文档库 最新最全的文档下载
当前位置:文档库 › 贝氏体马氏体钢板的组织和性能

贝氏体马氏体钢板的组织和性能

贝氏体马氏体钢板的组织和性能
贝氏体马氏体钢板的组织和性能

线向高温侧移动。这样,在采用静载下的K

Ic

和动载下

的K

Id

数据评价钢的韧脆转变时就会产生很大的差异。这是由于动态加载和静态加载时的裂纹尖端区域发射位错的特征不同造成的。裂纹尖端位错运动的速度决定了韧脆转变的发生。

高应变率加载时,裂纹尖端区的位错约束将影响其发射位错的可动性,并进而改变材料的韧脆响应,造成材料的韧脆转变温度对加载速率十分敏感。一个静止的裂纹在低速加载时,用于钝化的有效时间大大长于一个高速扩展的裂纹用于钝化的有效时间,根据

JOKL的理论模型,位错对K

Id

的贡献将降低[5],这意味着高速加载时要保持同样的止裂韧性,就必须要升高转变温度。

由图4还可以看出,断裂韧度在缓慢增加的过程中,超过0℃后又开始迅速下降。出现这一现象的原因是因为裂纹尖端起裂过程的微观断裂机制发生了变化。当脆性断裂机制起作用时,断裂韧度呈正的温度效应,而当塑性断裂机制起作用时,断裂韧度呈负的温度效应[6]。3 结论

(1)30A钢经过淬火、回火处理后同正火后的状态相比,不仅抗裂纹启裂能力弱,而且抗裂纹扩展的能力也较弱。

(2)在高应变率下30A钢的断裂韧度下降;不同的加载速率下,随着温度的降低,材料抵抗断裂的能力下降。

(3)对于承受动载的构件,采用动载下的断裂韧度进行安全设计更为合理。

参考文献:

[1]Djapicterkamp L,Ivankovic A,Venizelos G.High strain rate properties of selected aluminium alloys[J].Materials Science and Engineering,2000,A278:225-235.

[2]崔约贤,等.壳体的超声表面波分选[J].物理测试,2001,

(5):36-38.[3]丰田政男,等.屈强比对高强钢断裂韧度的影响[J].金属学报,1996,(3):265-268.

[4]马秋荣.石油工业套管的动态断裂韧度[J].机械工程材料,1999,(3):10-12.

[5]蔡麟笙.大型单斗正铲挖掘机斗柄断裂的失效分析[J].机械强度,1988,10(3):37-42.

[6]杨丽,等.加载速率对30A钢断裂韧性的影响.兵器材料科学与工程,2003,26(5):51-53.

贝氏体-马氏体钢板的组织与性能

张清辉1,2,杨军2(1.北京科技大学材料学院,北京100083;2.鞍山钢铁集团公司,辽宁鞍山114001)摘要:研究了贝氏体-马氏体耐磨钢板的组织及力学性能。结果表明,在低碳贝氏体钢基础上,通过加入一定量的硅元素,利用其在贝氏体组织转变过程中抑制碳化物析出的作用,得到由非等轴铁素体加马氏体和残留奥氏体(M-A)岛或由板条状铁素体及其板条间残留奥氏体(Ar)膜组成的贝氏体-马氏体组织,因此其性能既具有高强度、高硬度,又具有较高的低温冲击韧度。

关键词:贝氏体-马氏体;组织与性能;碳化物

中图分类号:TG142.1 文献标识码:A 文章编号:0254-6051(2004)05-0043-03

Microstructure and Properties of Bainite-Martensite Steel Plate

ZHANG Qing-hui1,2,YANG Jun2

(1.School of Materials Science and Engineering,USTB,Beijing100083,China;

2.Anshan Iron&Steel Group Corporation,Anshan Liaoning114001,China)

Abstract:Microstructure and mechanical properties of the bainite-martensite steel plate were researched.The results show that some microstructure with bainite-martensite can be obtained in low-carbon bainitic steel if combined some sili-con with a proper quantum.As the silicon element can restrain the precipitation of carbide during the bainite transforma-tion,a bainite-martensite structure with non-equal axis ferrite and martensite and retained austenite(M-A)island or lath ferrite and retained austenite between lath is obtained,and the steel possesses a high strength,high hardness and a higher low temperature impact toughness.

Key words:bainite-martensite;microstructure and properties;carbide

作者简介:张清辉(1966—),男,吉林长春人,高级工程师,硕士研究生,主要从事新钢种的研究与开发。联系电话:0412-*******,131******** E-mail:ztsinghui@https://www.wendangku.net/doc/9e824617.html,

收稿日期:2003-05-16

国外耐磨钢板制造技术是采用轧后在线直接淬火工艺,其化学成分设计采用低碳及少量合金元素。目前国内由于没有在线直接淬火装置,因而耐磨钢板制造采用轧后离线重新加热奥氏体化后淬火加中低温回

34

《金属热处理》2004年第29卷第5期

火工艺,由此产生3个问题:①化学成分设计复杂,含有Cr、Ni、Mo等贵金属,提高制造成本;②厚度在25mm以下钢板由于淬火而极易产生板形瓢曲;③钢板冲击韧度低,韧脆转变温度高。

近十多年来,贝氏体钢研究成果引起了国内外冶金界广泛关注,高强韧性匹配的贝氏体钢研究成为主要研究方向。本文结合高强度耐磨钢板应用性能特点,针对贝氏体-马氏体组织和性能做了一些有益的研究工作。采用控制轧制、控制冷却工艺生产,取消淬火工艺以保证钢板平直度;在低碳贝氏体钢基础上,通过加入一定量的硅元素,利用其在贝氏体组织转变过程中抑制碳化物析出作用,得到由非等轴铁素体加马氏体和残留奥氏体(M-A)岛或由板条状铁素体及其板条间残留奥氏体(Ar)膜组成的贝氏体-马氏体组织,以此得到既具有高强度、高硬度,又具有较高的低温冲击韧度的钢板。

