文档库 最新最全的文档下载
当前位置:文档库 › 光隔离器的插入损耗、反向隔离度、回波损耗的测试

光隔离器的插入损耗、反向隔离度、回波损耗的测试

光隔离器的插入损耗、反向隔离度、回波损耗的测试
光隔离器的插入损耗、反向隔离度、回波损耗的测试

光隔离器的插入损耗、反向隔离度、回波损耗的测试

一.实验目的和任务

1.了解光隔离器的工作原理和主要功能。

2.了解光隔离器各参数的测量方法。

3.测量光隔离器的插入损耗、反向隔离度、回波损耗参数。

二.实验原理

光隔离器又称为光单向器,是一种光非互易传输无源器件,该器件用来消除或抑制光纤信道中产生的反向光,由于这类反向光的存在,导致光路系统间将产生自耦合效应,使激光器的工作变得不稳定和产生系统反射噪声,使光纤链路上的光放大器发生变化和产生自激励,造成整个光纤通信系统无法正常工作。若在半导体激光器输出端和光放大器输入或输出端连接上光隔离器,减小反射光对LD的影响,因此,光隔离器是高码速光纤通信系统、精密光纤传感器等高技术领域必不可少的元器件之一。

光隔离器是利用了磁光晶体的法拉第效应,其组成元件有:光纤准直器(Optical Fiber Collimator)、法拉第旋转器(Faraday Rotator)和偏振器(Polarizator)。隔离器按照偏振特性来分,有偏振相关型和偏振无关型。它们的原理图如图1.1和图1.2所示:

图1.1 偏振相关的光隔离器

图1.2 偏振无关的光隔离器

对于偏振相关光隔离器,光通过法拉第旋转器时,在磁场作用下,光偏振方向旋转角为FHL =φ,式中H 为磁场强度,L 为法拉第材料长度,F 为材料的贾尔德系数。如图 1.1,当输入光通过垂直偏振起偏器后,成为垂直偏振光,经过法拉第旋转器旋转了045,而检偏器偏振方向和起偏器偏振方向成045角,使得光线顺利通过,而反射回来的偏振光经过检偏器、法拉第旋转器以后,继续沿同一方向旋转045,即偏振方向刚好与起偏器偏振方向垂直,则光无法反向通过。由于只有垂直偏振的光能通过光隔离器,因此称为偏振相关光隔离器。

偏振无关光隔离器如图1.2所示,图1.2(a)为光隔离器正向输入。当包含两个正交偏振的输入光波被一个偏振分束器分离,变为垂直偏振光和平行偏振光。这两束光通过法拉第旋转器,沿同一方向旋转045,再通过λ/2波片旋转045,垂直偏振光变为平行偏振光,平行偏振光变为垂直偏振光,经过偏振分束器合为一束光输出。图1.2(b)是反向输入光的偏振态在隔离器中的演化过程。在SWP 水平偏振态光折射,垂直偏振态光透射,则光不能从正向输入端输出。

(一) 光隔离器插入损耗测试的实验原理

光隔离器的插入损耗是光隔离器正向接入时,输出光功率相对输入光功率的比率(以dB 为单位)。假设光隔离器的正向输入光功率为正1P ,输出光功率为正2P ,则其计算公式

为: 正正

21lg 10P P Insertloss = (1-1)

其插入损耗实验原理图如图1.3所示。

光隔离器

图1.3 光隔离器插入损耗测量原理图

(二) 光隔离器隔离度测试的实验原理

反向隔离度是隔离器最重要的指标之一,它表征光隔离器对反向传输光的隔离能力。将光隔离器按图1.4反向接入,假设光隔离器反向输入光功率为反1P ,输出光功率

为反2P 。则光隔离器隔离度计算公式为:

反反

21lg 10P P Isolator = (1-2)

光隔离器隔离度测量的原理图如图1.4所示。

光隔离器

图1.4 光隔离器反向隔离度测量原理图

(三) 光隔离器回波损耗测试的实验原理

光隔离器的回波损耗turnloss Re 是指正向入射到隔离器中的光功率与沿输入路径返回隔离器输入端口的光功率之比(以dB 为单位)。隔离器的回波损耗主要由各元件和空气折射率失配并形成反射引起。这是一个相当重要的指标,因为如果隔离器的回波太

强,那么它对系统返回光进行抑制的同时,自身也会给系统带来一定的反射。假设光隔离器的输入光功率为P 1,其反射光功率为P r ,则光隔离器回波损耗的定义为:

r P P turnloss 1lg

10Re = (1-3) 光隔离器回波损耗测量的原理图如图1.5

所示。

图1.5 光隔离器回波损耗测量原理图

图中光环行器的作用是使反射光不返回光源,直接到达光功率计,由于P R 不能直接

测量,测试系统加了一个光环行器。则计算回波损耗的公式变为:

3221

lg 10Re --=Insertloss P P turnloss (1-4)

