、主要尺寸等信息。 管道轴测图由CAESARII的ISOGEN功能自动生成。 管道轴侧图格式参照附件3。 2.4管道应力计算输出报告 管道应力计算输出报告应包括下列内容: a. 管道在压力、重量等工况(SUS)下最大的一次应力及相应的节点号(Max stress and node of stresses report) 。

管道应力分析

管道应力分析 应力分析 1. 进行应力分析的目的是 1) 使管道应力在规范的许用范围内; 2) 使设备管口载荷符合制造商的要求或公认的标准; 3) 计算出作用在管道支吊架上的荷载; 4) 解决管道动力学问题; 5) 帮助配管优化设计。 2. 管道应力分析主要包括哪些内容?各种分析的目的是什么? 答:管道应力分析分为静力分析和动力分析。 1) 静力分析包括: (l)压力荷载和持续荷载作用下的一次应力计算――防止塑性变形破坏; (2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算――防止疲劳破坏; (3)管道对设备作用力的计算――防止作用力太大,保证设备正常运行; (4)管道支吊架的受力计算――为支吊架设计提供依据; (5)管道上法兰的受力计算――防止法兰泄漏; (6)管系位移计算――防止管道碰撞和支吊点位移过大。 2) 动力分析包括: (l)管道自振频率分析――防止管道系统共振; (2)管道强迫振动响应分析――控制管道振动及应力; (3)往复压缩机气柱频率分析――防止气柱共振; (4)往复压缩机压力脉动分析――控制压力脉动值。 3. 管道应力分析的方法

管道应力分析的方法有:目测法、图表法、公式法、和计算机分析方法。选用什么分析方法,应根据管道输送的介质、管道操作温度、操作压力、公称直径和所连接的设备类型等设计条件确定。 4. 对管系进行分析计算 1) 建立计算模型(编节点号),进行计算机应力分析时,管道轴测图上需要提供给计算机软件数据的部位和需要计算机软件输出数据的部位称作节点: (1) 管道端点 (2) 管道约束点、支撑点、给定位移点 (3) 管道方向改变点、分支点 (4) 管径、壁厚改变点 (5) 存在条件变化点(温度、压力变化处) (6) 定义边界条件(约束和附加位移) (7) 管道材料改变处(包括刚度改变处,如刚性元件) (8) 定义节点的荷载条件(保温材料重量、附加力、风载、雪载等) (9) 需了解分析结果处(如跨距较长的跨中心点) (10) 动力分析需增设点 2) 初步计算(输入数据符合要求即可进行计算) (1) 利用计算机推荐工况(用CASWARII计算,集中荷载、均布荷载特别加入) (2) 弹簧可由程序自动选取 (3) 计算结果分析 (4) 查看一次应力、二次应力的核算结果 (5) 查看冷态、热态位移 (6) 查看机器设备受力 (7) 查看支吊架受力(垂直荷载、水平荷载)