1 试验材料及方法

1.1 技术指标及化学成分设计

根据耐磨钢板应用工况条件,设计出力学性能标准,见表1。根据鞍钢厚板厂设备工艺状况,设计化学成分。兼顾钢的强度与焊接性能,碳含量控制在0.16%以下;为抑制贝氏体组织转变过程中碳化物的析出及提高钢中残留奥氏体稳定性,必须加入一定量的硅元素;为降低贝氏体组织相变点(Bs)以及在较宽的冷速范围内,得到单一贝氏体-马氏体组织,须加入一定量的锰、钼等元素;此外,为细化晶粒,进行了铌、钛微合金化处理。所设计的化学成分范围如表1所示。

表1 贝氏体-马氏体耐磨钢板的力学性能标准及设计的化学成分(质量分数,%)Table1 Mechanical properties standard and designed chemical composition(wt%)of the bainite-martensite steel plate

σ0.2/MPaσb/MPaδ5(%)冷弯180o,d=3a A KV(-40℃)/J硬度HB C Si Mn P S Mo Nb+Ti ≥900≥1080≥10合格≥20320~380≤0.16≤1.6≤2.6≤0.015≤0.015≤0.50≤0.1

1.2 试验内容及方法

试验材料在50kg真空炉冶炼,其实际化学成分如表2所示,钢锭在500轧机上进行轧制试验,采用两阶段控制轧制,轧制板厚9mm,轧后采用水幕控制冷却。钢板轧后进行350℃回火。

进行标准板试样拉伸试验及常温和-40℃下V 型缺口试样冲击试验。10mm厚以下板采用(7.5mm ×10mm×55mm)非标准冲击试样,用冲击试样在光学显微镜下观察组织结构特征,在透射电镜下进一步进行组织结构的细节分析。表2 贝氏体-马氏体耐磨钢板的实际化学成分(质量分数,%)Table2 Actual chemical composition of the

bainite-martensite steel plate(wt%)

C Si Mn P S Mo Nb+Ti

0.12 1.69 2.710.0110.0042≤0.40≤0.10

2 试验结果与分析

2.1 力学性能

力学性能检验结果见表3,由表3可知,所设计的耐磨钢板实现了贝氏体-马氏体组织所具有的优良综合力学性能,即具有高强度,又具有较高的低温冲击韧度。

表3 贝氏体-马氏体耐磨钢板的实际力学性能

Table3 Mechanical properties of the bainite-martensite steel plate

σs/MPaσb/MPaδ5(%)ψ(%)A KV(常温)/J A KV(-40℃)/J硬度HB冷弯180o,d=

3a

925,9101120,111011,1339,5854,61,6140,48,38359,337合格2.2 显微组织分析

经金相观察,该耐磨钢板的组织是由非等轴铁素

体+(M-A)岛组成的粒状贝氏体组织,如图1所示。

在透射电镜下观察发现,其显微组织是由板条状

铁素体和板条间细小的残留奥氏体膜组成,其明场像

见图2a,奥氏体暗场像见图2b。由图2可见,此种贝

氏体-马氏体钢中,由于较高含量的Si抑制了贝氏体

组织转变过程中铁素体板条间碳化物的析出,而代之

以膜状或岛状残留奥氏体。这种膜状或岛状残留奥氏体经350℃回火后,大大提高了机械稳定性,从而使钢的冲击韧度得以提高。透射电镜下能谱分析表明,有图1 贝氏体-马氏体钢在光学显微镜下的组织×500 Fig.1 Optical microstructure of the

bainite-martensite steel ×500

44《金属热处理》2004年第29卷第5期

图2 贝氏体-马氏体钢在透射电镜下的形貌 ×10000

(a )明场像 (b )奥氏体暗场像 (c )能谱分析

Fig.2 Morphology of the bainite-martensite steel under TEM

×10000

(a )bright field image (b )dark field image of the austenite (c )EDS analysis

大量的以Nb 为主的Nb 、Ti 复合碳氮化物析出,见图2c 所示。该析出相数量较多,分布较均匀,近似呈球形粒子,且大部分尺寸在10~30nm 之间。这种以Nb 为主的Nb 、Ti 复合碳氮化物弥散分布的第二相粒子,能够抑制轧制过程中变形奥氏体的再结晶,达到细化组织作用,从而既提高了钢的强度又提高了冲击韧度。

3 结论

在低碳贝氏体钢基础上,通过加入一定量的硅元素,利用其在贝氏体组织转变过程中抑制碳化物析出的作用,通过控轧控冷加350℃回火工艺,得到由非等轴铁素体加马氏体和残留奥氏体(M-A )岛,或由板条状铁素体及其板条间残留奥氏体(Ar )膜组成的贝氏体-马氏体组织,因此,该钢既具有高强度、高硬度,又具有较高的低温冲击韧度,从而能够满足耐磨钢板性能要求。

参考文献:

[1] 张明星,康沫狂.Si 对低碳贝氏体钢组织和性能的影响[J ].金属

学报,1993,29(A ):6-8.

[2] 黄维刚,方鸿生,郑燕康.硅对Mn-B 系空冷贝氏体钢组织与性能

的影响[J ].金属热处理学报,1997,18(1):

&

&

&

&

8-13.工 艺

气门摇臂激光表面合金化工艺研究

李双寿1,陆劲昆2,王春乐3,李生录1,王昆林2

(1.清华大学基础工业训练中心,北京 100084;2.清华大学机械工程系,

北京 100084;3.太原重型机械集团有限公司,山西太原 030024)

摘要:采用正交试验,对激光表面合金化工艺参数进行了优化,分析了各工艺参数对气门摇臂合金化层质量的影响。研究表明,激光功率、扫描速度、离焦量和合金化粉涂层厚度等工艺参数对气门摇臂的合金化层厚度、搭接情况和表面状况等质量指标的影响不同;使用优化的激光工艺参数,对体积小、形状复杂的发动机气门摇臂工作圆弧面进行了激光表面合金化处理,获得的合金化层搭接较好,精磨后厚度在0.40~0.60mm 范围,表面硬度>78HRA 。