式中32-Insertloss 是光环行器2-3端的插入损耗。

三. 实验设备

1.AV38121A 1310nm 单模调制光源

2.光纤跳线

3.三端环形器

4.适配器

5.折射率匹配液

6.待测偏振无关光隔离器

7.AV2496光纤多用表

四.实验步骤

(一)光隔离器插入损耗测试的实验步骤

1.首先通过光纤跳线将LD光源输出端连接到光功率计,从光功率计读出其输出功

率,即光隔离器输入功率P

1

2.光隔离器正向接入,从光隔离器输出端测得光功率P

,即经过光隔离器的输出

2

功率。

3.由损耗公式(1-1)可以计算出光隔离器的插入损耗。

(二)光隔离器反向隔离度测试的实验步骤

1.首先通过光纤跳线将LD光源输出端连接到光功率计,从光功率计读出其输出功

率,即光隔离器输入功率P

1

2.将隔离器反向接入,由光功率计读出光信号反向通过光隔离器后的输出光功率P

2

3.光隔离器隔离度的计算公式(1-2)可以计算出它的隔离度。

(三)光隔离器回波损耗测试的实验步骤

1.首先,将LD光源输出端连接到光环形器1端,光信号经过环形器后,从2端输

,即光隔离器的输入光功率。

出。由光功率计测量2端输出光功率P

1

2.然后按照图1.5,将光隔离器输入端与光环形器2端相连接。在隔离器输出端涂上匹配液。在环形器3端,用光功率计测量输出光功率P

,即光隔离器反射光,经过

2

环形器后的输出光功率。

3.由回波损耗的计算公式(1-4),计算光隔离器的回波损耗。

五.实验报告要求

1.写出测试原理。

2.列出测试结果。

3.计算并列出光隔离器的各种参数

光隔离器的功能和基本原理教学文案

光隔离器的功能和基 本原理

光隔离器的功能和基本原理 光隔离器的功能是让正向传输的光通过而隔离反向传输的光,从而防止反射光影响系 统的稳定性,与电子器件中的二极管功能类似。光隔离器按偏振相关性分为两种:偏振相 关型和偏振无关型,前者又称为自由空间型(Freespace),因两端无光纤输入输出;后者 又称为在线型(in-Line),因两端有光纤输入输出。自由空间型光隔离器一般用于半导体 激光器中,因为半导体激光器发出的光具有极高的线性度,因而可以采用这种偏振相关的 光隔离器而享有低成本的优势;在通信线路或者 EDFA 中,一般采用在线型光隔离器,因 为线路上的光偏振特性非常不稳定,要求器件有较小的偏振相关损耗。 光隔离器利用的基本原理是偏振光的马吕斯定律和法拉第(Farady)磁光效应,自由 空间型光隔离器的基本结构和原理如下图所示,由一个磁环、一个法拉第旋光片和两个偏 振片组成,两个偏振片的光轴成45°夹角。正向入射的线偏振光,其偏振方向沿偏振片 1 的透光轴方向,经过法拉第旋光片时逆时针旋转45°至偏振片 2 的透光轴方向,顺利透射;反向入射的线偏振光,其偏振方向沿偏振片 2 的透光轴方向,经法拉第旋光片时仍逆 时针旋转45°至与偏振片 1 的透光轴垂直,被隔离而无透射光。自由空间型光隔离器相 对简单,装配时偏振片和旋光片均倾斜一定角度(比如4°)以减少表面反射光,搭建测 试架构时注意测试的可重复性,其他不赘述。下面详细介绍在线式光隔离器的发展情况。 最早的在线式光隔离器是用Displacer晶体与法拉第旋光片组合制作的,因体积大和 成本高而被Wedge型光隔离器取代;在线式光隔离器因采用双折射晶体而引入 PMD,因此相应出现 PMD 补偿型 Wedge 隔离器;某些应用场合对隔离度提出更高要求,因此出现双 级光隔离器,在更宽的带宽内获得更高隔离度。 下面依次介绍这些在线式光隔离器的结构和原理。 1) Displacer 型光隔离器 Displacer型光隔离器结构和光路如下图所示,由两个准直器、两个Displacer晶体,一个半波片、一个法拉第旋光片和一个磁环(图中未画出)组成。正向光从准直器 1入射在Displacer1 上,被分成o光和e光传输,经过半波片和法拉第旋光片后,逆时针 旋转45 +45 =90 ,发生o光与e光的转换,经Displacer2合成一束耦合进入准直器 2;反向光从准直器 2 入射在Displacer2 上,被分成o光和e光传输,经过法拉第旋光片和

最新光隔离器的插入损耗、反向隔离度、回波损耗的测试

光隔离器的插入损耗、反向隔离度、回波损耗的测试 一.实验目的和任务 1.了解光隔离器的工作原理和主要功能。 2.了解光隔离器各参数的测量方法。 3.测量光隔离器的插入损耗、反向隔离度、回波损耗参数。 二.实验原理 光隔离器又称为光单向器,是一种光非互易传输无源器件,该器件用来消除或抑制光纤信道中产生的反向光,由于这类反向光的存在,导致光路系统间将产生自耦合效应,使激光器的工作变得不稳定和产生系统反射噪声,使光纤链路上的光放大器发生变化和产生自激励,造成整个光纤通信系统无法正常工作。若在半导体激光器输出端和光放大器输入或输出端连接上光隔离器,减小反射光对LD的影响,因此,光隔离器是高码速光纤通信系统、精密光纤传感器等高技术领域必不可少的元器件之一。 光隔离器是利用了磁光晶体的法拉第效应,其组成元件有:光纤准直器(Optical Fiber Collimator)、法拉第旋转器(Faraday Rotator)和偏振器(Polarizator)。隔离器按照偏振特性来分,有偏振相关型和偏振无关型。它们的原理图如图1.1和图1.2所示: 图1.1 偏振相关的光隔离器 图1.2 偏振无关的光隔离器

对于偏振相关光隔离器,光通过法拉第旋转器时,在磁场作用下,光偏振方向旋转角为FHL =φ,式中H 为磁场强度,L 为法拉第材料长度,F 为材料的贾尔德系数。如图 1.1,当输入光通过垂直偏振起偏器后,成为垂直偏振光,经过法拉第旋转器旋转了 045,而检偏器偏振方向和起偏器偏振方向成045角,使得光线顺利通过,而反射回来 的偏振光经过检偏器、法拉第旋转器以后,继续沿同一方向旋转045,即偏振方向刚好与起偏器偏振方向垂直,则光无法反向通过。由于只有垂直偏振的光能通过光隔离器,因此称为偏振相关光隔离器。 偏振无关光隔离器如图1.2所示,图1.2(a)为光隔离器正向输入。当包含两个正交偏振的输入光波被一个偏振分束器分离,变为垂直偏振光和平行偏振光。这两束光通过法拉第旋转器,沿同一方向旋转045,再通过λ/2波片旋转045,垂直偏振光变为平行偏振光,平行偏振光变为垂直偏振光,经过偏振分束器合为一束光输出。图1.2(b)是反向输入光的偏振态在隔离器中的演化过程。在SWP 水平偏振态光折射,垂直偏振态光透射,则光不能从正向输入端输出。 (一) 光隔离器插入损耗测试的实验原理 光隔离器的插入损耗是光隔离器正向接入时,输出光功率相对输入光功率的比率(以dB 为单位)。假设光隔离器的正向输入光功率为正1P ,输出光功率为正2P ,则其计算公式为: 正 正 21lg 10P P Insertloss = (1-1) 其插入损耗实验原理图如图1.3所示。 光隔离器 图1.3 光隔离器插入损耗测量原理图 (二) 光隔离器隔离度测试的实验原理 反向隔离度是隔离器最重要的指标之一,它表征光隔离器对反向传输光的隔离能力。将光隔离器按图1.4反向接入,假设光隔离器反向输入光功率为反1P ,输出光功率为反2P 。则光隔离器隔离度计算公式为:

回波损耗的定义与标准中参数规定的理解

在电线电缆2003-2中<对称数字通信电缆结构回波损耗影响因素分析>中提到:当高频信号在电缆及通信设备中传输时,遇到波阻抗不均匀点时,就会对信号形成反射,这种反射不但导致信号的传输损耗增大,并且会使传输信号畸变,对传输性能影响很大。这种由信号反射引起的衰减被称为回波损耗。那么这样理解回波损耗应该是衰减的一部分,那为什么标准中规定回波损耗要大于某个值呢,而且我们努力的都是如何提高回波损耗. 所以我想问回波损耗的定义和性质到底是什么?是理解为反射波引起的损耗,还是反射波的损耗呢?似乎怎么理解的都有,希望大家积极讨论,理清概念. 回波损耗(RETURN LOSS) 回波损耗是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射。不匹配主要发生在连接器的地方,但也可能发生于电缆中特性阻抗发生变化的地方,所以施工的质量是减少回波损耗的关键。回波损耗将引入信号的波动,返回的信号将被双工的千兆网误认为是收到的信号而产生混乱。 对于通讯信号分为有用和有害信号,对于有用信号,是衰减得越少越好,比如测试中常见的衰减参数,那是数值越小越好. 但是对于有害信号,比如回波,串音,就需要衰减得越大越好.

如果结构和阻抗稳定合理,则回波会很小,即使有也由于线缆阻抗在长度上比较平滑,不容易叠加而很快被衰减.所以好的线,对回波的衰减大. 比较好理解的是串音,比如NEXT,全称是:近端串音衰减(或近端串音损耗),这个数值也是越大越好. 它是这样测试的:用网络分析仪测量,一个输入信号加在主干扰线对上,同时在近端的被干扰线对输出端测量串音信号. 测得值当然是越小越好,越小就说明串音被线缆结构(比如屏蔽)衰减得越多. 对于NEXT,有人说是近端串音,口头说说可以,但是容易造成误解,因为串音当然是越小越好,怎么要求测量数值越大约好呢,其实后面少了两个字:衰减. 串音衰减定义:用以表示能量从主串回路串入被串回路时的衰减程度。即串音的衰减. 可以理解为串音这种干扰信号的衰减程度,也就是串音衰减越大串音衰减的越多.但回波损耗的定义为由信号反射引起的衰减被称为回波损耗。也就是回波造成的损耗.他们的名词结构是不一致的,这个我也考虑过.从定义到标准中的解释,都可以说回波损耗是一种干扰和衰减,可为什么还要增大这个参数的数值呢? 当高频信号在电缆及通信设备中传输时,遇到波阻抗不均匀点时,就会对信号形成反射,这种反射不但导致信号的传输损耗增大,并且会使传输信号畸变,对传输性能影响很大。这种由信号反射引起的衰减被称为回波损耗。 我也来说说我对回路损失的理解吧!

射频中的回波损耗 反射系数 电压驻波比以及S参数的含义和关系

回波损耗,反射系数,电压驻波比,S11这几个参数在射频微波应用中经常会碰到,他们各自的含义如下: 回波损耗(Return Loss):入射功率/反射功率,为dB数值 反射系数(Г):反射电压/入射电压,为标量 电压驻波比(Voltage Standing Wave Ration):波腹电压/波节电压S参数:S12为反向传输系数,也就是隔离。S21为正向传输系数,也就是增益。S11为输入反射系数,也就是输入回波损耗,S22为输出反射系数,也就是输出回波损耗。 四者的关系: VSWR=(1+Г)/(1-Г)(1) S11=20lg(Г)(2) RL=-S11(3) 以上各参数的定义与测量都有一个前提,就是其它各端口都要匹配。这些参数的共同点:他们都是描述阻抗匹配好坏程度的参数。其中,S11实际上就是反射系数Г,只不过它特指一个网络1号端口的反射系数。反射系数描述的是入射电压和反射电压之间的比值,而回波损耗是从功率的角度来看待问题。而电压驻波的原始定义与传输

线有关,将两个网络连接在一起,虽然我们能计算出连接之后的电压驻波比的值,但实际上如果这里没有传输线,根本不会存在驻波。我们实际上可以认为电压驻波比实际上是反射系数的另一种表达方式,至于用哪一个参数来进行描述,取决于怎样方便,以及习惯如何。回波损耗、反射系数、电压驻波比以及S参数的物理意义:以二端口网络为例,如单根传输线,共有四个S参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。在高速电路设计中用到:以二端口网络为例,如单根传输线,共有四个S 参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。假设Port1为信号输入端口,Port2为信号输出端口,则我们关心的S参数有两个:S11和S21,S11表示回波损耗,也就是有多少能量被反射回源端(Port1)了,这个值越小越好,一般建议S11<0.1,即-20dB,S21

光隔离器的功能和基本原理

光隔离器的功能和基本原理 光隔离器的功能是让正向传输的光通过而隔离反向传输的光,从而防止反射光影响系统的稳定性,与电子器件中的二极管功能类似。光隔离器按偏振相关性分为两种:偏振相关型和偏振无关型,前者又称为自由空间型(Freespace),因两端无光纤输入输出;后者又称为在线型(in-Line),因两端有光纤输入输出。自由空间型光隔离器一般用于半导体激光器中,因为半导体激光器发出的光具有极高的线性度,因而可以采用这种偏振相关的光隔离器而享有低成本的优势;在通信线路或者EDFA 中,一般采用在线型光隔离器,因为线路上的光偏振特性非常不稳定,要求器件有较小的偏振相关损耗。 光隔离器利用的基本原理是偏振光的马吕斯定律和法拉第(Farady)磁光效应,自由空间型光隔离器的基本结构和原理如下图所示,由一个磁环、一个法拉第旋光片和两个偏振片组成,两个偏振片的光轴成45°夹角。正向入射的线偏振光,其偏振方向沿偏振片1 的透光轴方向,经过法拉第旋光片时逆时针旋转45°至偏振片2 的透光轴方向,顺利透射;反向入射的线偏振光,其偏振方向沿偏振片2 的透光轴方向,经法拉第旋光片时仍逆时针旋转45°至与偏振片 1 的透光轴垂直,被隔离而无透射光。自由空间型光隔离器相对简单,装配时偏振片和旋光片均倾斜一定角度(比如4°)以减少表面反射光,搭建测试架构时注意测试的可重复性,其他不赘述。下面详细介绍在线式光隔离器的发展情况。 最早的在线式光隔离器是用Displacer晶体与法拉第旋光片组合制作的,因体积大和成本高而被Wedge型光隔离器取代;在线式光隔离器因采用双折射晶体而引入PMD,因此相应出现PMD 补偿型Wedge 隔离器;某些应用场合对隔离度提出更高要求,因此出现双级光隔离器,在更宽的带宽获得更高隔离度。 下面依次介绍这些在线式光隔离器的结构和原理。 1) Displacer 型光隔离器 Displacer型光隔离器结构和光路如下图所示,由两个准直器、两个Displacer晶体,一个半波片、一个法拉第旋光片和一个磁环(图中未画出)组成。正向光从准直器1入射在Displacer1 上,被分成o光和e光传输,经过半波片和法拉第旋光片后,逆时针旋转45 +45 =90 ,发生o光与e光的转换,经Displacer2合成一束耦合进入准直器2;反向光从准直器2 入射在Displacer2 上,被分成o光和e光传输,经过法拉第旋光片和半波片后,逆时针旋转45 -45 =0 ,未发生o光和e光的转换,经Displacer1 后两束光均偏离准直器 1 而被隔离。 Displacer 型光隔离器的缺点是,为了满足隔离度要求,反向光路中的两束光需偏移较大距离,可参考图2(a),而双折射特性较好的钒酸钇Displacer 晶体,其长度与偏移量