应力计算规定

1 范围 本标准规定了: (1)管道在内压、持续外载作用下的一次应力和由于热胀、冷缩及其它位移受约束产生的热胀二次应力的验算方法,以判断所计算的管道是否安全、经济、合理; (2)管道由于热胀、冷缩及其它位移受约束和持续外载作用产生的对设备的推力和力矩核算方法,以判明是否在设备所能安全承受的范围内; (3)管道应力分析方法的选择依据; (4)支吊架的选用原则. 执行本规定时,尚应符合现行有关标准规范的要求。 本规定适用于石油化工企业承受静力载荷的碳素钢、合金钢及不锈钢管道的柔性设计 2 引用标准 《石油化工企业管道柔性设计规范》 SHJ41 《石油化工企业管道设计器材选用通则》 SH3059 《石油化工钢制压力容器》SH3074 《石油化工企业管道支吊架设计规范》SH3073 《化工厂和炼油厂管道》ANSI/ASME B31.3 《API-610/NEMA-SM23》 上述标准所包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示标准均为有效。所有标准都会被修订,使用本标准的各方应探讨使用上述标准最新版本的可能性。 3 一般规定 3.1 管道柔性设计应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、端点附加位移和管道支撑设置不当等原因造成的下列问题: 一.管道应力过大或金属疲劳引起管道或支架破坏; 二.管道连接处产生泄漏; 三.管道推力和力矩过大,使与其相连接的设备产生过大的应力和变形,影响设备正常运行。 3.2 在管道柔性设计中,除考虑管道本身的热胀冷缩外,还应考虑下列管道端点的附加位移: 一.加热炉管对加热炉进出口管道施加的附加位移; 二.塔或其它立式设备产生热胀冷缩时对连接管道施加的附加位移; 三.管壳式换热器及其它卧式设备滑动支座移动造成连接管道的附加位移; 五.几台设备互为备用时,不操作管道对操作管道的影响; 六.不和主管一起分析的支管,应将分支点处主管的位移作为支管端点的附加位移; 七.根据需要,应考虑固定架和限位架的刚度影响。 3.3 对于复杂管道可用固定架将其划分成几个较为简单的管段,如L形管段,U形管段、Z形管段等再进行分析计算。 3.4 确定管道固定点位置时,宜使两固定点间的管段能自然补偿。 3.5 管道应首先利用改变走向获得必要的柔性,但由于布置空间的限制或其它原因也可采用波形补偿器其它类型或其它类型补偿器获得柔性。 3.6 在剧毒及易燃可燃介质管道中严禁采用填料函式补偿器。

埋地管道应力分析方法_刘仕鳌

274 网络出版时间: 2012-3-16 10:47:56 网络出版地址:https://www.wendangku.net/doc/9e17346242.html,/kcms/detail/13.1093.TE.20120316.1047.001.html 由于埋地管道所具有的特殊性和控制规范要求,其应力分析与工艺管道存在较大差异,埋地管道轴向受约束,因此,受压力和温度影响将产生较大的轴向应力。埋地管道应力分析的关键是模拟管道与土壤的相互作用[1] ,主要包括两个方面:土壤对管道的轴向摩擦力及土壤对管道的横向推力。前者只有当管道存在轴向移动趋势时存在,后者是管道产生横向位移时的反作用力。目前,埋地管道应力分析均采用双线性弹簧约束模拟土壤对管道的作用,由于受管道长度所限而无法在管道沿线不间断地设置弹簧约束,因此,需要解决3个问题:其一,合理设置弹簧约束的间距;其二,研究土壤约束性质;其三,解决土壤约束和弹簧约束之间的转化问题。 1应力分析影响参数 在温度、压力及地震载荷的作用下,埋地管道中的弯头和三通等管道走向发生改变的区域会产生较大的弯矩(使管道产生横向形变)和轴向力,距离此类管道元件越远,管道的弯矩越小[2] 。为了准确模拟土壤和管道的相互作用,从而得到较准确的应力分析结果,在弯头和三通等管道元件处必须将土壤约束间距设置很小;在远离弯头和三通的区域,只需模拟土壤与管道摩 埋地管道应力分析方法 刘仕鳌1 蒲红宇2 刘书文3 蒋洪2 1.中国石油冀东油田分公司油气集输公司,河北唐山 063000; 2.西南石油大学,四川成都 610500; 3.四川科宏石油天然气工程有限公司,重庆 400021 刘仕鳌等.埋地管道应力分析方法.油气储运,2012,31(4):274-278. 文章编号:1000-8241(2012) 04-0274-05摘要:油气输送管道大部分为埋地管道,其应力分析与工艺管道不同,关键在于准确模拟管道与土壤 的相互作用。结合国际上广泛运用的CAESARII 和AUTOPIPE 软件设计思路,阐述了埋地管道应力分析模型中对埋地管道离散化的理论基础和方法,模拟土壤与管道相互作用的原理以及相关数据的计算方法;对比分析了ASMEB31.4、ASMEB31.8及国内相关油气输送管道设计规范对管道应力的校核要求;结合工程实例深化了埋地管道应力分析方法,对于开展管道应力分析工作具有积极作用,有利于增进对于管道应力分析及管道应力安全问题的认识。关键词:埋地管道;应力;约束;土壤中图分类号:TE89 文献标识码:A doi :10.6047/j.issn.1000-8241.2012.04.009擦造成的管道轴向力,此时可以将土壤约束间距设置稍大。1.1模型离散 根据连续弹性地基上的柔性梁在力R 作用下的受力分析(图1),可以计算位移分布: γ(x )= e βx (cos βx +sin βx ) (1) (2) 式中: γ(x )为位移分布,mm;R 为作用力,N;β为设置的中间变量;E 为管道的弹性模量,MPa;I 为管道的惯性矩,mm 4;k 为单位长度的土壤线刚度,N/mm 2。 对于带有弯头或三通的埋地管道,其横向承载性能与连续弹性地基上的柔性梁相似(图1C),弯头一端 图 1 带弯头的埋地管道和连续弹性 地基上无限长梁的受力分析

