文档库 最新最全的文档下载
当前位置:文档库 › 陶瓷粉体的制备通常采用传统的烧结粉碎法

陶瓷粉体的制备通常采用传统的烧结粉碎法

陶瓷粉体的制备通常采用传统的烧结粉碎法
陶瓷粉体的制备通常采用传统的烧结粉碎法

陶瓷粉体的制备通常采用传统的烧结粉碎法,但这种方法耗时长、能耗高、污染大。此外,还有化学沉淀法、溶胶凝胶法、熔剂蒸发法、水热法、乳化液法、喷雾热分解法、蒸发一凝聚法、气相化学反应法等,这些方法各有特点。但近年来,自蔓延燃烧技术作为陶瓷粉料的一种新的制备方法愈来愈显示出其优越性。

自蔓延燃烧技术是利用反应物之间高化学反应热的自加热和自传导

作用来合成材料的一种技术。该技术由前苏联科学院化学物理所的燃烧问题专家Merzhanov等人在研究火箭固体推进剂燃烧问题时首先发现,并于1967年提出的。美国和日本也先后引进并发展了SHS技术。我国开展SHS 技术的研究起步较晚,但发展极为迅速,己经取得了一系列令人瞩目的成就,并发表了大量的高水平学术论文。“八五”期间,国家高技术“863"计划,设立了金属-非金属材料复合的自蔓延高温还原合成技术项目。在1998年国家高技术新材料领域专家委员会发表的“新材料领域战略系

统”报告中,把SHS技术列入当前研究的热点项目[l]。

利用自蔓延燃烧技术合成陶瓷粉体具有反应时间短、污染小,通过化学反应自身放热维持反应进行等特点。因此,采用自蔓延燃烧技术合成陶瓷粉体是对传统制备工艺的挑战,它将为粉体合成开辟了新的途径。

2 自蔓延燃烧技术简介

2.1自蔓延燃烧技术的原理

SHS技术是基于放热化学反应的基本原理,利用外部能量诱发局部化

学反应(点燃),形成化学反应前沿(燃烧波),此后,化学反应在自身放热的支持下继续进行,表现为燃烧波蔓延至整个体系,最后合成所需的材料。这是一种高放热反应,参与反应的物质一般在固—固,固—气介质中进行,但最终产物一般是固态。其主要特征是反应只需局部点火引发燃烧波,并使其在原料中传播以实现系统的合成过程。反应过程如图1所示[1]:

自蔓延反应形式主要有两种:直接合成法和Mg热、A1热合成法。直接合成法是两种或两种以上反应物发生反应直接合成产物,而无需中间反应。但该方法一般需要特制的反应器,设备复杂,多用于粉末冶金领域中制取难熔的金属间化合物和金属基陶瓷等。Mg热、A1热合成法是采用活拨金属首先把金属或非金属元素从其氧化物中还原出来,之后通过还原出的元素之间的相互反应来合成所需的化合物[2]。

2.2 SHS技术制备陶瓷粉体的工艺流程

SHS技术与其他制粉技术相比的优点在于[3]:(1)节省时间,充分利用能源;(2)所需要的设备、工艺简单:

(3)产品纯度高(因为自蔓延燃烧能产生高温,使某些不纯物质蒸发掉了),反应转化率接近100%; (4)不仅能生产粉末,如果同时施加压力,还可以得到高密度的燃烧产品;(6)产量高(因为反应速度快);(6)可以扩大生产规模,从实验室走向生产所需时间短,而且大规模生产的产品质量优于实验室生产的产品;(7)能够生产新产品,例如立方氮化钽;(8)燃烧过程中,材料经历了很大的温度变化,非常高的加热和冷却速率使生产物中缺陷和非平衡相比较集中,因此某些产物比用传统方法制造的产物更具有活性,例如更容易烧结;(9)可以制造某些非化学计量比的产品,中间产物以及亚稳相等。其工艺流程如图2所示[4]。混合反应物时,粉料颗粒的大小、形状等将直接影响燃烧反应。对反应物进行加压时,压实密度将影响整个燃烧过程燃烧波的稳定性。根据合成产物的不同选取不同的反应容器(密封或不密封容器)[2]。SHS合成技术的点火方法可分为整体加热法和局部加热法围。整体加热是将整个反应物以恒定的加热速度在炉内加热,直到燃烧反应自动发生。而局部点火法是利用热辐射、金属线圈、激光诱导、电火花、化学炉、电热、微波等高能量进行点火,一旦点燃,反应就以波的方式自持续传播。根据不同体系的绝热的理论与实验数据决定理想的点火方式。

2. 3自蔓延燃烧技术的应用

到目前为止,世界各国都投入了大量的人力物力研究SHS技术的应用,

并取得了令人瞩目的成就,合成了包括碳化物、氮化物、硼化物、硅化物、硫化物、氢化物、磷化物、氧化物和复合氧化物、复合物、有机物等500多种物质[6]。

SHS技术主要有以下的应用:(1)可用来制备粉体,产物多为多孔状,粉碎后即可获得陶瓷粉体、复合粉体、金属间化合物粉体等;(2)用于烧结,利用高温的持续时间可进行一定的烧结;(3)合成催化剂;(4)将SHS过程同烧结、热压等工艺结合起来,发挥各自优点,可直接制造陶瓷、金属陶瓷等致密件;(5)利用SHS技术对耐热金属或合金、金属间化和物、氧化物和非氧化物陶瓷等同种或异种材料之间的焊接;(6)用于颜料和涂层[7]。

3 陶瓷粉体的SHS合成

SHS制备粉体是SHS最简单的技术,让反应物在一定的气氛中燃烧,然后粉碎、研磨燃烧产物,能得到不同规格的粉末。用该方法合成的陶瓷粉末,其纯度高、活性大,有利于提高陶瓷材料的机械活性和进一步致密烧结。

3. 1陶瓷色釉料的合成

传统法制备陶瓷色料成本高、能耗高。1985哈萨克斯坦的科学工作者第一次将SHS技术用于合成色料。[8]颜料合成是SHS技术一个新的应用领

域。各种金属化合物在SHS燃烧产生的高温和高的温度梯度下,V、Fe、 Mn、Co、 Ni、 Cr等过渡金属离子可能渗入并保留在自旋晶格中,使点阵参数变化而改变颜色。通过改变预热温度、时间、成分、添加剂等条件可获得多种颜色。

利用SHS技术合成陶瓷颜料所用的原料为各种盐类、金属和氧化物的混合物。在5-10MPa压力下制成圆柱状或其他形状,在炉中以500- 900℃的温度预热数分钟,依靠铝热或环境温度进入SHS初反应阶段。由于反应是放热反应,样品燃烧温度可达2000℃,系统中各组分能支持反应持续数分钟。反应中燃烧波在样品中迅速推进,使原料瞬间转化为产品,通过控制反应过程中燃烧波的传播速度和燃烧温度以及控制原材料粒度、分散度、纯度,分类型可以合成具有理想颜色和亮度的各种色料。最后将燃烧后的块状颜料碾碎成一定细度的粉末,即为用于陶瓷生产的具有高温稳定性的理想色料。其工艺过程为[9]原材料的制备-配合料的制备(加入工艺添加剂、混合、研磨、干燥)-成型(加压-挤压-模压) -预热-自蔓延反应的初始阶段-自蔓延高温合成-产品热处理或机械处理-产品物理性能、机械性能及物理化学性能测试。原材料组分、配比、性质、金属离子浓度及半径、SHS过程参数都是影响产物的关键因素。因此,要生产性质稳定,呈色理想的色料,控制好这些影响因素是至关重要的。例如在Mg- Al- Cr- O