实验报告光隔离器(中大)

光隔离器相关参数测量 中山大学理工学院光信息专业 摘要:本文通过测量光隔离器的插入损耗、隔离度等相关参数,并对相关数据进行分析,得出结论,以进一步了解光隔离器的原理、功能。 关键词:光隔离器光功率插入损耗隔离度偏振相关损耗回波损耗 Measurement of the Parameters of an Optoisolator Major of optical information science and technology, SYSU, Guangzhou Abstract: In this experiment, we measured several important parameters of an optoisolator, then analyzed the data and draw some useful conclusions. After that, we got a further comprehension about the principles, the functions of the optoisolator. Key Words: optoisolator, optical power, insertion loss(IL), isolation, polarization dependent loss(PDL), return loss(RL); 一、实验目的 1.学习光隔离器的原理。 2.了解光准直器的原理及其应用。 3.学习测量光隔离器的主要技术参数。 二、实验用具及装置图 实验用具:稳定光远、光功率计(武邮)、单模标准跳线(用于测量器件的输入功率)、光隔离器(OISS1310ASO1111) 实验装置示意图如下所示: 三、实验原理与器件

插入损耗与回波损耗的概念

插入损耗 中文名称: 插入损耗 英文名称: insertion loss 定义: 将某些器件或分支电路(滤波器、阻抗匹配器等)加进某一电路时,能量或增益的损 耗。 所属学科: 通信科技(一级学科) ;通信原理与基本技术(二级学科) 插入损耗指在传输系统的某处由于元件或器件的插入而发生的负载功率的损耗,它表示为该元件或器件插入前负载上所接收到的功率与插入后同一负载上所接收到的功率以分贝为单位的比值。 1..插入损耗是指发射机与接收机之间,插入电缆或元件产生的信号损耗,通常指衰减。插入损耗以接收信号电平的对应分贝(dB)来表示。 2..插入损耗多指功率方面的损失,衰减是指信号电压的幅度相对 测量插入损耗的电路 原信号幅度的变小。譬如对一个理想无损耗的变压器,原 传输线变压器的插入损耗关系曲线

副理想变压器无损耗,即插入损耗为零。插入损耗的概念一般用在滤波器中,表示使用了该滤波器和没使用前信号功率的损失。 通道的插入损耗是指输出端口的输出光功率与输入端口输入光功率之比,以dB 为单位。插入损耗与输入波长有关,也与开关状态有关。定义为:IL=-10log(Po/Pi) 式中: Pi—→输入到输入端口的光功率, 单位为mw; Po—→从输出端口接收到的光功率,单位为mw。 对于OLP,具体分为发送端插入损耗和接收端插入损耗。 回波损耗 中文名称: 回波损耗 英文名称: return loss 定义: 反射系数倒数的模。通常以分贝表示。 所属学科: 通信科技(一级学科) ;通信原理与基本技术(二级学科) 百科名片 回波损耗测量仪 回波损耗,又称为反射损耗。是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射。不匹配主要发生在连接器的地方,但也可能发生于电缆中特性阻抗发生变化的地方,所以施工的质量是提高回波损耗的关键。回波损耗将引入信号的波动,返回的信号将被双工的千兆网误认为是收到的信号而产生混乱。

光隔离器的基本原理

光隔离器的基本原理 偏振无关光纤隔离器(Polarization Insensitive Fiber Isolator)光纤隔离器根据偏振特性可分为偏振无关型(Polarization Insensitive)和偏振相关型(Polarization Sensitive)两种。由于通过偏振相关型光纤隔离器的光功率依赖于输入光的偏振态,因此要求使用保偏光纤作尾纤。这种光纤隔离器将主要用于相干光通信系统。目前光纤隔离器用的最多的仍然是偏振无关型的, 我们也只对此类光纤隔离器做分析。 1偏振无关光纤隔离器的典型结构 一种较为简单的结构如图1所示。这种结构只用到四个主要元件:磁环(Magnetic Tube)、法拉第旋转器(Faraday Rotator)、两片LiNbO3 楔角片(LN Wedge),配合一对光纤准直器(Fiber Collimator), 可以做成一种在线式(In-line)的光纤隔离器。 2 基本工作原理 下面具体分析光纤隔离器中光信号正向和反向传输的两种情况。 2.1 正向传输 如(图2)所示,从准直器出射的平行光束,进入第一个楔角片P1后,光束被分为o光和e光,其偏振方向相互垂直,传播方向成一夹角。当他们经过45°法拉第旋转器时,出射的o光和e光的偏振面各自向同一个方向旋转45°,由于第二个LN楔角片P2的晶轴相对于第一个楔角片正好呈45°夹角,所以o光和e光被折射到一起,合成两束间距很小的平行光,然后被另一个准直器耦合到光纤纤芯里去。这种情况下,输入的光功率只有很小一部分被损耗掉,这种损耗称之为隔离器的插入损耗。(图中“+”表示e光向 此方向偏折) 2.2 反向传输 如(图3)所示,当一束平行光反向传输时,首先经过P2晶体,分为偏振方向与P1的晶轴各呈45°夹角的o光和e光。由于法拉第效应的非互易性,o光和e光通过法拉第旋转器后,偏振方向仍然向同一个方向(图中为逆时针方向)旋转45°,这样,原先的o光和e光在进入第二个楔角片(P1)后成了e光和o光。由于折射率的差别,这两束光在P1中再也不可能合成一束平行光,而是向不同的方向折射,e光和o光被进一步分开一个更大的角度,即使经过自聚焦透镜的耦合,也不能进到光纤纤芯中去,从而达到了反向隔 离的目的。此时的传输损耗称之为隔离度。 3 技术参数 对于光纤隔离器,主要的技术指标有插入损耗(Insertion Loss)、反向隔离度(Isolation)、回波损耗(Return Loss)、偏振相关损耗(Polarization Dependent Loss)、偏振模色散(Polarization Mode Dispersion)等,以 下将作一一说明。 3.1 插入损耗(Insertion Loss) 在偏振无关光纤隔离器中,插入损耗主要包括光纤准直器、法拉第旋转器和双折射晶体等的损耗,由光纤准直器造成的插入损耗的详细分析请参见《准直器原理》。隔离器芯主要由法拉第旋转器和两片LN楔角片组成。法拉第旋转器的消光比越高、反射率越低、吸收系数越小,插入损耗就越小,一般法拉第旋转器的损耗约为0.02~0.06dB。由(图2)可知,一束平行光经过隔离器芯后,会分成o、e两束平行光。由于双折射晶体的固有特性,no1ne, o光和e光不能完全会聚,从而造成附加损耗。 3.2 反向隔离度(Isolation)