压力管道应力分析报告

第一章任务与职责 1.管道柔性设计的任务 压力管道柔性设计的任务是使整个管道系统具有足够的柔性,用以防止由于管系的温度、自重、压和外载或因管道支架受限和管道端点的附加位移而发生下列情况; 1)因应力过大或金属疲劳而引起管道破坏; 2)管道接头处泄漏; 3)管道的推力或力矩过大,而使与管道连接的设备产生过大的应力或变 形,影响设备正常运行; 4)管道的推力或力矩过大引起管道支架破坏; 2.压力管道柔性设计常用标准和规 1)GB 50316-2000《工业金属管道设计规》 2)SH/T 3041-2002《石油化工管道柔性设计规》 3)SH 3039-2003《石油化工非埋地管道抗震设计通则》 4)SH 3059-2001《石油化工管道设计器材选用通则》 5)SH 3073-95《石油化工企业管道支吊架设计规》 6)/T 8130.1-1999《恒力弹簧支吊架》 7)/T 8130.2-1999《可变弹簧支吊架》 8)GB/T 12777-1999《金属波纹管膨胀节通用技术条件》 9)HG/T 20645-1998《化工装置管道机械设计规定》 10)GB 150-1998《钢制压力容器》 3.专业职责

1)应力分析(静力分析动力分析) 2)对重要管线的壁厚进行计算 3)对动设备管口受力进行校核计算 4)特殊管架设计 4.工作程序 1)工程规定 2)管道的基本情况 3)用固定点将复杂管系划分为简单管系,尽量利用自然补偿 4)用目测法判断管道是否进行柔性设计 5)L型U型管系可采用图表法进行应力分析 6)立体管系可采用公式法进行应力分析 7)宜采用计算机分析方法进行柔性设计的管道 8)采用CAESAR II 进行应力分析 9)调整设备布置和管道布置 10)设置、调整支吊架 11)设置、调整补偿器 12)评定管道应力 13)评定设备接口受力 14)编制设计文件 15)施工现场技术服务 5.工程规定 1)适用围 2)概述

应力分析基础理论讲义

管道应力分析基础理论 管道应力分析主要包括三方面内容:正确建立模型、真实地描述边界条件、正确地分析计算结果。所谓建立模型就是将所分析管系的力学模型按一定形式离散化,简化为程序所要求的数学模型,模型的真实与否是做好应力分析的前提条件。应力分析的根本问题就是边界条件问题,而体现在工程问题上就是约束(支架)、管口等具体问题的模拟,真实地描述这些边界条件,才能得到正确的计算结果。要想能够熟练而正确地分析结果,首先会正确设计支吊架,有一定的相关理论知识如工程力学,流体力学,化工设备及机械等,另外需在一定时间内不断摸索,总结出规律性的问题。 第一章管道应力分析有关内容 1.1 管道应力分析的目的 进行管道应力分析的问题很多CAESARII解决的问题主要有: 1、使管道各处的应力水平在规范允许的范围内。 2、使与设备相连的管口载荷符合制造商或公认的标准(如 NEMASM23,API610 API617等标准)规定的受力条件。 3、使与管道相连的容器处局部应力保持在ASME第八部分许用应力范围内。 4、计算出各约束处所受的载荷。 5、确定各种工况下管道的位移。 6、解决管道动力学问题,如机械振动、水锤、地震、减压阀泄放等。