关键词:摇臂;激光表面合金化;正交试验;工艺参数

中图分类号:TG174.445 文献标识码:A 文章编号:0254-6051(2004)05-0045-04

Research on Laser Surface Alloying Processing of Rocker Arm by Orthogonal Test

(LI Shuang-shou 1,LU Jin-kun 2,WANG Chun-le 3,LI Sheng-lu 1,WANG Kun-lin 2

(1.Fundamental Industry Training Center ,Tsinghua University ,Beijing 100084,China ;2.Mechanical Engineering Department ,Tsinghua University ,Beijing 100084,China ;3.Taiyuan Heavy Machinery

Group Corporation ,Taiyuan Shanxi 030024,China )

Abstract :The effects of technical parameters of laser surface alloying processing on the qualities of the alloyed layer of rocker arm used in motor were investigated with orthogonal test ,and the factors and their levels were analyzed.It is showed that the laser power ,scanning speed ,defocusing amount and coating layer thickness have different influence on thickness ,overlap joint and surface status of the hardened layer respectively ,with optimized laser surface alloying pro-5

4《金属热处理》2004年第29卷第5期

低碳贝氏体和马氏体钢

低碳贝氏体和马氏体钢 低碳贝氏体钢的发展,开辟了获得高强度高韧性低合金钢的途径,这种钢能在热轧状:态直接冷却后得到贝氏体组织,或者仅仅经过正火就可以得到贝氏体组织。 低碳贝氏体钢是以钼钢或钼硼钢为基础,再加入Mn、Cr、Ni,有的在此基础之上又添加微量碳化物形成元素,如Nb、V、Ti等,从而发展了一系列的锰钼钢、锰镅硼钢、锰铬钼硼钢、锰钼铌钢等。 低碳贝氏体钢中合金元素的作用可归纳为以下几个方面: (1)利用能使钢在空冷条件下就易于获得贝氏体组织的合金元素,主要就是Mo。根据含钼钢的奥氏体等温转变曲线来看,Mo能使铁索体和珠光体的析出线明显右移,但并不推迟贝氏体转变,使过冷奥氏体得以直接向贝氏体转变,在此转变发生之前没有或者只有少量的先共析铁素体析出,而不发生珠光体转变。 (2)利用微量B使钢的淬透性明显增加,并使奥氏体向铁素体的转变进一步推迟o (3)加入其他能增大钢过冷能力的元素(如Mn、Cr、Ni)以进一步保证空冷时足以在较低的温度发生贝氏体转变。对于较大厚度的钢件来说,简单的铝硼钢往往也不能“淬透”。 (4)加入强碳化物形成元素以保证细化晶粒,所以不少低碳贝氏体钢中添加V、Nb、Ti等。 (5)尽量降低含碳量,因为低碳贝氏体具有良好的韧性,另外也有良好的焊接性。低碳贝氏体钢的化学成分范围大致是:0. 100-10 -0.200-/0c、0.60-/0~1.0010 Mn、0. 40-/0 -0.60-/0 Mo、0.001%-0.005%B,此外还可以加入0.40-/0 -0.7%Cr、0.05% -0. 100-10 V.0.010%~0.0150-/0 Nb(或Ti)等。低碳贝氏体钢的抗拉强度可达到600_IOOOMPa.屈服强度大于500MPa,目前有的可以达到800MPa。对于较厚的板材,需要进行正火处理,加热温度为900 - 950C,空冷后能得到良好的综合力学性能是中国发展的低碳贝氏体钢,屈服强度为490MPa级,主要用于制造容器的板材和其他钢结构。工程机械上相对运动的部件和低温下使用的部件,要求有更高的强度和良好的韧性。为了满足这一要求,通常采用对钢进行淬火和自回火处理以发掘材料的最大潜力。这类钢的碳含量通常都低于0. 160-/0,属于低碳型低合金高强度钢,淬火回火处理后钢的组织为低碳回火马氏体,因此这类钢通称为低碳马氏体钢。 为使钢得到好的淬透性,防止发生先共析铁素体和珠光体转变,加入Mo、Nb、v、B 及控制合理含量的Mn和Cr与之配合,Nb还作为细化晶粒的微合金元素起作用。 常见的有BHS系列钢种,其中BHS-l钢的成分为0.10%-10c-1.80% Mn -0.45%Mo -0.05%Nb。其生产工艺为锻轧后空冷或直接淬火并自回火,锻轧后空冷得到贝氏体、马氏体、

常见金相组织

定义:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格 特征:奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分范围。有些淬火钢能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。奥氏体一般由等轴状的多边形晶粒组成,晶粒内有孪晶。在加热转变刚刚结束时的奥氏体晶粒比较细小,晶粒边界呈不规则的弧形。经过一段时间加热或保温,晶粒将长大,晶粒边界可趋向平直化。铁碳相图中奥氏体是高温相,存在于临界点A1温度以上,是珠光体逆共析转变而成。当钢中加入足够多的扩大奥氏体相区的化学元素时,Ni,Mn等,则可使奥氏体稳定在室温,如奥氏体钢。

定义:碳与合金元素溶解在a-Fe中的固溶体 特征:亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

定义:碳与铁形成的一种化合物 特征:渗碳体不易受硝酸酒精溶液的腐蚀,在显微镜下呈白亮色,但受碱性苦味酸钠的腐蚀,在显微镜下呈黑色。渗碳体的显微组织形态很多,在钢和铸铁中与其他相共存时呈片状、粒状、网状或板状。 ?在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状 ?过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状 ?铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状

定义:铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物 特征:珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。 ?在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。 ?在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。 ?在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体