系统中,选用Mg粉、A1粉及K

2Cr

2

O

7

三种主要原料组成SHS系统,可以合

成陶瓷颜料。采用“爆式”自蔓延法,即试样点燃就停止加热。这种方法

与传统的陶瓷色料合成方法相比,均是在空气中自然加热合成,只有在特殊情况下SHS 合成颜料需要气氛保护

[10]。

3. 2生物陶瓷材料的合成

羟基磷灰石(简称HAP)是生物体中理想的硬组织替代材料。高质量的HAP 粉末是制备高性能羟基磷灰石生物陶瓷人工骨的理想原料。SHS 技术可以用以制备纳米级羟基磷灰石(HAP)。利用硝酸盐与羧酸反应,在低温下实现原位氧化、自发燃烧、快速合成!HPA 前驱体粉末。制得的HAP 粉体具有高纯度、成分均匀、颗粒尺寸小、无硬团聚等特性。

采用SHS 技术合成纳米级HAP 前驱体粉末的方法为:按照n( Ca): n( p)=1.67称取一定量的Ca(NO 3)2·4H 2O,(NH 4)2HP04和与Ca 离子等摩尔量

的柠檬酸,分别用蒸馏水溶解混合,调节PH 值在3左右,80℃加热蒸发形成凝胶。然后在200℃的电炉中进行自蔓延燃烧,最后得到分布均匀、烧结性能良好的纳米HAP 前驱体粉末[1]、[2]

3. 3环保型陶瓷粉体的合成

环保问题己经成为当今的一大热门话题,如何处理好废水、废气、废渣等,是我们亟需解决的问题。SHS 技术成为解决环保问题的又一新途径。据报道,日本利用一些残渣、废料,如由单晶硅制硅芯片时的抛光剂Al 2O 3、锆英石及用于污水沉降的Fe 2O 3和CaO 等,采用SHS 工艺合成Sialon 基陶

瓷材料“变废为宝”,可用于汽车尾气处理,吸收CO 。

另据报道[3]

,用SHS 技术合成的钙钛矿可以作为放射性废物的固化体,包容放射性元素锶(Sr),其反应如下:

2 Cr03+3Ti+ 4CaO+ TiO 2- 4CaTiO 3+2Cr +Q 以Cr 2O 3作为氧化剂,利用

反应自身放热,而使反应自动持续下去,并在瞬间产生的高温下,熔化SrO 将Sr 2+包容进合成产物的晶格内。具体工艺过程为:将CrO 3, Ti 粉,CaO

以及TiO 2粉末按摩尔比为2: 3: 4:1混合均匀,并添加10%的SrO 粉末。

混均压坯,放在加入保温材料的钢模中,并用压盖封闭,预压启动点火装置,燃烧反应开始进行,继续加热至反应结束,即得到钙钛矿固化体。固化体的基体为不规则多边形,晶粒尺寸在30- 40微米之间。图3的XRD 结果表明,在反应产物中形成了钙钛矿,但并未发现SrO 的衍射峰,表明Sr 2+巳被固化于CaTiO 3的晶格内。

3.4复相陶瓷粉体的合成

3 4. 1合成Al 2O 3/AlB 12复相陶瓷粉体

AlB 12具有高熔点、低比重、高硬度和耐磨性等特点,有希望用作装甲

材料。装甲材料要求高的弹性模量、压溃强度及断裂前能承受大的拉应力的能力,单相材料很难同时符合这些要求。因此,开发Al 2O 3/AlB 12复相陶瓷比AlB 12更有意义。利用SHS 技术制备该复相陶瓷的过程为:以方程式

13A1+6B 2O 3=6A12O 3+A1B 12

左侧所示化学计量配料,铝粉和B 2O 3粉料在刚玉罐中球磨混合lh 经真

空干燥后,压坯,置入充满氢气的反应器中,进行燃烧合成。反应器内压力可在500Pa- 0. 1Mpa 之间调节,用钨丝通电点火。W- Re 热电偶插入试样心部测温[4]。

图4是经球磨后得到粉料的SEM形貌。从图中可知,用SHS技术合成

的A1

2O

3

/AlB

12

复相陶瓷粉体外形不规则,其中亚微米级颗粒约占30%。亚

微米粉料主要为AlB

12,粗大颗粒为Al

2

O

3

3 4. 2低氮气压下合成Si

3N

4

/SiC复相粉末

在Si

3N

4

中引入SiC可改善基体的硬度、韧性及机械强度。流程为:Si

粉与Si

3N

4

按3:1重量比称取,加入不同量的C粉,一同放入球磨机中,在

无水酒精介质中,以WC球作为研磨体,混料6h,烘干后压成直径22mm的圆柱坯样,并在一端压上一薄层Ti粉。把试样放在点火线圈上,一同放入反应装置,密封、排气、抽真空,再注入一定压力的氮气,使点火线圈通电点火,当温度记录仪的温度指示突然上升时,关闭电源;温度接近室

温时,取出样品。在低压氮气0.5-0.6Mpa下合成出了纯度高的Si

3N

4

/SiC

复相粉末。体系的燃烧温度随C含量的增加而降低,粒度也随C含量的增加而降低[15]。

4 结束语

国内外SHS技术的研究现状表明:利用SHS技术合成陶瓷粉体具有一般烧结法所不具备的优点,如反应速度快、时间短、产品纯度高、污染小等。由此可见,利用该种技术为合成粉体材料开辟了一条新的途径。但是人们对SHS到支术研究掌握还不够成熟,其燃烧速度和反应过程难以控制,

产品致密度不高,故该技术广泛应用于生产还有一定难度,还需要广大材料工作者进一步研究开拓。随着SHS过程理论的进一步深入研究,利用计算机模拟SHS具体过程的进一步完善,可以预计,SHS技术在材料科学与工程中的应用将会进一步扩展,工业化进程也会进一步加快。

参考文献

[1]李强,于景媛等.自蔓延高温合成(SHS)技术简介 [J]. 辽宁工程学院学报,2001, 21( 5): 61- 64

[2]刘海涛,杨丽,张树军等.无机材料合成.北京:化学工业出版社,2003

[3]郑仕远,李荣缇等.自蔓延燃烧法材料合成技术[J].山东陶瓷,1999, 22 (4): 3-12

[4] Galina G Xanthopoulou Self-Propagating SHS of Inorganic Pigments [J]. The American Ceramic Society Bulletin 1998,8pp,87-96

[5] John J. Moore, H J. Feng Combustion Synthesis of Advanced Materials: Part I. Reaction Parameters. Progress in Materials Science Vol.39,pp.243-273.1995