7、帮助配管设计人员对管系进行优化设计。 1.2 管道所受应力分类 1.2.1 基本应力定义 轴向应力(Axial stress): 轴向应力是由作用于管道轴向力引起的平行管子轴线的正应力,:S L=F AX/A m 其中 S L=轴向应力MPa F AX=横截面上的内力N A m=管壁横截面积mm2=π(do2-di2)/4 管道设计压力引起的轴向应力为S L=Pdo/4t 轴向力和设计压力在截面引起的应力是均布的,故此应力限制在许用应力[σ]t范围内。 弯曲应力(bending stress): 由法向量垂直于管道轴线的力矩产生的轴向正应力。 S L=M b c/I 其中: M b=作用在管道截面上的弯矩N.m C-从管道截面中性轴到所在点的距离mm I-管道横截面的惯性矩mm4=π(d o4-d l4)/64 当C达到最大值时,弯曲应力最大 S max=M b R0/I= M b/Z

管道受力分析计算

管道计算 第一章任务与职责 1. 管道柔性设计的任务 压力管道柔性设计的任务是使整个管道系统具有足够的柔性,用以防止由于管系的温度、自重、内压和外载或因管道支架受限和管道端点的附加位移而发生下列情况; 1) 因应力过大或金属疲劳而引起管道破坏; 2) 管道接头处泄漏; 3) 管道的推力或力矩过大,而使与管道连接的设备产生过大的应力或变形,影响设备正常运行; 4) 管道的推力或力矩过大引起管道支架破坏; 2. 压力管道柔性设计常用标准和规范 1) GB 50316-2000《工业金属管道设计规范》 2) SH/T 3041-2002《石油化工管道柔性设计规范》 3) SH 3039-2003《石油化工非埋地管道抗震设计通则》 4) SH 3059-2001《石油化工管道设计器材选用通则》 5) SH 3073-95《石油化工企业管道支吊架设计规范》 6) JB/T 8130.1-1999《恒力弹簧支吊架》 7) JB/T 8130.2-1999《可变弹簧支吊架》 8) GB/T 12777-1999《金属波纹管膨胀节通用技术条件》 9) HG/T 20645-1998《化工装置管道机械设计规定》 10) GB 150-1998《钢制压力容器》 3. 专业职责 1) 应力分析(静力分析动力分析) 2) 对重要管线的壁厚进行计算 3) 对动设备管口受力进行校核计算 4) 特殊管架设计 4. 工作程序 1) 工程规定 2) 管道的基本情况 3) 用固定点将复杂管系划分为简单管系,尽量利用自然补偿 4) 用目测法判断管道是否进行柔性设计 5) L型U型管系可采用图表法进行应力分析 6) 立体管系可采用公式法进行应力分析 7) 宜采用计算机分析方法进行柔性设计的管道 8) 采用CAESAR II 进行应力分析 9) 调整设备布置和管道布置 10) 设置、调整支吊架 11) 设置、调整补偿器 12) 评定管道应力 13) 评定设备接口受力 14) 编制设计文件 15) 施工现场技术服务 5. 工程规定 1) 适用范围 2) 概述 3) 设计采用的标准、规范及版本 4) 温度、压力等计算条件的确定 5) 分析中需要考虑的荷载及计算方法 6) 应用的计算软件 7) 需要进行详细应力分析的管道类别

相关文档