比较贝氏体转变与珠光体转变和马氏体转变的异同

试比较贝氏体转变与珠光体转变和马氏体转变的异同

一.组织形态: 1.珠光体: 珠光体的组织形态特征: 珠光体的典型组织特征是由一层铁素体和一层渗碳体交替平行堆叠而形成的双相组织。根据片层间距的不同,可将珠光体分为三种: 珠光体:S0=450-150nm,形成温度为A1-650℃,普通光学显微镜可以分辨。 索氏体:S0=150-80nm,形成温度为650-600℃,高倍光学显微镜可以分辨。 屈氏体:S0=80-30nm,形成温度为600-550℃,电子显微镜可以分辨。 铁素体基体上分布着粒状渗碳体的组织为粒状珠光体。这种组织一般是通过球化退火或淬火后高温回火得到的。 在珠光体转变过程中,所形成的珠光体中的铁素体与母相奥氏体具有一定的晶体学位向关系。珠光体中,铁素体与渗碳体之间存在一定的晶体学位向关系。 2.马氏体: 马氏体的组织形态: ○1.板条马氏体是低、中碳钢中形成的一种典型马氏体组织,其形貌特征可描述如下:在一个原奥氏体晶粒部有几个(3-5个)马氏体板条束,板条束间取向随意;在一个板条束有若干个相互平行的板条块,块间是大角晶界;在一个板条块是若干个相互平行的马氏体板条,板条间是小角晶界。马氏体板条存在大量的位错,所以板条马氏体的亚结构是高密度的位错和位错缠结。板条状马氏体也称为位错型马氏体。 ○2.片状马氏体是中、高碳钢中形成的一种典型马氏体组织,其形貌特征可描述如下:在一个原奥氏体晶粒部有许多相互有一定角度的马氏体片。马氏体片的空间形态为双凸透镜状,横截面为针状或竹叶状。在原奥氏体晶粒中首先形成的马氏体片贯穿整个晶粒,将奥氏体晶粒分割,以后陆续形成的马氏体片越来越小,所以马氏体片的尺寸取决于原始奥氏体晶粒的尺寸。 片状马氏体的形成温度较低,在马氏体片的周围往往存在着残余奥氏体。 片状马氏体的部亚结构主要是孪晶。当碳含量较高时,在马氏体片中可以看到中脊,中脊面是密度很高的微孪晶区。 马氏体片形成时的相互撞击,马氏体片中存在大量的纤维裂纹。 3.贝氏体: 贝氏体的组织形态: ○1.上贝氏体 上贝氏体形成于贝氏体转变区较高温度围,中、高碳钢大约在350-550℃形成。为成束分布、平行排列的条状铁素体和夹于其间的断续条状渗碳体的混合物。多在奥氏体晶界形核,自晶界的一侧或两侧向晶长大,具有羽毛状特征。 上贝氏体中铁素体的亚结构是位错,其密度比板条马氏体低2-3个数量级,随形成温度降低,位错密度增大。随碳含量增加,上贝氏体中铁素体条增多、变薄,渗碳体数量增多、变细。随转变温度降低,上贝氏体中铁素体条变薄,渗碳体细化。上贝氏体中铁素体条间还可能存在未转变的残余奥氏体。 ○2.下贝氏体 下贝氏体形成于贝氏体转变区较低温度围,中、高碳钢大约在350℃-Ms之间温度形成。

钢铁中常见的金相组织

钢铁中常见的金相组织区别简析 钢铁中常见的金相组织 1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处 2.铁素体-碳与合金元素溶解在a-fe中的固溶体。亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 3.渗碳体-碳与铁形成的一种化合物。在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 6.下贝氏体-同上,但渗碳体在铁素体针内。过冷奥氏体在350℃~ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。 7.粒状贝氏体-大块状或条状的铁素体内分布着众多小岛的复相组织。过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,

马氏体奥氏体珠光体贝氏体的区别

马氏体奥氏体珠光体贝氏体 马氏体(martensite)是黑色金属材料的一种组织名称。马氏体(M)是碳溶于α-Fe的过饱和的固溶体,是奥氏体通过无扩散型相变转变成的亚稳定相。其比容大于奥氏体、珠光体等组织,这是产生淬火应力,导致变形开裂的主要原因。马氏体最初是在钢(中、高碳钢)中发现的:将钢加热到一定温度(形成奥氏体) 奥氏体(austenite)A、γ是晶体结构:面心立方(fcc)。是碳在γ-Fe中形成的间隙固溶体。奥氏体是一种塑性很好,强度较低的固溶体,具有一定韧性。不具有铁磁性。因此,分辨奥氏体不锈钢刀具(常见的18-8型不锈钢)的方法之一就是用磁铁来看刀具是否具有磁性。古代铁匠打铁时烧红的铁块即处于奥氏体状态。另外,奥氏体因为是面心立方,四面体间隙较大,可以容纳更多的碳。 珠光体pearlite 珠光体是奥氏体(奥氏体是碳溶解在γ-Fe中的间隙固溶体)发生共析转变所形成的铁素体与渗碳体的共析体。得名自其珍珠般(pearl-like)的光泽。其形态为铁素体薄层和渗碳体薄层交替重叠的层状复相物,也称片状珠光体。用符号P表示,含碳量为ωc=%。在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以铁素体层片要比渗碳体厚得多.在球化退火条件下,珠光体中的渗碳休也可呈粒状,这样的珠光体称为粒状珠光体。珠光体的性能介于铁素体和渗碳体之间,强韧性较好.其抗拉强度为750 ~900MPa,180 ~280HBS,伸长率为20 ~25%,冲击功为24 ~32J.力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好。

铁素体(ferrite,缩写:FN,用F表示)即α-Fe和以它为基础的固溶体,具有体心立方点阵。亚共析成分的奥氏体通过先共析析出形成铁素体。在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;室温下的铁素体的机械性能和纯铁相近。铁素体的强度、硬度不高,但具有良好的塑性与韧性。 经过硝酸溶液侵蚀后,从颜色上观察区分金相组织形态. 铁素体是白色,珠光体是黑色,马氏体(M)是碳溶于α-Fe的过饱和的固溶体,在金相观察中为细长的板条状或针叶状。