光隔离器

光隔离器的基本原理 光隔离器又称光单向器, 是一种光非互易传输的光无源器件。在光纤通信系统中总是存在许多原因产生的反向光。光源所发出的信号光, 以活动连接器的形式耦合到光纤线路中去, 活动接头处的光纤端面间隙会使约4% 的反射光向着光源传输。 一.光隔离器的类型 1.1光隔离器按其外部结构可分为型、连接器端口型(也称在线安装型)和微型化型(自由空间隔离器)。前两种也称为在线型, 可直接插入光纤网络中。微型化光隔离器则常用于半导体激光器及其他器件中。 自由空间隔离器 1.2 .隔离器按其性能可分为偏振灵敏型( 也称偏振相关) 和偏振无关型。一般情况下, 偏振灵敏型的光隔离器常做成微型化的, 偏振无关型光隔离器则常做成在线型的。 1.3.偏振无相关光隔离器的结构包括空间型和光纤型。由于不论入射是否为偏振光, 经 过这种光隔离器后的出射光均为线偏振光, 因而称之为偏振无相关光隔离器, 主要用于DFB激光器中。 1.4.偏振无关光隔离器是一种对输入光偏振态依赖性很小( 典型值 0. 2dB) 的光隔离器。一般来说, 偏振无关光隔离器的典型结构、工作原理都更复杂一些。它采用有角度的分离光束的原理来制成, 可起到偏振无关的目的。 1.5 根据光纤类型分为保偏隔离器和普通隔离器。

由于通过偏振相关型光纤隔离器的光功率依赖于输入光的偏振态,因此要求使用保偏光纤作尾纤。这种光纤隔离器将主要用于相干光通信系统。目前光纤隔离器用的最多的仍然是偏振无关型的。 1.6 保偏光纤:保偏光纤传输线偏振光,偏振光在光纤中传输的时候,其偏振态在很长一端光纤内几乎保持不变的光纤。广泛用于航天、航空、航海、工业制造技术及通信等国民经济的各个领域。在以光学相干检测为基础的干涉型光纤传感器中,使用保偏光纤能够保证线偏振方向不变,提高相干信躁比,以实现对物理量的高精度测量。 保偏光纤的使用:保偏光纤作为一种特种光纤,主要应用于光纤陀螺,光纤水听器等传感器和DWDM、EDFA等光纤通信系统。由于光纤陀螺及光纤水听器等可用于军用惯导和声呐,属于高新科技产品,而保偏光纤又是其核心部件,因而保偏光纤一直被西方发达国家列入对我禁运的清单。 保偏光纤的类型:熊猫型、椭圆型、领结型和类矩形

回波损耗与结构回波损耗

回波损耗作为评价电缆阻抗均匀性的指标,一直在电缆行业内广泛应用,然而很多国内电缆出口企业在与国外厂商接触中,发现国外客户更多地提出用结构回波损耗而非回波损耗来衡量电缆的好坏,如美国、澳大利亚等国。那么回波损耗和结构回波损耗有什么区别呢? 根据美国标准结ANSI/SCTE 03 2003及ASTM D 4566,结构回波损耗SRL的定义为: SRL =结构回波损耗,dB; Z in=输入阻抗(复数),Ω Z avg=平均阻抗(复数),Ω 根据标准: R i=电缆各个频率点下输入阻抗的实部; X i=电缆各个频率点下输入阻抗的虚部; R avg=电缆所有测试点实部的平均值; X avg=电缆所有测试点虚部的平均值。 根据IEC 61196或GB/T 17737标准,回波损耗RL的定义为: RL =回波损耗,dB, Z T=终端接标称阻抗时的输入端阻抗(复数),Ω Z L=校准负载。 回波损耗可以由网络分析仪直接测试得到,而结构回波损耗则需要用矢量网络分析仪测量电缆的输入阻抗,测得的数据经电脑计算后才能得到,因此结构回波损耗测量过程需要运用计算机程控技术来实现。 根据结构回波损耗的定义,我检验中心运用计算机程控技术组建了结构回波损耗测量系统。下面是同一根电缆的回波损耗和结构回波损耗的测量结果图,图中回波损耗的最差值为 21.92dB,而结构回波损耗的最差值为24.11dB,两最差值出现在同一频点。

SRL测试图 RL测试图 由定义可以看出:回波损耗反映的是电缆的输入阻抗与测量系统阻抗之间的偏差,它既体现了电缆的结构不均匀性又反映出电缆阻抗与测量系统阻抗的偏差(或匹配程度);而结构回波损耗只反映电缆的输入阻抗与电缆自身阻抗平均值的偏差,所以,结构回波损耗反映的只是电缆本身结构的不均匀性。虽然回波损耗和结构回波损耗两种指标都能反映电缆质量的好坏,但结构回波损耗只反映电缆结构的不均匀,而与电缆阻抗偏离系统阻抗无关。除非电缆特性阻抗的平均值非常接近与系统阻抗,否则结构回波损耗总是比回波损耗较好些。