[6]江国健,庄汉锐等.自蔓延高温合成材料制备新方法[J].化学进展,1998,10(3):328-332

[7]王志伟.自蔓延高温合成技术研究与应用的新进展[J].化学进展,2002,21(3):175-180

[8]王志伟,施雨湘,杨圣品.自蔓延高温技术新进展[J].材料保护,2002(5): 1-3

[9]宋京红,俞康泰.陶瓷色料的自蔓延高温合成新工艺[J].中国陶瓷工业,2000,7(2): 21-24

[10]张强.压力对Mg-Al-Cr-O(SHS)系统反应温度及反应速度的影响[J].陶瓷工程,1999, 33(5):17-18

[11]王欣宇,韩颖超等.自燃烧法制备纳米轻基磷灰石粉的机理探讨及影响因素[J].硅酸盐学报,2002,30(5): 564-568

[12]韩颖超,王欣宇等.自燃烧法合成纳米HAF粉末[J].硅酸盐学报,2002,30(3):387-389

[13]路新等.自蔓延高温合成固定放射性废物[J].硅酸盐学报,2003,31(2):205-208

[14]刘永合等.燃烧条件对自蔓延高温合成Al2O3/AlB12复相陶瓷粉体特性的影响[J].无机材料学报,2000,15(3): 473-478

[15]徐协文.低N2压下Si

3N

4

/SiC复相粉末的自蔓延合成初探[J].湖

南轻工业高等专科学校学报

关于陶瓷粉体的制备技术浅析

关于陶瓷粉体的制备技术浅析 姓名:班级:11无非(1)班学号: 摘要通过对这学期粉体课程的学习,拙写了一些自己感兴趣的方面,这篇论文综述了精细陶瓷材料之主要原料-陶瓷粉体的各种制备方法。对最有发展前途的热化学气相反应法、激光诱导化学气相合成法、等离子气相合成法、沉淀法、水热法及溶胶-凝胶法的原理和工艺作了较为详细的介绍。 关键词:陶瓷粉体制备技术原理工艺 1 前言 与金属、塑料相比,精细陶瓷材料具有优异的耐高温、抗腐蚀、耐磨损性及良好的电气性能, 广泛地应用于尖端科技领域, 如空间技术、海洋技术、生物工程领域等。而精细陶瓷制作工艺中的一个基本特点就是以粉体作原料经成型和烧成, 形成多晶烧结体。陶瓷粉体的质量直接影响最终成品的质量, 因此, 发展精细陶瓷的首要问题是要符合要求的原料--粉体。 现代高科技陶瓷材料对粉体的基本要求是高纯、超细、组分均匀、团聚程度 μ1的微粉。近年来,随着小。这里所指的超细,通常是指颗粒的平均直径小于m 科学技术的迅猛发展,一项综合科学技术-- 纳米科学技术迅速崛起,已成为目前世界高新技术领域的一个重要制高点。伴随纳米科学技术的发展, 产生了纳米陶瓷, 纳米陶瓷的研究是当前先进陶瓷发展的三大课题之一, 它的问世将使材料的强度、韧性和超塑性大大提高。长期以来,人们追求的陶瓷增韧性和强度问题可望在纳米陶瓷中得到解决。为了获得纳米陶瓷, 首先必须制备出纳米陶瓷粉体。因此, 对陶瓷粉体的研究将是陶瓷新材料研究中的一个极其重要的范畴。 2 陶瓷粉体的制备技术 目前,世界上有多种制造陶瓷粉体的方法]1[, 大致可分为两类: 粉碎法和合 μ1以下的微粒,且易成法。粉碎法主要采用各种机械粉碎方法, 此法不易获得m 引入杂质。合成法是在原子、分子水平上通过反应、成核、成长、收集和处理来获得的, 因此可得到纯度高、颗粒微细、均匀的粉体。此法应用较广泛, 它又可分为气相合成法、液相合成法和固相合成法。 2. 1 气相合成法 此法可分为蒸发凝聚法( PVD) 及气相反应法( CVD) 。前者是将原料加热至

特种陶瓷制备工艺..

特种陶瓷材料的制备工艺 10材料1班 王俊红,学号:1000501134 摘 要:介绍粉末陶瓷原料的制备技术、特种陶瓷成形工艺、烧结方法。 目前,特种陶瓷中的粉末冶金陶瓷工艺已取得了很大进展,但仍有一些急需解决的问题。 当前阻碍陶瓷材料进一步发展的关键之一是成形技术尚未完全突破。 压力成形不能满足形状复杂性和密度均匀性的要求。 多种胶体原位成形工艺,固体无模成形工艺以及气相成形工艺有望促使陶瓷成形工艺获得关键性突破。 关键词:特种陶瓷;成形;烧结;陶瓷材料 前言:陶瓷分为普通陶瓷和特种陶瓷两大类, 特种陶瓷是以人工化合物为原料(如氧化物、氮化物、碳化物、硼化物及氟化物等)制成的陶瓷。 它主要用于高温环境、机械、电子、宇航、医学工程等方面,成为近代尖端科学技术的重要组成部分。 特种陶瓷作为一种重要的结构材料,具有高强度、高硬度、耐高温、耐腐蚀等优点,无论在传统工业领域,还是在新兴的高技术领域都有着广泛的应用。 因此研究特种陶瓷制备技术至关重要。 正文:特种陶瓷的生产步骤大致可以分为三步:第一步是陶瓷粉体的制备、第二步是成形,第三步是烧结。 特种陶瓷制备工艺流程图 一、 陶瓷粉体的制备 粉料的制备工艺(是机械研磨方法,还是化学方法)、粉料的性质(粒度大小、形态、尺寸分布、相结构)和成形工艺对烧结时微观结构的形成和发展有着巨大的影响,即粉末制备 坯料制备 成型 干燥 烧结 后处理 热压或热等静压烧结 成品

陶瓷的最终微观组织结构不仅与烧结工艺有关,而且还受粉料性质的影响。由于陶瓷的材料零件制造工艺一体化的特点,使得显微组织结构的优劣不单单影响材料本身的性能,而且还直接影响着制品的性能。陶瓷材料本身具有硬、脆、难变形等特点。因此,陶瓷材料的制备工艺显得更加重要。由于陶瓷材料是采用粉末烧结的方法制造的,而烧结过程主要是沿粉料表面或晶界的固相扩散物质的迁移过程。因此界面和表面的大小起着至关重要的作用。就是说,粉末的粒径是描述粉末品质的最重要的参数。因为粉末粒径越小,表面积越大,单位质量粉末的表面积(比表面积)越大,烧结时进行固相扩散物质迁移的界面就越多,即越容易致密化。制备现代陶瓷材料所用粉末都是亚微米(<lμm)级超细粉末,且现在已发展到纳米级超细粉。粉末颗粒形状、尺寸分布及相结构对陶瓷的性能也有着显著使组分之间发生固相反应,得到所需的物相。同时,机械球磨混合无法使组分分的影响。粉末制备方法很多,但大体上可以归结为机械研磨法和化学法两个方面。 传统陶瓷粉料的合成方法是固相反应加机械粉碎(球磨)。其过程一般为:将所需要的组分或它们的先驱物用机械球磨方法(干磨、湿磨)进行粉碎并混合。然后在一定的温度下煅烧。由于达不到微观均匀,而且粉末的细度有限(通常很难小于 l μm 而达到亚微米级),因此人们普遍采用化学法得到各种粉末原料。根据起始组分的形态和反应的不同,化学法可分为以下三种类型: 1.固相法: 化合反应法:化合反应一般具有以下的反应结构式: A(s)+B(s)→C(s)+D(g) 两种或两种以上的固态粉末,经混合后在一定的热力学条件和气氛下反应而成为复合物粉末,有时也伴随一些气体逸出。 钛酸钡粉末的合成就是典型的固相化合反应。等摩尔比的钡盐BaCO3和二氧化钛混合物粉末在一定条件下发生如下反应: BaCO3+TiO2→BaTiO3+CO2↑ 该固相化学反应在空气中加热进行。生成用于PTC制作的钛酸钡盐,放出二氧化碳。但是,该固相化合反应的温度控制必须得当,否则得不到理想的、粉末状钛酸钡。 热分解反应法:

第20章瓷粉体原料制备工艺

第20章陶瓷粉体原料制备工艺 §20.1 粉体制备工艺 传统的粉体制备工艺就是机械破碎法,生产量大,成本低,但杂质混入不可避免。 随着先进陶瓷的发展,各种反应合成法得以应用,优点是纯度高、粒度小、成分均匀,但成本高。 20.1.1 传统粉体制备工艺 以机械力使原材料变细的方法在陶瓷工业中应用极为广泛。陶瓷原料进行破碎有利于提高成型坯体质量,提高致密程度并有利于烧结过程中各种物理化学反应的顺利进行,降低烧成温度。 一、颚式破碎机 颚式破碎机是陶瓷工业化生产所经常采用的一种粗碎设备,主要用于块状料的前级处理。设备结构简单,操作方便,产量高。但颚式破碎机的粉碎比不大(约4),进料块度一般很大,因此出料粒度一般都较粗,而且粒度的调节范围也不大。 二、轧辊破碎机 轧辊破碎机的优点在于粉碎效率高,粉碎比大(>60),粒度较细(通常可达到44 m)。但当细磨硬质原料时,由于轧辊转速高,磨损大,使得粉料中混入较多的铁,影响原料纯度,要求后续去铁。同时由于设备的特点,其粉料粒度分布比较窄,只宜用于处理有粒度分布要求的原料。 三、轮碾机 轮碾机是陶瓷工业化生产所常采用的一种破碎设备,也可用于混合物料。在轮碾机中,原料在碾盘与碾轮之间的相对滑动及碾轮的重力作用下被研磨、压碎。碾轮越重、尺寸越大,粉碎力越强。为了防止铁污染,经常采用石质碾轮和碾盘。轮碾机的粉碎比大(约10),轮碾机处理的原料有一定的颗粒组成,要求的粒度越细,生产能力越低。轮碾机也可采用湿轮碾的方法。 四、球磨机 球磨机是工业生产普遍使用的细碎设备,也可用于混料。为了保证原材料的纯度,经常采用陶瓷作为衬里,也可采用高分子聚合物材料作为衬里,并以各种陶瓷球作为研磨球。 湿球磨所采用的介质对原料表面的裂缝有劈裂作用,间歇式湿球磨的粉碎效率比干球磨高,湿球磨所得到的粉料粒度可达几个微米。 球磨机转速对球磨机效率的影响。球磨机转速直接影响磨球在磨筒内的运动状态,转速过快,磨球附看在磨筒内壁,失去粉碎作用;转速太慢,低于临界转速太多,磨球在磨筒内上升不高就落下来,粉碎作用很小;当转速适当时,磨球紧贴在筒壁上,经过—段距离,磨球离开筒壁下落,给粉料以最大的冲击与研磨作用,具有最高的粉碎效率。球磨机的临界转速与球磨筒直径有关,直径越大,临界转速越小。它们之间的关系可用下列关系表示:D>1.25m,N=35/D1/2,D<1.25m,N=40/D1/2,其中N为接近临界转速的工作转速(r/min),D 为球磨筒有效内径(m)。 磨球对球磨机效率的影响。球磨时加入磨球越多、破碎效率越高,但过多的磨球将占据有效空间,导致整体效率降低。磨球的大小以及级配与球磨筒直径有关,可用公式:D(磨筒直径)/24>d(磨球最大直径)>90d0(原料粒度)来计算。磨球的比表面积越大,研磨效能越高,但也不能太小,必须兼顾磨球对原料的冲击作用。此外磨球的密度越大球磨效果越好。 水与电解质的加入量对球磨机效率的影响。湿磨时水的加入对球磨效率也有影响,根据经验,当料/水=1/(1.16~1.2)时球磨效率最高;为了提高效率,还可加入电解质使原料颗粒表

自蔓延高温合成

自蔓延高温合成 【摘要】:材料已成为当今科学技术和社会发展的重要支柱,材料的合成与制备也愈显重要。本文概述了材料制备方法之一——自蔓延高温合成,其基本原理、分类、合成工艺及应用等方面,并对其研究现状及发展进行简述。 【关键词】:自蔓延高温合成技术;热爆;合成技术 一、概述 自蔓延高温合成技术(Self-propagating High-temperature Synthesis,简称SHS),又称燃烧合成,是利用反应物之间高的化学反应热的自加热和自传导作用来合成材料的一种技术。当反应物一旦被引燃,便会自动向尚未反应的区域传播,直至反应完全,是制备无机化合物高温材料的一种方法。 由于自蔓延高温具备以下特点: (1)工艺、设备简单,需要的能量较少,无需复杂的工艺装置,一经点燃就不需要对其提供任何能力; (2)节省时间,能源利用充分,产量高; (3)产品具有较高纯度,燃烧波通过混合料时,由于燃烧波产生高温,可将易挥发杂质(低熔点物)排除,化学转变完全; (4)反应产物除化合物及固溶体外,还可以形成复杂相和亚稳相,这是由于燃烧过程中材料经历了很大的温度梯度和非常高的冷却速度之故; (5)不仅能生产粉末,如同时施加压力,还可以得到高密度的燃烧产品; (6)如要扩大生产规模,不会引起什么问题,故从实验室走向生产所需时间短而且大规模生产的产品质量优于实验室生产的产品; (7)不仅可以制造某些非化学计量比的产品、中间产物和亚稳相,还能够生产新产品。 下表为SHS与常规方法几个参数的比较:

正因为SHS 法具有上述优点,自从自蔓延技术发展以来,得到了迅速的发展。研究对象也从当初的高反应热的硼化物、碳化物、硅化物发展到弱反应热的氢化物、磷化物、硫化物等。 二、自蔓延高温合成原理 根据SHS 燃烧波的传播方式,可将SHS 分为自蔓延和“热爆”两种工艺。前者是利用高能点火,引燃粉末坯体的一端,使反应自发地向另一端蔓延。这种工艺适合制备生成焓高的化合物;后者是将粉末坯放在加热炉中加热到一定温度,使燃烧反应在整个坯体中同时发生,称之为"热爆”。这种工艺适合生成焓低的弱放热反应。 自蔓延高温合成原理自蔓延高温元素合成是最原始的SHS 合成粉末材料的方法,其反应原理为: x y xA yB A B Q +→+ 式中,A 为金属单质,B 为非金属単质,x y A B 为合成反应的产物,Q 为合成反应放出的热量。 自蔓延高温还原合成即采用更易于得到且价格便宜的氧化物、卤化物等原料来代替原来单一的元素进行还原合成。反应式可用下式表示: x y x N yM Z N M Q ++→++ 式中,x N 代表氧化物、卤化物等,M 代表金属还原剂(Mg ,Al ,Ca 等),Z 代表非金属或非金属化合物(2N ,23CB O ,2BiO 等),y N 代表合成产品,x M 代表金属还原剂的化合物,Q 代表反应所放出的热量。 从反应式可以看出,合成反应分两步进行。第一步是还原反应,先还原出单体元素;第二步是单体元素与非金属元素合成为所需的制品。 三、自蔓延高温合成技术 (一)、SHS 制粉技术 这是SHS 中最简单的技术,让反应物料在一定的气氛中燃烧,然后粉碎、研磨燃烧产物,能得到不同规格的粉未。 实例1: 1、原理:2323121366Al B O Al O AlB +→+ 2、制备:以化学计量配料,铝粉和23B O 粉料在刚玉罐中球磨混合1h ,经真空干燥后,压坯,置入充满氩气的反应器中,进行燃烧合成。反应器内压力可在5000.1Pa Mpa 之间调节,用钨丝点火。用W Re -材料热电偶插入试样心部测温。 合成的复相陶瓷粉体外形不规则,其中亚微米级颗粒约占30%。亚微米粉料主要为12AlB ,而粗大颗粒为23Al O 。

2019年最新MLCC陶瓷粉体材料行业分析报告

MLCC陶瓷粉体材料行业 分析报告

目录 一、行业属性 (5) 二、行业管理体制、产业政策和主要法律法规 (7) 1、行业管理体制、行业主管部门及自律性组织 (7) 2、产业政策和主要法律法规 (8) 三、行业与上下游行业的关系 (10) 四、下游MLCC 行业概况 (11) 1、MLCC 简介 (11) (1)电介质陶瓷粉料等材料技术 (13) (2)介质薄层化技术 (13) (3)陶瓷粉料和金属电极共烧技术 (14) 2、MLCC 行业市场发展状况 (14) (1)全球MLCC 行业发展状况 (14) (2)我国MLCC 行业发展状况 (15) 3、MLCC 行业未来发展前景 (16) (1)电子消费品的更新换代及新产品的不断涌现将持续提高市场对MLCC 的需 求 (17) (2)MLCC 对其他类型电容器的替代作用将日趋明显 (19) (3)中国已成为全球电子整机的生产基地,作为电子整机使用的主要元件之一, 国内的MLCC 行业迎来了良好的发展契机 (21) (4)国内经济的发展及人民生活水平的提高所带来的电子消费品普及化过程,将 带动国内对MLCC 的巨大需求 (22) 4、MLCC 行业主要企业情况 (23) (1)全球主要MLCC 厂家 (24) (2)国内主要MLCC 厂家 (31) 5、MLCC 行业未来发展趋势 (34) (1)小型化、微型化 (34) (2)大容量化 (35)