珠光体马氏体和贝氏体的比较

珠光体组织形态:主要为片状珠光体,即是由一片铁素体和一片渗碳体交替堆叠而成。片层方向大致相同的区域构成“珠光体团"。一个原奥氏体晶粒内部往往有多个“珠光体团”,同一“珠光体团"内片层取向基本相同。在珠光体形成的温度区间内,过冷度越大,则珠光体片层间距越小。 位相关系:。.. 马氏体组织形态:主要分为板条状马氏体和片状马氏体. (1)板条状马氏体显微组织可用图4—13描述 从大到小分为原奥氏体晶粒、马氏体板条束、马氏体板条块、马氏体板 条、亚结构(高密度位错). (2)片状马氏体显微组织如图4—17 其空间形态呈双凸透镜片状,显微组织特征为片间不相互平行,其亚结 构主要为孪晶。片状马氏体片的大小完全取决于奥氏体晶粒大小,片间不 相互平行,且片中有明显的中脊。 贝氏体组织形态:主要分为上贝氏体和下贝氏体。 (1)上贝氏体为成簇分布的条状铁素体和夹于条间的断续条状或杆状 渗碳体的混合物。 (2)下贝氏体呈暗黑色针状或片状,而且各个针状物之间都有一定的 交角,在铁素体片内部有规律的分布着不连续的细片状或粒状碳 化物,而在铁素体片边界上也可能有少量的渗碳体形成。 珠光体晶体结构:其是由体心立方结构的铁素体和复杂单斜结构的渗碳体组成。 马氏体晶体结构:马氏体中铁原子本来以体心立方结构排列,加入碳原子后其转变为体心四方结构,且晶体常数随碳原子含量的改变而改变。 贝氏体晶体结构:由体心立方的铁素体和复杂晶体结构的渗碳体组成。 珠光体的相组成:由铁素体和渗碳体两相组成。 铁素体和渗碳体都是片状的,一般铁素体层较渗碳体层厚。铁素体和渗碳体层交替分布,均匀分布在珠光体中。同一“珠光体团”内片层取向基本平行了。铁素体位错密度较小,渗碳体中密度更小,但两相交界处的位错密度较高。 马氏体的相组成:由铁素体组成,但铁素体中的碳含量较高(高于0.0218%) 铁素体呈板条状或片状。板条状马氏体多个板条(小角度晶界)形成板条块,板条块之间形成大角度晶界。C原子在体心立方的八面体间隙处分布,且优先占据第三类亚点阵。 贝氏体的相组成:由铁素体和渗碳体组成(一般还夹杂有残余奥氏体,珠光体和马氏体) 上贝氏体中,铁素体为条状,成簇分布且相互平行。渗碳体为断续的条状或杆状,分布在铁素体条间。下贝氏体中,铁素体为针状或片状,各针状物之间不平行,渗碳体为细片状或粒状,分布在铁素体内,少量分布在铁素体边界上. 惯习面: 成分:三者皆为Fe和C组成物质,可能含有其他少量合金元素。 形成温度:图,一般形成温度珠光体高于贝氏体高于马氏体。 形成方式:珠光体通过Fe原子和C原子的扩散形成,马氏体通过切变形成,贝氏体二者兼有. 形成速度:珠光体的形成为扩散型相变,相变速度慢,马氏体的形成为切变,只要达到驱动所

马氏体与贝氏体的鉴别

马氏体与贝氏体的鉴别 王元瑞(上海材料研究所检测中心,200437) 1 马氏体组织形态 是一种非扩散型相变,是提高钢的硬度、强度的主要途径。 1.1板条状马氏体(低碳马氏体): 是低、中碳钢,马氏体时效钢,不锈钢等铁系合金中形成的一种典型组织。 亚结构是位错(又称位错马氏体),其形态特征见表1。 1.2片状马氏体(针状马氏体或高碳马氏体): 常见淬火高、中碳钢,高镍的Fe-Ni合金中。 亚结构是孪晶,其形态特征见表1。 表1 铁碳合金马氏体类型及其特征 特征板条状马氏体片状马氏体 形成温度 Ms>350℃ Ms≈200~100℃ Ms<100℃ <0.3 1~1.4 合金成分 (C%)0.3~1时为混合型 1.4~2 组织形态板条自奥氏体晶界向晶内平行成 群,板条宽度0.1~0.2μ,长度< 10μ,一个奥氏体晶粒内包含几个 (3~5)板条群,板条体之间为小 角晶界,板条群之间为大角晶界凸透镜片状(或针状),中间稍厚,初 生者较厚较长,横贯整个奥氏体晶粒, 次生者尺寸较小,片与片之间互成角 度排列。在初生片与奥氏体晶界之间, 片间交角较大,互相撞击,形成显微 裂纹 同左,片的中央 有中脊。在两个 出生片之间常 见到“Z”字形分 布的细薄片 1.3其它马氏体形态: 1.3.1蝶状马氏体:在Fe-Ni合金中当马氏体在某一温度范围内形成时会出现,形状为细 长杆状,断面呈蝴蝶形,亚结构为高密度位错,看不到孪晶。 1.3.2薄片状马氏体:是在Ms点极低的Fe-Ni-C合金中发现的。呈非常细的带状,带互相 交叉、呈现曲折、分叉等特异形态,由孪晶组成的孪晶型马氏体。 1.3.3ε马氏体:在Fe-Mn合金中,当Mn超过15%时,淬火后形成ε马氏体,它是密排六方 结构。金相形态呈极薄的片状。 2 贝氏体组织形态 贝氏体是过饱和铁素体和渗碳体组成的两相混合物。 2.1上贝氏体(B上):是成束的大致平行的条状铁素体和间夹有相平行的渗碳体所组成的非层状组织。亚结构是位错。形成温度在贝氏体转变区的上部。 中、高碳钢350~550℃,低碳钢温度要高些。 光学显微镜下:看到成束的自晶界向晶内生长的铁素体条,整体看呈羽毛状,分辨不清条间