S参数与反射系数插损回损驻波比

S参数与反射系数、插损、回损、驻波比 S参数就是建立在入射波、反射波关系基础上的网络参数,适于微波电路分析,以器件端口的反射信号以及从该端口传向另一端口的信号来描述电路网络。 S参数的基本定义: S11:端口2匹配时,端口1的反射系数Г及输入驻波,描述器件输入端的匹配情况,S11=a2/a1; 也可用输入回波损耗RL=2Olg(Г)(能量方面的反应)表示。 S22:端口1匹配时,端口2输出驻波,描述器件输出端的匹配情况,S22=b2/b1。 S21:增益或插损,描述信号经过器件后被放大的倍数或者衰减量。S21=b1/a1. 对于无源网络即传输系数T或插损,对放大器即增益。 S12:反向隔离度,描述器件输出端的信号对输入端的影响,S12=a2/b2。 S参数的特点: 1、对于互易网络有S12=S21 2、对于对称网络有S11=S22 3、对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上 4、在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。 假设Port1为信号输入端口,Port2为信号输出端口,则我们关心的S参数有两个:S11和S21 S11表示回波损耗,也就是有多少能量被反射回源端(Port1)了,这个值越小越好,一般建议S11<0.1,即-20dB; S21表示插入损耗,也就是有多少能量被传输到目的端(Port2)了,这个值越大越好,理想值是1,即0dB,越大传输的效率越高,一般建议S21>0.7,即-3dB。

光隔离器实验汇总

廿一、光隔离器 实验人:合作人: (物理科学与工程技术学院,光信息科学与技术2011 级 1 班,学号11343026)一、实验目的: 1.学习光隔离器的原理 2.了解光准直器的原理及其应用 3.学习测量光隔离器的主要技术参数 二、实验原理与器件: 光隔离器是一种只允许光沿光路正向传输的互易性光无源器件,主要用于抑制光通信网络中的反射波。光隔离器广泛应用于光信号的发射、放大、传输等过程中。因为许多光器件对来自连接器、熔接点、滤波器等的反射光非常敏感,若不消除这些反射光将导致器件性能的急剧恶化。这时就需要用光隔离器来阻止反射光返回系统。 1.法拉第磁光效应 光隔离器的工作原理需要是利用磁光晶体的法拉第效应。典型的光隔离器采用法拉第旋转器,转光转角为45度,其材料主要为钇铁石榴石(YIG),现在多采用高性能磁光晶体。高性能磁光晶体是一种采用液相外延技术在石榴石单晶上生成掺镱、镓、钬或铽等元素的薄膜材料,如:(YbTbBi)3Fe5O12石榴石单晶薄膜,其单位长度的法拉第旋转角是传统YIG晶体的5倍以上,而所需磁感应强度B却仅为传统材料的一半或者1/3。 法拉第效应(1945年):对于给定的磁光晶体材料,光振动面旋转的角度θ与光在该物质中通过的距离L和磁感应强度B成正比(α为光线与磁场的夹角,): θcosα(21.1) = VLB 式中,V是比例系数,它是材料的特性常数,称维尔德(Verdet)常数,单位是:分/高斯?厘米。进一步研究表明,法拉第效应旋转角是材料的介电常数、旋磁比和饱和磁场强度以及光波频率、外加磁场强度的函数。 值得注意的事,磁致旋光效应和材料的固有磁光效应不同。固有磁光效应的方向受光的传播方向影响,而与外加磁场的方向无关,无论外界磁场如何变化,迎着光看去,光的偏振面总是朝同一方向旋转。因此,在材料的固有旋光效应中,如果光束沿着原光路返回时,其偏振面将转回到初始位置。而在法拉第磁光旋转效应中,磁场对此光材料产生作用,是导致磁致旋转现象发生的原因,所以磁光材料引起的光偏振面旋转的方向取决于外加磁场的方向,与光的传播方向无关。迎着光看去,当线偏振光方向沿磁力线方向通过介质时,其振动面向右旋转;当线偏振光方向沿磁力线反方向通过介质时,其振动面向左旋转。旋转角θ的大小受磁光材料的旋磁特性、长度、工作波长及磁场强度的影响。材料介质越长、磁场强度越强、工作波长越短,旋转角度将越大。 不同介质,振动面的旋转方向不同。顺着磁场方向看,使振动面向右旋的,称为右旋或正旋介质,V为正值。反之,则称为左旋或负旋介质,V为负值。 对于给定的磁光介质,振动面的旋转方向只决定于磁场方向,与光线的传播方向无关。这点是磁光介质和天然旋光介质之间的重要区别。就是说,天然旋光性物质,它的振动面旋转方向不只是与磁场方向有关,而且还与光的传播方向有关。例如,光线两次通过天然性的旋光物质,一次是沿着某个方向,

回波损耗的测试和计算

RL 的测试和计算 1、 RL 定义: in out P P IL lg 10-= in ref P P RL lg 10-= * 此处我们对所有的IL 和RL 定义为正值 2、 测试设备: A :Agilent 81680A TLS B :Agilent 81623A PM (PowerMeter ) C :50/50(3dB ) Coupler 3、 测试方法和步骤: A ??? ? ??-=in in p P dB lg 100 B :测试系统的RL :RLs ,搭建如图2所示的光路: 因为我们在步骤A 中做归零的时候已经将P in 作为基准功率,所以 ??? ? ??-=-in s ref s P P RL lg 10(式1) C :测试器件的RL :RL d ,搭建如图3所示的光路:

() ()()31lg 10lg 10lg 10?→?-+--+--+----??? ? ??--=??? ????????? ??-????? ??--=???? ??-=IL P p P P P P P P P P P RL in s ref d s ref in s ref d s ref s ref d s ref d ref in d ref d 根据式1,可以得出: 10 10 s RL in s ref P P --?= 设定:??? ? ??-=+-+in d s ref d s p p RL lg 10,推出: ()10 10 d s RL in P d s ref p +- ?=+- 将以上式3和式4带入式2,得到: ()311010311010311010lg 101010lg 10lg 10?→?--?→?--?→?-+--??? ? ??--=-????? ? ??????? ????? ? ?--=-??? ? ??--=++IL IL P P IL P p P RL s d s s d s RL RL in RL RL in in s ref d s ref d 令d s s RL RL x +-=,推出:x RL RL s d s -=+,将其带入式5,有: 3110103110 103110 1011010lg 101010lg 101010lg 10?→? -?→?---?→?---???? ? ????? ??--=-???? ? ?--=-???? ? ?--=+IL IL IL RL x RL RL x RL RL RL d s s s s d s 3110311010 110lg 10110lg 1010lg 10?→??→?--???? ??--=-???? ??--? ?? ? ??-=IL RL IL x s x RL s 综上,我们得出: 3110110lg 10?→?-??? ? ??--=IL RL RL x s d 试算如下: 设dB RL dB RL d s s 58,62==+,推出dB x 45862=-=,带入式6,得出: 31311042.60110lg 1062?→??→?-=-??? ? ??--=IL IL RL d (式2) (式3) (式4) (式5) (式6)