五、MLCC 电子陶瓷材料行业概况 (37) 1、MLCC 电子陶瓷材料内涵 (38) 2、钛酸钡基础粉及水热法 (39) (1)钛酸钡基础粉 (39) (2)钛酸钡的制备方法 (40) (3)水热法 (43) 3、改性添加剂 (44) 4、MLCC 配方粉 (45) 5、MLCC 电子陶瓷材料行业市场发展及需求概况 (46) 6、MLCC 电子陶瓷材料行业的竞争状况 (50) (1)日本堺化学(Sakai) (52) (2)美国Ferro 公司 (52) (3)日本化学(NCI) (53) (4)日本富士钛(Fuji Titanium) (53) (5)日本共立(KCM,Kyoritsu) (54) (6)日本东邦(Toho) (54) (7)三星精密化学株式会社 (55) (8)户田工业株式会社 (55) (9)台湾信昌电子陶瓷股份有限公司 (56) (10)我国国内MLCC 电子陶瓷材料行业的市场竞争情况 (57) 7、进入行业的主要壁垒 (58) (1)技术壁垒 (58) (2)市场壁垒 (59) (3)安全生产和环境保护壁垒 (60) (4)资金壁垒 (60) 8、行业利润水平的变动趋势及变动原因 (61) 六、行业技术水平和发展趋势 (62) 1、行业技术水平 (62)

陶瓷烧制工艺说明书

陶瓷烧制工艺说明书 小组成员: 学生姓名方伟伟学号 0900102124 学生姓名黄文富学号 0900102135 学生姓名杜荣烈学号 0900102136 学生姓名何浩东学号 0900102137 学生姓名丁笠学号 0900107230 学生姓名李军学号 0900802115 2012年05月10日

目录 引言 (1) 2陶瓷的传统烧制工艺 (2) 3陶瓷的现代烧制工艺 3.1陶瓷粉体的制备 3.2 陶瓷的烧结 3.3 陶瓷的成型 3.3.1 注浆成型 3.3.2 注浆成型操作注意事项 3.4 陶瓷的精加工 3.4.1界面反应抛光 4结语 5参考资料

1引言 中国是瓷器的故乡,瓷器的发明是中华民族对世界文明的伟大贡献,在英文中“瓷器(china)”与中国(China)同为一词。大约在公元前16世纪的商代中期,中国就出现了早期的瓷器,经过发展形成了“定,邢,哥,汝,钧”等名噪一时的各类瓷器,其中有些直至今日仍旧享有盛誉。在物质文明高度发达的现代,瓷器也已经越来越多的朝功能性方面发展,在瓷器的制造过程中,现代机械及工艺也占着越来越重要的戏份。故而,笔者将秉着传承与发展中华优秀文明的原则,对陶瓷烧制的传统工艺与现代工艺做一简要的论述,以弘扬古朴、典雅的华夏美德。 以下对陶瓷传统与现代制作工艺加以介绍: 2 陶瓷的传统烧制工艺 传统的陶瓷烧制分工极其细致,最核心的包括拉坯、利坯、画坯、施釉和烧窑等五项工序。如下: 为了能让读者真正了解陶瓷的传统烧制工艺,笔者将从陶瓷原材料的采集到陶瓷成品的整个烧制工艺做简一介绍。 (一)采集瓷石瓷土:瓷器都是以瓷石和瓷土(高岭土)为基本原料烧制而成的。《天工开物·陶埏篇》说:“土出婺源、祁门两山:一名高梁山,出粳米土,其性坚硬;一名开化山,出糯米土。其性粢软。两土相合,瓷器即成。”所谓糯米土即指高岭土。 高岭土是陶瓷制品的坯体和釉料以及粘土质耐火材料的重要原料。它是我国瓷都景德镇古代瓷工首先发现并应用的瓷器原料,因为最早发现其产地是江西景德镇以东四十五公里处的高岭村而得名。现在已成为全世界制瓷原料的通用术语。也就是说“高岭土”已是世界同类粘土的统一名称,这是我国瓷工对世界的一个大贡献。 关于高岭土的来源,颇具迷人色彩。传说高岭村里有一对虽贫穷但心地极为善良的高姓夫妇,在一年冬天,北风呼啸,滴水成冰,一个衣衫破旧的白发老人晕倒在高家屋檐,高氏夫妇发现后,将其扶进屋给其暧身,并借熬粥给他喝......老人临走时,指点高家夫妇去高岭山山顶,不停息地一连挖九九八十一

MLCC陶瓷粉体材料行业分析报告

2011年MLCC陶瓷粉体材料行业分析报告

目录 一、行业属性 ............................................. 二、行业管理体制、产业政策和主要法律法规.................. 1、行业管理体制、行业主管部门及自律性组织....................... 2、产业政策和主要法律法规....................................... 三、行业与上下游行业的关系................................ 四、下游MLCC 行业概况.................................... 1、MLCC 简介.................................................... (1)电介质陶瓷粉料等材料技术.......................... (2)介质薄层化技术.................. 错误!未定义书签。 (3)陶瓷粉料和金属电极共烧技术........................ 2、MLCC 行业市场发展状况........................................ (1)全球MLCC 行业发展状况............................ (2)我国MLCC 行业发展状况............................ 3、MLCC 行业未来发展前景........................................ (1)电子消费品的更新换代及新产品的不断涌现将持续提高市 场对MLCC 的需求 (17) (2)MLCC 对其他类型电容器的替代作用将日趋明显 ........ (3)中国已成为全球电子整机的生产基地,作为电子整机使用 的主要元件之一,国内的MLCC 行业迎来了良好的发展契机... (4)国内经济的发展及人民生活水平的提高所带来的电子消费 品普及化过程,将带动国内对MLCC 的巨大需求.............

固相法制备陶瓷粉体

固相反应法生产陶瓷粉体 一、固相反应法的特点 固相法是通过从固相到固相的变化来制造粉体,其特征是不像气相法和液相法伴随有气相→固相、液相→固相那样的状态(相)变化。对于气相或液相,分子(原子)有很大的易动度,所以集合状态是均匀的,对外界条件的反应很敏感。另一方面,对于固相,分子(原子)的扩散很迟缓,集合状态是多样的。固相法其原料本身是固体,这较之于液体和气体都有很大的差异。固相法所得的固相粉体和最初固相原料可以使同一物质,也可以不是同一物质。[1] 二、物质粉末化机理 一类是将大块物质极细地分割,称作尺寸降低过程,其特点是物质无变化,常用的方法是机械粉碎(用普通球磨、振磨、搅拌磨、高能球磨、喷射磨等进行粉碎),化学处理(溶出法)等。另一类是将最小单位(分子或原子)组合,称作构筑过程,其特征是物质发生了变化,常用的方法有热分解法(大多数是盐的分解),固相反应法(大多数是化合物,包括化合反应和氧化还原反应),火花放电法(常用金属铝产生氢氧化铝)等。 三、固相反应的具体方法 1、机械粉碎法 主要应用是球磨法,机械球磨法工艺的主要目的包括离子尺寸的减小、固态合金化、混合或融合以及改变离子的形状。目前已形成各种方法,如滚转磨、振动磨和平面磨。采用球磨方法,控制适合的条件可以得到纯元素、合金或者是复合材料的纳米粒子。其特点是操作简单、成本低,但产

品容易被污染,因此纯度低,颗粒分布不均匀[2] 。 2、热分解法 热分解反应不仅仅限于固相,气体和液体也可引发热分解反应,在此只讨论固相的分解反应,固相热分解生成新的固相系统,常用如下式子表示(S 代表固相、G 代表气相): 121 1212S S G S S G G →+→++ 第一个式子是最普通的,第二个式子是第一个式子的特殊情况。热分解反应基本是第一式的情况。 3、 固相反应法 由固相热分解可获得单一的金属氧化物,但氧化物以外的物质,如碳化物、硅化物、氮化物等以及含两种金属元素以上的氧化物制成的化合物,仅仅用热分解就很难制备,通常是按最终合成所需组成的原料化合,再用高温使其反应的方法,其一般工序如左图所示。首先是按照规定的组成称量,通常用水等做分散剂,在玛瑙球的球磨内混合,然后通过压滤机脱水后再用电炉焙烧,通常焙烧温度比烧成温度低。在固相反应中粉体间的反应相当的复杂,反应从固体间的接触部分通过离子扩散来进行,但接触状态和各种原料颗粒的分布情况显着地收到颗粒的性质(粒径、颗粒形状和表面状态等)和粉体处理的方法(团聚状态和填充状态等等)的影响。