金相组织鉴别

贝氏体、马氏体和针状铁素体在显微镜下怎么区分? 金相组织 金相组织,用金相方法观察到的金属及合金的内部组织.可以分为:1.宏观组织.2.显微组织. 金相即金相学,就是研究金属或合金内部结构的科学。不仅如此,它还研究当外界条件或内在因素改变时,对金属或合金内部结构的影响。所谓外部条件就是指温度、加工变形、浇注情况等。所谓内在因素主要指金属或合金的化学成分。金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。 1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处 2.铁素体-碳与合金元素溶解在a-fe中的固溶体。亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 3.渗碳体-碳与铁形成的一种化合物。在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的 片层称为屈氏体。 5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。

马氏体与贝氏体转变异同点

马氏体与贝氏体转变有哪些异同点? (1)二者转变都有一个转变温度区,马氏体转变对应于M s~M f,贝氏体转变与B s~B f点。 (2)贝氏体转变可等温进行,而钢中马氏体转变是非恒温性的,即马氏体转变是在不断降温的条件下才能进行。由此可见,马氏体转变量是温度的函数,而与等温时间无关。 (3)马氏体转变只有点阵改组而无成分的改变,如钢中的奥氏体转变为马氏体时,只是点阵由面心立方通过共格切变改组成体心立方(或体心正方),因而马氏体的成分与奥氏体的成分完全一样。这种母相(奥氏体)以均匀切变方式转变为新相(马氏体)的转变称为无扩散型相变—现在各种合金中广泛地叫做马氏体转变。此时钢中的铁、碳原子均无扩散,而贝氏体转变只有碳原子的扩散,而无铁原子和合金元素的扩散。这种中温转变包含着两种不同机制的转变,贝氏体为两相混合物组织,而马氏体是单相组织。 (4)贝氏体中铁素体在形成时,与马氏体转变一样,在抛光面上均引起浮凸。所不同的是马氏体浮凸呈“N”形,而贝氏体中铁素体的浮凸呈“V”形或“A”形。贝氏体的晶体学特征,其中包括位向关系与惯习面等与马氏体接近。 (5)二者转变均存在不完全性,即转变不能进行到终了。马氏体转变还具有可逆性,即快速反向加热不到A1点发生逆转变 珠光体、贝氏体和马氏体的组织和性能有什么区别? 珠光体转变是奥氏体在过冷度不大的情况下发生的共析转变,C和金属原子都可以的扩散;珠光体组织是铁素体和碳化物的机械混合物,通常形态为层片装状碳化物加铁素体组织,其层片的厚度及完整程度主要取决于转变过冷度,在特殊情况 下也生产碳化物也生产粒状,形成粒状珠光体。 马氏体转变是奥氏体快速冷却到马氏体转变点以下,发生切变,形成过饱和C的α-Fe固溶体,转变中C和金属原子都来不及扩散,由于过饱和的C使晶格发生畸变,钢在受力时位错运动受到阻碍,由此提高钢的强度。贝氏体转变介于珠光体与马氏体转变之间,但目前对此转变的机制还存在争议,但在贝氏体转变中主要C可扩散,金属原子不发生扩散,根据奥氏体过冷度的不同和C扩散能力的不同等条件,生成各种形态贝氏体组织。 45钢退火:铁素体+珠光体;45钢正火:铁素体+珠光体;45钢淬火:马氏体; 45钢回火:回火马氏体(低温回火),回火屈氏体(中温回火),回火索氏体(高温回火)。 比较共析钢过冷奥氏体等温转变曲线图和连续转变曲线图的异同点 1.等温转变在整个转变温度范围内都能发生,只有孕育期有长短;但是连续冷却转变却有所谓不发生转变的 温度范围。 https://www.wendangku.net/doc/9e824617.html,T图比TTT图向右下方移动,说明连续冷却发生在更低的温度和需要更长的时间。 3.共析碳素钢和过共析碳素钢在连续冷却转变中不出现贝氏体转变,只发生珠光体分解和贝氏体相变2.钢的过冷奥氏体等温转变曲线的开始温度和终了温度曲线像英文字母C,它描述了奥氏体在等温转变过程中,不同温度和保 温时间下的析出物的规律,称为C曲线或者TTT曲线,而连续冷却曲线是各种不同冷速下,过冷奥氏体转变开始和转变终了温度和时间的关系简称连续冷却转变图或者CCT图。 3.相同点是二者均是过冷奥氏体的转变图解,前者是在一定温度下的等温转变,后者是以一定的冷却速度时的连续转变,二者 在本质上是一致的,转变过程和转变产物的类型基本相互对应。 4.二者的区别在于冷却条件的不同,其显著的区别主要有: 5.一,连续冷却时,过冷奥氏体是在一个温度范围内完成组织转变的,其组织的转变很不均匀,先转变的组织较粗,而后转变 的组织较细,往往得到几种组织的混合物。 6.二,共析钢连续冷却时,只有珠光体的转变而无贝氏体的转变。原因在于当冷却速度缓慢时,过冷奥氏体将全部转变为珠光 体,当冷却速度过快时,则过冷奥氏体在中温区停留时间还未达到贝氏体转变的孕育区,已经降到Ms点开始转变为马氏体。 7.