驻波比、插入损耗和回波损耗对照表

驻波比、插入损耗和回波损耗对照表 ρ=VSWR-1 VSWR+1RL=-20lg?ρVSWR=1+ρ 1-ρ 反射系数ρ回波损耗RL 驻波比VSWR 1.00 0.00 ∞ 0.90 0.92 19.00 0.80 0.94 9.00 0.70 3.10 5.67 0.60 4.44 4.00 0.50 6.02 3.00 0.40 7.96 2.33 0.30 10.46 1.86 0.20 13.98 1.50 0.10 20.00 1.22 0.09 20.92 1.20 0.08 21.94 1.17 0.07 23.10 1.15 0.06 24.44 1.13 0.05 26.02 1.11 0.04 27.96 1.08 0.03 30.46 1.06 0.02 33.98 1.04 0.01 40.00 1.02 0.00 ∞ 1.00

复反射系数:Γ=Z L-Z0 Z L+Z0 =ρsinθ+j cosθ 其中:幅度在0~1之间(为标量反射系数) 反射波相对于入射波的相角在+180°~-180°之间 定向耦合器: 耦合度C(dB)= -10lg P3 P1 隔离度I(dB)= -10lg P4 P1 方向性D(dB)= -10lg P3 P4 C-I=D 其中:P1为输入端口功率,P3为耦合端口输出功率,P4为隔离端口输出功率 网络基本参数: (一)反射参数 正向反向 反射系 数ΓΓ=S11Γ=S22 回波损 耗RL RL=-20lg?S11 RL=-20lg?S22 驻波比VSWR VSWR =(1+?S11 )(1-?S11 ) VSWR= (1+?S22 )(1-?S22 ) 阻抗Z Z=R+jX =Z0(1+?S11 )(1-?S11 ) Z=R+jX= Z0(1+?S22 )(1-?S22 ) (二)传输参数 正向反向

插回损测量

1 光器件的回损测量 引言:随着宽带接入如 LTE, FTTX 的应用越来越多,骨干光纤通信带宽越来越大,光纤本身的和光 纤系统中的无源光器件都变得越来越复杂,光纤系统中无源器件的反射对更高速率的通信系统性 能的影响越发显著,人们对光纤无源器件回波损耗指标测试的关注度在持续上升。 光纤无源器件的回损测试方案自光纤通信系统开始就有了,早期的典型测试仪表如:JDSU 公 司的 RX Meter, Agilent 公司的 816xx 系列。这些测试仪表的共同特点是:测试方法采用标准的连 续光方法,即 IEC 建议的 OCWR(Optical Continuous Wave Reflectometer)法,测量时通常需要用缠 绕光纤的方法消除额外反射,测量回损的范围在 70dB 以下。随着光纤通信技术的进步,测试仪 表也在发展,使用 OCWR 方法的测试仪技术非常成熟,随着竞争产品的越来越多,这两种仪表都 早已停止生产。 使用 OCWR 方法测量回损存在许多限制,如:测试步骤多,需要过程复杂的系统校“零”, 不能一次连接进行插损/回损的测试,不能区分瑞利散射和菲涅尔反射回损,只适用于≤55dB 的 回损测量等[1]。 另一方面,由于这些限制,在很多应用场合下不适合或者无法使用 OCWR 法进行测量,如: 无法弯曲也不允许破坏接头的光缆接头盒,特种光缆,MPO 接头等。 图 1:无法弯曲的光纤接头 为了解决这些问题,我们需 要采用其他的回损测量方法,如 OTDR 法。为了比较 OCWR 和 OTDR 两种测量方法,让我们首先回顾一下回损测试的原理以及 IEC61300‐3‐6 对回损测试方法的描 述。 1. 原理和测量方法 1.1 回损的来源 按照 IEC61300‐3‐6 的定义,回损是指在器件输入端、光纤接头或者定义的某一段光路上反射 光功率[mW]与入射光功率[mW]的比值。

插回损中文说明书(USB)

目录 1、概述-----------------------------------2 2、技术指标-------------------------------3 3、组成-----------------------------------4 4、功能说明-------------------------------4 5、使用说明-------------------------------6 6、测量数据记录---------------------------8 7、注意事项和常见故障----------------------9 8、维护及保养-----------------------------11 9、质量保证------------------------------12

1.概述 插回损测试仪是集合自身多年的光纤无源器件和光通信检测仪表的生产和测试经验,充分借鉴了国内外仪表的优点和国内客户的需求,精心研制开发出来的一款精密光检测仪表。它广泛应用于光纤光缆、光无源器件和光纤通信系统的插损和回损测试,是广大生产厂商、科研机构和运营商用于生产检测、研究开发和工程施工维护基本的测试仪器。 (一)特点 (1)测试精度高 通过内置高稳定的激光器,最先进的微电子技术和光检测设备,结合软件技术,使得仪器输出功率稳定、检测速度快、测试范围广。(2)波长自动同步设定 在回损模式下,光源与功率计波长同步切换,不需分别设定波长。功率计模式时,可另行单独设定功率计测试波长。 (3)多种工作模式 该测试仪表集成了回波损耗测试、光功率模块测试和插入损耗测试。 (4)操作简单方便 回损/插损同步测量,无需按键切换。回损/插损测试值分别在一台仪器上的两个液晶窗口同时显示,测试结果一目了然。通过操作“Zero按键”。和“Ref按键”程序会自动保存相应的校正数据,当仪器断电后再开机,被保存的数据立即生效不需要重复校准,简化测试过程。(5)人体工学设计 仪器采用高质量金属外壳,确保仪器性能不受生产环境下可能存在的电气干扰。经久耐用的按键具有完美舒适的手感。 (6)光源/光功率计接口采用灵巧设计,便于清洁 光源/光功率计均采用活动接口,可轻易卸下以便对光探测器进行清洁或更换其它型号适配器如(FC/SC/ST/2.5mm通用/1.25mm通用/MT-RJ 等,用于测试各种型号跳线。)同时也便于对光源接口内侧APC适配器的清洁。(注意:拆卸时,只需旋转光源/光功率计接口并拔下接口即可) (7)USB通讯接口