2012.3.18材料制备原理-课后作业题

第1章习题与思考题 1.1溶胶-凝胶合成 1、名词解释:(1)溶胶;(2)凝胶 参考答案(列出了主要内容,根据具体情况自己总结,下同!): 1、溶胶:是具有液体特征的胶体体系,是指微小的固体颗粒悬浮分散在液相中,不停地进行布朗运动的体系。分散粒子是固体或者大分子颗粒,分散粒子的尺寸在1~100nm之间,这些固体颗粒一般由103~109个原子组成。 凝胶(Gel):凝胶是具有固体特征的胶体体系,被分散的物质形成连续的网络骨架,骨架孔隙中充满液体或气体,凝胶中分散相含量很低,一般在1%~3%之间。 2、说明溶胶-凝胶法的原理及基本步骤。 答:溶胶-凝胶法是一种新兴起的制备陶瓷、玻璃等无机材料的湿化学方法。其基本原理是:易于水解的金属化合物(无机盐或金属醇盐)在某种溶剂中与水发生反应,经过水解与缩聚过程逐渐凝胶化,再经干燥烧结等后处理得到所需材料,基本反应有水解反应和聚合反应。这种方法可在低温下制备纯度高、粒径分布均匀、化学活性高的单多组分混合物(分子级混合),并可制备传统方法不能或难以制备的产物,特别适用于制备非晶态材料。 溶胶-凝胶法制备过程中以金属有机化合物(主要是金属醇盐)和部分无机盐为前驱体,首先将前驱体溶于溶剂(水或有机溶剂)形成均匀的溶液,接着溶质在溶液中发生水解(或醇解),水解产物缩合聚集成粒径为1nm左右的溶胶粒子(sol),溶胶粒子进一步聚集生长形成凝胶(gel)。有人也将溶胶-凝胶法称为SSG法,即溶液-溶胶-凝胶法。 3、简述溶胶-凝胶制备陶瓷粉体材料的优点。 答:①制备工艺简单、无需昂贵的设备; ②对多元组分体系,溶胶-凝胶法可大大增加其化学均匀性; ③反应过程易控制,可以调控凝胶的微观结构; ④材料可掺杂的范围较宽(包括掺杂量及种类),化学计量准确,易于改性; ⑤产物纯度高,烧结温度低 1.2水热与溶剂热合成 1、名词解释:(1)水热法;(2)溶剂热法。 水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热、加压(或自生蒸气压),创造一个相对高温、高压的反应环境,使得通常难溶或不溶的物质溶解,并且重结晶而进行无机合成与材料处理的一种有效方法。 溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(例如:有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成,易氧化、易水解或对水敏感的材料。 2、简述水热与溶剂热合成存在的问题? 答:(1)水热条件下的晶体生长或材料合成需要能够在高压下容纳高腐蚀性溶剂的反应器,需要能被规范操作以及在极端温度压强条件下可靠的设备。由于反应条件的特殊性,致使水热反应相比较其他反应体系而言具有如下缺点: a 无法观察晶体生长和材料合成的过程,不直观。 b 设备要求高耐高温高压的钢材,耐腐蚀的内衬、技术难度大温压控制严格、成本高。 c 安全性差,加热时密闭反应釜中流体体积膨胀,能够产生极大的压强,存在极大的安全隐患。

碳化硅粉体的制备及改性技术

随着科学技术的发展, 现代国防,空间技术以及汽车工业等领域不仅要求工程材料具备良好的机械性能,而且要求其具有良好的物理性能。碳化硅(SiC)陶瓷具有高温强度和抗氧化性好、耐磨性能和热稳定性高、热膨胀系数小、热导率高、化学稳定性好等优点,因而常常用于制造燃烧室、高温排气装置、耐温贴片、飞机引擎构件、化学反应容器、热交换器管等严酷条件下的机械构件,是一种应用广泛的先进工程材料。它不仅在正在开发的高新技术领域(如陶瓷发动机、航天器等)发挥重要作用,在目前的能源、冶金、机械、建材化工等[1]领域也具有广阔的市场和待开发的应用领域。为此,迫切需要生产不同层次、不同性能的各种碳化硅制品。碳化硅的强共价键导致其熔点很高,进而使SiC粉体的制备、烧结致密化等变得更加困难。本文综述了近些年碳化硅粉体的制备及改性、成型和烧结工艺三个方面的研究进展。 [1]蔡新民,武七德,刘伟安.反应烧结碳化硅过程的数学模型[J].武汉理工大学学报, 2002, 24(4): 48-50 1 碳化硅粉体的制备及改性技术 碳化硅粉体的制备技术就其原始原料状态主要可以分为三大类:固相法、液相法和气相法。 1.1 固相法 固相法主要有碳热还原法和硅碳直接反应法。碳热还原法又包括阿奇逊(Acheson)法、竖式炉法和高温转炉法。SiC粉体制备最初是采用Acheson法[2],用焦炭在高温下(2400 ℃左右)还原SiO2制备的,但此方法获得的粉末粒径较大(>1mm),耗费能量大、工艺复杂。20世纪70年代发展起来的ESK法对古典Acheson法进行了改进,80年代出现了竖式炉、高温转炉等合成β-SiC粉的新设备。随着微波与固体中的化学物质有效而特殊的聚合作用逐渐被弄清楚,微波加热合成SiC粉体技术也日趋成熟。最近,L N. Satapathy等[3]优化了微波合成SiC的工艺参数。他们以Si+2C为起始反应物,采用2.45 GHz的微波在1200-1300 ℃时保温5分钟即可实现完全反应,再通过650 ℃除碳即可获得纯的β-SiC,其平均粒径约0.4 μm。硅碳直接反应法又包括自蔓延高温合成法(SHS)和机械合金化法。SHS还原合成法利用SiO2与Mg之间的放热反应来弥补热量的不足,该方法得到的SiC粉末纯度高,粒度小,但需要酸洗等后续工序除去产物中的Mg。杨晓云等[4]将Si 粉与C 粉按照n(Si):n(C) = 1:1制成混合粉末,并封装在充满氩气的磨罐中,在WL-1 行星式球磨机上进行机械球磨,球磨25 h 后得到平均晶粒尺寸约为6 nm 的SiC 粉体。 [2] 宋春军,徐光亮. 碳化硅纳米粉体的合成、分散与烧结工艺技术研究进展[J].材料科学与工艺,2009,17(2):168~173 [3] L N. Satapathy,P D. Ramesh,Dinesh Agrawal,et al. Microwave synthesis of phase-pure, fine silicon carbide powder[J].Materials Research Bulletin, 2005, 40(10):1871-1882. [4] 杨晓云, 黄震威. 球磨Si, C 混合粉末合成纳米SiC 的高分辨电镜观察. 金属学报,2000, 36(7): 684-688. 1.2 液相法 液相法主要有溶胶-凝胶(Sol-gel)法和聚合物热分解法。溶胶凝胶法为利用含Si和含C的有机高分子物质,通过适当溶胶凝胶化工艺制取含有混合均匀的Si和C的凝胶,然后进行热解以及高温碳热还原而获得碳化硅的方法。Limin Shi等[5]以粒径9.415 μm的SiO2为起始原料,利用溶胶凝胶法在其表面包覆一层酚醛树脂,通过热解然后1500 ℃于Ar气氛下进行还原反应,获得了粒径在200 nm左右的SiC颗粒。有机聚合物的高温分解是制备碳化硅的有效技术:一类是加热凝胶聚硅氧烷,发生分解反应放出小单体,最终形成SiO2和C,再由碳还原反应制得SiC 粉;另一类是加热聚硅烷或聚碳硅烷放出小单体后生成骨架,最终形成SiC 粉末。