珠光体、马氏体和贝氏体的比较

珠光体组织形态:主要为片状珠光体,即是由一片铁素体和一片渗碳体交替堆叠而成。片层方向大致相同的区域构成“珠光体团”。一个原奥氏体晶粒内部往往有多个“珠光体团”,同一“珠光体团”内片层取向基本相同。在珠光体形成的温度区间内,过冷度越大,则珠光体片层间距越小。 位相关系:。。。 马氏体组织形态:主要分为板条状马氏体和片状马氏体。 (1)板条状马氏体显微组织可用图4-13描述 从大到小分为原奥氏体晶粒、马氏体板条束、马氏体板条块、马氏体板 条、亚结构(高密度位错)。 (2)片状马氏体显微组织如图4-17 其空间形态呈双凸透镜片状,显微组织特征为片间不相互平行,其亚结 构主要为孪晶。片状马氏体片的大小完全取决于奥氏体晶粒大小,片间 不相互平行,且片中有明显的中脊。 贝氏体组织形态:主要分为上贝氏体和下贝氏体。 (1)上贝氏体为成簇分布的条状铁素体和夹于条间的断续条状或杆状 渗碳体的混合物。 (2)下贝氏体呈暗黑色针状或片状,而且各个针状物之间都有一定的 交角,在铁素体片内部有规律的分布着不连续的细片状或粒状碳 化物,而在铁素体片边界上也可能有少量的渗碳体形成。 珠光体晶体结构:其是由体心立方结构的铁素体和复杂单斜结构的渗碳体组成。 马氏体晶体结构:马氏体中铁原子本来以体心立方结构排列,加入碳原子后其转变为体心四方结构,且晶体常数随碳原子含量的改变而改变。 贝氏体晶体结构:由体心立方的铁素体和复杂晶体结构的渗碳体组成。 珠光体的相组成:由铁素体和渗碳体两相组成。 铁素体和渗碳体都是片状的,一般铁素体层较渗碳体层厚。铁素体和渗碳体层交替分布,均匀分布在珠光体中。同一“珠光体团”内片层取向基本平行了。铁素体位错密度较小,渗碳体中密度更小,但两相交界处的位错密度较高。 马氏体的相组成:由铁素体组成,但铁素体中的碳含量较高(高于%) 铁素体呈板条状或片状。板条状马氏体多个板条(小角度晶界)形成板条块,板条块之间形成大角度晶界。C原子在体心立方的八面体间隙处分布,且优先占据第三类亚点阵。 贝氏体的相组成:由铁素体和渗碳体组成(一般还夹杂有残余奥氏体,珠光体和马氏体)上贝氏体中,铁素体为条状,成簇分布且相互平行。渗碳体为断续的条状或杆状,分布在铁素体条间。下贝氏体中,铁素体为针状或片状,各针状物之间不平行,渗碳体为细片状或粒状,分布在铁素体内,少量分布在铁素体边界上。 惯习面: 成分:三者皆为Fe和C组成物质,可能含有其他少量合金元素。 形成温度:图,一般形成温度珠光体高于贝氏体高于马氏体。 形成方式:珠光体通过Fe原子和C原子的扩散形成,马氏体通过切变形成,贝氏体二者兼有。

常见金相组织名词解释

常见金相组织名词解释——全面的特征描述,想不明白都难。 奥氏体 定义:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格 特征:奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分围。有些淬火钢能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。奥氏体一般由等轴状的多边形晶粒组成,晶粒有孪晶。在加热转变刚刚结束时的奥氏体晶粒比较细小,晶粒边界呈不规则的弧形。经过一段时间加热或保温,晶粒将长大,晶粒边界可趋向平直化。铁碳相图中奥氏体是高温相,存在于临界点A1温度以上,是珠光体逆共析转变而成。当钢中加入足够多的扩大奥氏体相区的化学元素时,Ni,Mn等,则可使奥氏体稳定在室温,如奥氏体钢。 铁素体

定义:碳与合金元素溶解在a-Fe中的固溶体 特征:亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 渗碳体

定义:碳与铁形成的一种化合物 特征:渗碳体不易受硝酸酒精溶液的腐蚀,在显微镜下呈白亮色,但受碱性苦味酸钠的腐蚀,在显微镜下呈黑色。渗碳体的显微组织形态很多,在钢和铸铁中与其他相共存时呈片状、粒状、网状或板状。 ?在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状 ?过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状 ?铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状 珠光体

定义:铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物 特征:珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。 ?在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。 ?在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。 ?在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体 上贝氏体

珠光体、贝氏体、马氏体转变对比

主要异 同点 相变类型 珠光体转变贝氏体转变马氏体转变 转变温度范围 高温转变 (A r1~500℃) 中温转变 (500℃~M s) 低温转变 (M s以下) 扩散性具有碳原子和铁原 子的扩散 碳原子扩散,而铁原子 不扩散 无扩散 生核、长大与领先相生核、长大,一般 以渗碳体为领先相 生核、长大,一般以铁 素体为领先相 生核、长大 共格性无共格性具有共格性,产生表面 浮凸现象 具有共格性,产生表面浮 凸现象 组成相 两相组织 γ-Fe(C)→α-Fe(C) +F e 3C 两相组织 γ-Fe(C)→α-Fe (C) +F e 3C (约350℃以上) γ-Fe(C)→α-Fe(C) +F e x C(约350℃以下) 单相组织 γ-Fe(C)→α-Fe(C) 合金元素的分布合金元素扩散重新 分布 合金元素不扩散合金元素不扩散

一、组织形态 1、珠光体的组织形态 共析碳钢加热到均匀的的奥氏体化状态后缓慢冷却,稍低于温度将形成珠光体组织, 为铁素体和渗碳体的机械混合物,其典型形态呈片状或层状。 片状珠光体是由一层铁素体与一层渗碳体交替堆叠而成。片状珠光体组织中,一对铁素体和渗碳体片的总厚度,称为“珠光体片层间距”。 工业上所谓的片状珠光体,是指在光学显微镜下能够明显看出铁素体与渗碳体呈层状分布的组织形态,其片层间距约在0.150.45之间。 透射电镜观察表明,在退火状态下,珠光体中的铁素体位错密度小,渗碳体中的位错密度更小,片状珠光体中铁素体与渗碳体两相交界处的为错密度高,在每一片铁素体中还有亚晶界,构成许多亚晶粒。 工业用钢中,也可以见到铁素体基体上分布着粒状渗碳体组织,称为“粒状珠光体”或“球状珠光体”,一般是经球化退火处理后获得的。 2、马氏体的组织形态 a、板条状马氏体 板条状马氏体是低、中碳钢,马氏体时效钢,不锈钢等铁系合金中形成的一种典型的马氏体组织。因其显微组织是由许多成群的板条组成,故称为板条状马氏体。又因为这种马氏体的亚结构主要为位错,通常也称它为位错型马氏体。 板条状马氏体的显微组织(如图所示),其中A为板条束,成不规则形状,尺寸约为20—35μm,是由若干单个马氏体板条所组成。一个板条束又可分成几个平行的像图中B那样的区域,呈块状。块界长尺寸方向与板条马氏体边界平行,块间成大角晶界。每个块由若干板条组成,每一个板条为一个单晶体。板条具有平直的界面,并接近于奥氏体的,为其惯习面,相同惯习面的变体平行排列构成板条束。现已确定这些稠密的板条被连续的高度变形的残余奥氏体薄膜()所隔开。 相邻板条一般以小角晶界相间,也可成孪晶关系,成孪晶关系时条间无残余奥氏体。 透射电镜观察证明,板条马氏体内有高密度位错。有时也会有部分相变孪晶存在,但为局部的,数量不多。 板条状马氏体的显微组织构成随钢和合金的成分变化而改变。在碳钢中,当碳含量小于0.3%时,原始奥氏体晶粒内板条束及束中块均很清楚;碳含量在0.30.5%,板条束清楚,块不清楚;碳含量升高到0.60.8时,板条混杂生成的倾向性很强,无法辨识束和块。 b、片状马氏体 铁系合金中出现的另一种典型的马氏体组织是片状马氏体,常见于淬火高、中碳钢及高Ni 的Fe-Ni合金中。其空间形态成双透镜片状,所以也称之为“透镜片状马氏体”。因其与试样磨片相截而在显微镜下呈现为针状或竹叶状,故又称为“针状之称马氏体”或“竹叶状马氏体”。片状马氏体的亚结构主要为孪晶,因此又有“孪晶型马氏体”。片状马氏体的显微组织为片间不相互平行。 片状马氏体常能见到有明显的中脊,而且体内存在许多相变孪晶。相变孪晶的存在是片状