回波损耗测量

T3/E3/STS-1 LIU的回波损耗测量 本应用笔记讲述如何测量Dallas Semiconductor公司的线路接口单元(LIU)和单芯片收发器(包括DS3150、 DS315x、DS325x、DS3170、DS317x和DS318x)的回波损耗。本文还对回波损耗的定义、要求、测量以及改进方法进行了论述。 回波损耗定义 当高速信号到达传输线路的终端时,如果传输线路没有很好地端接,部分信号能量将会向发送器反射。该反射信号与原始信号混合,这将导致原始信号失真,使LIU接收器很难正确恢复时钟和数据。 回波损耗是原始信号与反射信号的功率比(用dB表示)。因此,回波损耗表示的是反射信号的相对大小,同时也反映了传输线路终端的匹配度或者说失配度。如果在给定频率下测得LIU卡的回波损耗为20dB,则表明在该频率下反射信号比原始信号功率小20dB。 回波损耗要求 对于E3、ITU G.703和ETS 300-686,规定的输入回波损耗如表1所列,输出回波损耗如表2所列。 表1. 输入端最小回波损耗 表2. 输出端最小回波损耗 Dallas Semiconductor的LIU回波损耗测量 ETS 300-686规范中的A.2.5和A.2.6细则描述了测量E3回波损耗的测试设备和程序。图1所示的测试装置用于测量输入回波损耗,并验证其是否符合表1所列出的要求。输出回波损耗的测量装置与之相似,只是测量装置被连接到了发送器的输出而非接收器输入。 图1装置中,回波损耗电桥采用的是Wide Band Engineering公司的A57TLSTD。两个50/75阻抗转换器(Wide Band Engineering的A65L)用来连接75电桥与50信号发生器和50频谱分析仪端口。图1中桥右侧的75

100M以太网口回波损耗测试

100M以太网口回波损耗测试 【摘要】 在以太网的物理层接口性能中,回波损耗是一项重要的指标;通过测量回波损耗,可以很清楚的单板设计的阻抗和双绞线的特性阻抗之间的关系,单板被测网口的回波越小,说明单板的输入阻抗特性与双绞线阻抗匹配的越好; 【关键词】 回波损耗、网络分析仪、802.3 一、回波损耗测试规范要求 测量100M以太网口的回波损耗是否满足以太网标准802.3中要求。 UTP标称阻抗100Ω,在2.0~80.0MHz范围内阻抗回输损耗应满足下列要求: 2~30MHz:>16dB 30~60MHz:>16~20lg(f/30)dB f:频率,以MHz计 60~80MHz:>10dB 二、测试回波损耗的基本概念及重要意义 1、回波损耗基本概念 回波损耗(RL,简称回损),顾名思义,指的是一种损耗。实际上,它测量的是传输信号被反射到发射端的比例。 我们都知道,在使用非屏蔽双绞线时,数据电缆有(或本应该有)100欧姆的阻抗。 但是在一个指定的频率上,阻抗值很少能正好等于100欧姆,下面的图形说明了回波损耗的产生过程。 回波损耗的基本定义: RL=20log∣(Zin-100)/(Zin+100)∣ 2、测试回波损耗的重要意义 在以太网的物理层接口性能中,回波损耗是一项重要的指标;通过测量回波损耗,可以很清楚的单板设计的阻抗和双绞线的特性阻抗之间的关系,单板被测网口的回波越小,说明单板的输入阻抗特性与双绞线阻抗匹配的越好; 以太网标准802.3中要求,在测试以太网口物理层指标中,要测试输入端口的回波损耗; 以往,我们在使用非屏蔽双绞线传输数据时,其中一个线对用来传输数据,另一个线对用来接收数据,因此回损并不构成很大的问题。但是在现在的传输方案,如千兆

光回波损耗测试原理及误差分析

光回波损耗测试原理及误差分析 引言:随着光纤通信的发展,高速光纤传输系统的广泛生产和应用(如SDH、大功率CATV 等),必须具有很高的回波损耗,DFB激光器由于其线宽窄,输出特性很容易受回波损耗的影响。从而严重影响系统的性能,即使是普通的激光器,也会不同程度地受回波损耗的影响,因此,系统中各种光纤器件的回波损耗的测试变得越来越重要。 关键词: 回波损耗菲涅尔反射瑞利散射偏振敏感性匹配负载 1.回波损耗测试基本原理 当光传输在某一光器件中时,总有部分光被反射回来,光器件中回波主要由菲涅尔反射(由于折射率变化引起)、后向瑞利散射(杂质微粒引起)以及方向性等因素产生的,则该器件的回波损耗RL为: RL(dB)=-10lg(反射光功率/入射光功率) (1) 回波损耗的测试方法有基于OTDR(OTDR的英文全称是Optical Time Domain Reflectometer,中文意思为光时域反射仪。OTDR是利用光线在光纤中传输时的瑞利散射和菲涅尔反射所产生的背向散射而制成的精密的光电一体化仪表,它被广泛应用于光缆线路的维护、施工之中,可进行光纤长度、光纤的传输衰减、接头衰减和故障定位等的测量。)和光功率计测试两种,OTDR测试方法速度快、显示直观可获得反射点的空间分布,且不需要末端匹配(短光纤仍需匹配),但成本高,重要的是某些场合不能使用(例如:光探测器的回波损耗测试等),如美国RIFOCS688及日本NTT-AT的AR-301型回波损耗测试仪。光功率计法主要将被测器件反射回来的光分离出来引导至光功率计,简单实用,应用范围广,使用时须进行末端匹配。 本文主要介绍光功率计法测试的原理。 光功率计法回波损耗测试基本原理框图如下: 图1光功率计法基本原理框图 激光经光模块注入到被测器件,反射光再经光模块引导至光功率计,测试方法分为4步:a.测试端连接校准件测出反射功率值P ref,若光源输出功率为PL,光模块衰减系数为k,校准件反射率为R ref,则: P rel= PL.k.R ref+P p (2) 其中,P p为附加反射功率(指光模块内部及测试端连接器的反射等) b.测出附加反射功率P p:将测试端进行匹配,使得测试端反射功率为0,即可测出附加反射功率P p。 c.测试端连接被测器件,测出反射值P meas

相关文档
相关文档 最新文档