陶瓷粉末的制备

第五章高纯超细粉末的制备新工艺 一、概述 高技术陶瓷的制造成本 粉体的重要性质: 组成、粒子形状、结晶性、集合状态 理想的陶瓷粉末: 颗粒尺寸小、结晶形态、颗粒形态、颗粒尺寸分布、纯度、无团聚、流动性--- 二、超细粉末制备方法的分类 机械方法(物理制备):球磨、砂磨、振动磨、星形磨、 气流粉碎 化学制备法: (1)固相法:氧化还原法、热分解法、元素直接反应法(2)液相法:共沉淀法、盐溶液水解法、醇盐水解法、溶 胶-凝胶法、水热合成法、溶剂热法、微乳法、 加热煤油(石油)法、喷雾干燥法、火焰喷雾 法、冷冻干燥法--- (3)气相法:气相合成法、等离子体法、激光制粉

以ZrO 2为例: 1. ZrSiO 4??→?NaOH Na 2ZrO 3-Na 2SiO 3??→?O H 2Na 2SiO 3﹒nH 2O 过滤→Na 2ZrO 3??→?HCl 过滤掉SiO 2 gel →ZrOCl 2﹒8H 2O →结晶纯 ZrOCl 2﹒8H 2O ??→?煅烧 ZrO 2 2. ZrSiO 4+4C+4Cl 2→ZrCl 4+SiCl 4+4CO, 再氧化→ZrO 2 3. ZrOCl 2﹒8H 2O, Zr(SO 4)2﹒15H 2O, ZrCl 4 , Zr 醇盐等 三、 超细粉的测试与表征 1、粒径 沉降法 (重力沉降法、离心沉降法) 激光光散射法 显微镜法(光学、电子) XRD 法 比表面积法 2、表面电性 Zeta 电位 3、表面成分 光电子能谱(XPS 、UPS ) 俄歇电子能谱 红外光谱 4、成分 化学组成:化学分析、能谱分析、光谱分析、XRF --- 相结构:XRD 、高分辨电镜晶格条纹相 ---

固相法制备陶瓷粉体

固相反应法生产陶瓷粉体 一、 固相反应法的特点 固相法是通过从固相到固相的变化来制造粉体,其特征是不像气相法和液相法伴随有气相→固相、液相→固相那样的状态(相)变化。对于气相或液相,分子(原子)有很大的易动度,所以集合状态是均匀的,对外界条件的反应很敏感。另一方面,对于固相,分子(原子)的扩散很迟缓,集合状态是多样的。固相法其原料本身是固体,这较之于液体和气体都有很大的差异。固相法所得的固相粉体和最初固相原料可以使同一物质,也可以不是同一物 质。[1] 二、 物质粉末化机理 一类是将大块物质极细地分割,称作尺寸降低过程,其特点是物质无变化,常用的方法是机械粉碎(用普通球磨、振磨、搅拌磨、高能球磨、喷射磨等进行粉碎),化学处理(溶出法)等。另一类是将最小单位(分子或原子)组合,称作构筑过程,其特征是物质发生了变化,常用的方法有热分解法(大多数是盐的分解),固相反应法(大多数是化合物,包括化合反应和氧化还原反应),火花放电法(常用金属铝产生氢氧化铝)等。 三、 固相反应的具体方法 1、 机械粉碎法 主要应用是球磨法,机械球磨法工艺的主要目的包括离子尺寸的减小、固态合金化、混合或融合以及改变离子的形状。目前已形成各种方法,如滚转磨、振动磨和平面磨。采用球磨方法,控制适合的条件可以得到纯元素、合金或者是复合材料的纳米粒子。其特点是操作简单、成本低,但产品容易被污染,因此纯度低,颗粒分布不均匀[2]。 2、热分解法 热分解反应不仅仅限于固相,气体和液体也可引发热分解反应,在此只讨论固相的分解反应,固相热分解生成新的固相系统,常用如下式子表示(S 代表固相、G 代表气相): 121 1212 S S G S S G G →+→++ 第一个式子是最普通的,第二个式子是第一个式子的特殊情况。热分解反应基本是第一式的情况。 3、 固相反应法 由固相热分解可获得单一的金属氧化物,但氧化物以外的物质,如碳化物、硅化物、氮化物等以及含两种金属元素以上的氧化物制成的化合物,仅仅用热分解就很难制备,通常是按最终合成所需组成的原料化合,再用高温使其反应的方法,其一般工序如左图所示。首先是按照规定的组成称量,通常用水等做分散剂,在玛瑙球的球磨内混合,然后通过压滤机脱水后再用电炉焙烧,通常焙烧温度比烧成温度低。在固相反应中粉体间的反应相当的复杂,反应从固体间的接触部分通过离子扩散来进行,但接触状态和各种原料颗粒的分布情况显著地收到颗粒的性质(粒径、颗粒形状和表面状态等)和粉体处理的方法(团聚状态和填充状态等等)的影响。

凝胶固相反应法合成亚微米级钛酸锶钡陶瓷粉体

?电子陶瓷、陶瓷一金属封接与真空开关管用陶瓷管壳应用专辑? 凝胶固相反应法合成亚微米级钛酸锶钡陶瓷粉体 焦春荣,陈大明,仝建峰 (北京航空材料研究院,北京100095) Preparationof Sub-MicroBao.6Sro.4Ti03Ceramic PowdersbyGel-SolidMethod JIAOChun—rong,CHENDa—ming,TONGJian—feng (BeijingInstituteofAeronauticalMaterial,Beijing100095,China) Abstract:Sub—microBao6Sro4Ti03ceramicpowderswerepreparedbythegel—solidreactionmethodu—singTi02,BaC03andSrC03powdersasrawmaterials.DSCthermodynamicswasusedtoanalyzetheheatflowandaccuratetemperatureofeachreactionduringthepreparationprocess.Microstructure,phasestructureandgranularityofthepowderswereinvestigated.TheresultsshowthatreactiontemperatureofBao.6Sro.4Ti03ceramicpowderswasabout857℃.UniformlydispersedBao.6Sro.4Ti03powdersof0.5pmdiametercanbepreparedunderthetemperaturerangeof900。C~1000℃.Theparticlesizeofthesynthe—sizedpowdersisdeterminedbytheparticlesizeoftherawmaterials.Theparticlesizeincreasesduringtheheattreatmentbecauseofthecompositiondiffusion.Therefore,smallsizeparticlesoftherawmaterialsshouldbechosentoprepareforthesynthesizedpowdersofsmallsize. Keywords:Gel—solidmethod;Bao.6Sro4Ti03;Ceramic;Powders 摘要:以Ti0:和BaC0。,SrCO,粉体为原料,采用凝胶同相反应法合成了亚微米级Ba—Sr。TiO。陶瓷粉体。对凝胶固相反应过程进行了DSC热分析,并观察和测定了合成粉体的微观形貌、相结构和粒度分布。结果表明:Ba0。Sro。TiO。粉体合成温度对应于857℃,在9001000℃温度范围煅烧均可获得颗粒尺寸约0.5肛m、粒径分布均匀的Ba0。Sro。TiO。粉体。试验结果表明,凝胶固相合成Bao。Sr。。TiO。的粉体粒径取决于原料粉体尺寸,经高温煅烧后因各组元元素的互扩散导致粉体粒径有所长大,要获得更细的合成粉体应采用更细的粉体原料。 关键词:凝胶固相反应法;钛酸锶钡;陶瓷;粉体 中图分类号:TQl74文献标识码:A文章编号:1002—8935(2009)04—0054—05 钛酸锶钡陶瓷材料是一种优良的热敏材料、电容器材料和铁电压电材料[1_3],应用领域非常广泛。它的诸多优异的介电性能使得该材料系统在无铅电容器、微波传输、信号处理和测量等领域中的应用具有很大优势和潜力[4-s],而高性能的钛酸锶钡粉体是制备钛酸锶钡陶瓷的重要条件。凝胶固相反应法是传统的固相反应制粉工艺与陶瓷注凝成型工艺(Gelcasting)相结合而产生的一种新型粉体制备技术【7-10|。该工艺保证了原料成分在颗粒尺度的均匀混合,并解决了传统固相反应法各组元原料需靠压块达到紧密接触的目的;与化学共沉淀等液相法相比,则具有操作简单、效率高、成本低、原料来源广团至Q盟二些泛、普适性强、环境污染小等诸多优点。本文采用凝胶固相反应法制备出颗粒细小、分散均匀、结晶完好的亚微米级BaⅢSr。.。TiO。陶瓷粉体,并对粉体合成过程和相关问题进行了分析研究。 1试验方法 1.1粉体的合成工艺 凝胶固相反应法制备Ba。Sr…Ti0。粉体的工艺流程如图l所示。详细过程如下:使用BaC0。,SrC03,Ti02为原料,按BaO:SrO:Ti02为0.6:0.4:1.0的摩尔比,加入去离子水和少量聚丙烯酸铵分散剂,混合配制成固含量约50%(体积比)的水

陶瓷粉末成型技术的工艺与控制

陶瓷粉末成型技术的工艺与控制 2008-11-5 1:29:52 人们总是希望陶瓷制品,尤其是特种陶瓷是均质的,能满足良好的机、电、热、化学或某种特殊性能要求,并能实现生产自动化、质量可控、性能一致性好的规模化生产。为此,首先要实现陶瓷坯体在粉末成型过程中是均质的或接近均质的。采用干粉压制、等静压成型是近世纪才发展起来的新型粉末成型工艺。为了最大限度实现陶瓷坯体均质化,不仅需要有先进的粉末成型设备,而且还有陶瓷粉体制备的质量,即每个单一粉末颗粒是均质的,而且是可控的。 1.实现坯体均质化途径 无论是干粉压制或等静压成型,由于粉末颗粒之间、粉体与模具壁之间,都存在内外摩擦而导致坯体密度分布不均匀,尤其是干粉压制,在压制方向上,压力随高度变化而呈指数衰减,形成一个密度梯度,确实很难达到坯体密度上下一致。其次,粉体本身颗粒为满足压制成型所需的粉末成型特性,需要添加一定量的添加剂,它们在每个单一颗粒中是否均匀,也是影响坯体均质的重要因素。 1.1压制方式 影响压坯密度的因素很复杂,除粉体本身特性外,主要有坯体形状和大小、压制件的侧正面积比、压制压力、模具粗糙度、润滑条件以及压制方式和粉末在模具中运动的摩擦系数等都起重要作用。实践证实等静压成型优于干粉压制,湿等静压优于干袋式等静压。现在国际流行的全自动干粉压机结构上采用强制双向拉下压制的曲柄连杆机构,图1给出典型压制过程中上下模头和凹模的运动轨迹,当上模头和凹模同时向下时实现反压,能最大限度地使坯体各部密度均匀。

图1典型压制过程中上下模头和凹模的运动轨迹 很多制品并非简单的等厚坯件,厚薄不一致,甚至有多个台阶,图2给出异形制品成型时模具各部件在压机中的运动轨迹。达到各部位厚度不一样按成型要求密度分层加料,以求成型后坯体各部位基本一致。关于压制成型技术,应视工件形状选择加料方式、上下模头压制次数、压制线的位置以及是否采用保护脱模,即使是1mm厚的制品,也应采用双面压制,也存在压制线位置,即上下压力的调整,且有利于烧成时坯体平整。有关陶瓷压片机设备使用可参阅有关设备说明书。 1.2粉体制备 无论干粉压制或等静压成型均要求粉料呈颗粒状,有较好的流动性;颗粒有一定的强度,以免在运输和加料过程中破碎;有一定的颗粒级配,加料时实现紧密堆积;具有一定的粘结特性和润滑特性,颗粒之间不应相互粘结等造粒特性。 为了达到上述特性要求,无论采用哪种造粒方式,往陶瓷原料中添加各种辅助材料是必然的,这些材料既不能影响坯料组分,又要求它们能均匀分布在每一个粉末颗粒中,从微观上讲是均质的。辅助材料通常有以下几种: 图2 异形制品成型 时候具备部件在机中的运动轨迹 (1)聚乙烯醇:不要以为喷雾造粒就一定能得到均质的粉体,粘结剂选择与搭配是关键。我们希望粘结剂能均匀分给每个粒子,在颗粒内形成的微观结构是均质化的事实上,如果仅往坯料中加入单一的聚乙烯醇作为结合剂,造粒后颗粒表面坚硬,有凹坑,在压制过程中往往存在大量颗粒间隙,坯体难以密实,这种粉末从颗粒上讲就是非均质的。 (2)水溶性聚合物:陶瓷用粘结剂一般采用水溶性聚合物,经验证明往高聚合度粘结剂材料中添加少量低分子粘结剂混合使用,有利于改善粉料颗粒形状和松装密度。实践证明聚乙烯醇是特性最好的粘合剂,但并不能获得最理想的颗粒形状和松装密度,添加少量水溶性低聚合物,如淀粉类及其衍生物,有较好的效果。

纳米陶瓷粉体的发展和制备

纳米陶瓷粉体的发展和制备 专业:材料学姓名:余文鹏学号:08102033 摘要:纳米材料是21世纪的高新技术,它主要是研究电子、原子和分子在0.1~100nm空间运动的规律和特征,并按照人的意志操纵电子、原子和分子,制备人们所需要的具有预定特殊功能特征的产品和材料简单介绍了纳米材料的产生和定义,陶瓷材料的发展以及纳米陶瓷的定义、发展和现状。纳米陶瓷制造必须的原料有纳米陶瓷粉体,这种粉体的制备技术主要介绍的是水热法制备技术,文章介绍了水热法的分类和制备粉体的特点。 关键字:纳米材料;纳米陶瓷粉体;水热法;材料制备

1.前言 20世纪末,物理学、化学、生物学、材料科学、地质科学等学科的发展,促进了纳米材料和纳米技术的产生,催生了纳米物理学、纳米化学、纳米材料科学、纳米矿物学等新型学科[1]。纳米材料是21世纪的高新技术,它主要是研究电子、原子和分子在0.1~100nm空间运动的规律和特征,并按照人的意志操纵电子、原子和分子,制备人们所需要的具有预定特殊功能特征的产品和材料[2]。 1.1纳米材料定义 纳米科学技术是指在纳米尺寸范围认识和改造自然,通过直接操作和安排原子、分子创造新物质[3]。 1.1.1表面效应 纳米材料的表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。由于纳米粒子表面原子数增多,带来表面原子配位数不足,使之具有很高的表面化学活性。 1.1.2 尺寸效应 颗粒尺寸变小引起的宏观物理性质的变化称为尺寸效应。随着纳米微粒尺寸的减小。与体积成比例的能量亦相应降低。当体积能与热能相当或更小时。会发生强磁状态向超顺磁状态转变:当颗粒尺寸与光波的波长、传导电子德布罗意波长、超导体的相干长度或投射深度等物理特征尺度相当或更小时,会产生光的等离子共振频率、介电常数与超导性能的变化。 1.1.3 体积效应 由于纳米粒子体积极小,所包含的原子数很少,因此,许多现象如与界面状态有关的吸附、催化、扩散、烧结等物理、化学性质将显著与大颗粒传统材料的特性不同,就不能用通常有无限个原子的块状物质的性质加以说明,这种特殊的现象通常称之为体积效应。 1.1.4 量子效应 介于原子、分子与大块固体之间的纳米颗粒,将大块材料中连续的能带分裂成分立的能级,能级问的间距随颗粒尺寸减小而增大。当热能、电场能或磁能比

相关文档