金相组织

金相组织 金属平均晶粒度: 【001】金属平均晶粒度测定… GB 6394-2002 【010】铸造铝铜合金晶粒度测定…GB 10852-89 【019】珠光体平均晶粒度测定…GB 6394-2002 【062】金属的平均晶粒度评级…ASTM E112 【074】黑白相面积及晶粒度评级…BW 2003-01 【149】彩色试样图像平均晶粒度测定…GB 6394-2002 金相组织,用金相方法观察到的金属及合金的内部组织.可以分为:1.宏观组织.2.显微组织. 金相即金相学,就是研究金属或合金内部结构的科学。不仅如此,它还研究当外界条件或内在因素改变时,对金属或合金内部结构的影响。所谓外部条件就是指温度、加工变形、浇注情况等。所谓内在因素主要指金属或合金的化学成分。金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。 1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处 奥氏体 2.铁素体-碳与合金元素溶解在a-fe中的固溶体。亚共析钢中的慢冷铁素体呈块

状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 铁素体 3.渗碳体-碳与铁形成的一种化合物。在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿ac m线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到a r1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6 ~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 6.下贝氏体-同上,但渗碳体在铁素体针内。过冷奥氏体在350℃~ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。

下贝氏体和上贝氏体在组织和性能上有何区别

下贝氏体和上贝氏体在组织和性能上有何区别呢, 上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。一般不穿晶,只在一个晶粒内。上贝氏体的渗碳体是以片状分布在界面,很大程度上降低了材料的塑性和韧性。 下贝氏体-同上,但渗碳体在铁素体针内。过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。下贝氏体在性能上和马氏体接近,强度,硬度较高,其渗碳体以弥散的质点相分布在基体中,有很不错的强韧性,综合性能较好。 关于贝氏体: (1)上贝氏体为过冷奥氏体在550~400℃温区等温形成的一种组织,由铁素体和渗碳体组成,在光学显微镜下观察,呈羽毛状。上贝氏体常沿奥氏体晶界形核,向晶内发展。从电子显微照片上可以看到:在平行的铁素体条间有短棒状或串珠状渗碳体断续分布,其硬度为35~45HRC。上贝氏体的铁素体内含有一定程度的过饱和碳量,具有体心立方点阵,与奥氏体保持严格的晶格学位向关系,过去认为是西山关系,进一步研究证明为K-S关系,其惯习面为(111)A。在磨光的试样表面呈现浮凸。上贝氏体机械性能低劣,使用价值不大。 (2)下贝氏体下贝氏体为过冷奥氏体于400~200℃温区形成的一种组织。其组织形态与上贝氏体明显不同,类似于片状马氏体的回火组织。在光学显微镜下呈黑色片状(针状或竹叶状),互成一定角度。在电子显微镜下观察或X射线结构分析:这种组织乃是由过饱和α固溶体与其长轴成50~60o角度分布的碳化物质点形成。其硬度为45~50HRC。双面金相分析表明:下贝氏体铁素体的立体形态为双凸镜状。下贝氏体铁素体具有较高的碳过饱和度,有的含碳量高达0.2%,晶体结构为体心立方点阵。其内部析出的碳化物不是渗碳体,而是ε相(Fe2.4C),属六方晶系。下贝氏体中铁素体与母相奥氏体保持严格的晶体学位向关系(K-S关系),惯习面为(225)A。其亚结构为高密度位错,在磨光的试样表面亦呈现浮凸。可见,下贝氏体形成亦具有切变特征。下贝氏体具有优良的强韧性,硬度和耐磨性也很高,缺口敏感性和脆性 转变温度较低,是一种理想的淬火组织,具有很高的实用价值。因此,以获得这种组织为目的的等温淬火工艺,在生产中得到了广泛的应用。 (3)无碳贝氏体又称无碳化物贝氏体,产生于亚共析钢,特别是低碳钢中。一般钢经高温奥氏体化后,晶粒粗大,过冷至贝氏体形成温区上部,大约在600~500℃之间可形成无碳贝氏体。研究表明:无碳贝氏体的形成往往有一定条件。一是在硅钢和铝钢

金属学(组织相)

一、铁碳图相简介:Fe-C合金相图实际上是Fe-Fe3C相图,铁碳合金的基本组元也应该是纯铁和Fe3C。铁碳合金相图是研究铁碳合金的工具,是研究碳钢和铸铁成分、温度、组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据。 1、Fe-C相图中重要的点 2、Fe-C相图中重要的线

3、Fe-C合金平衡结晶过程 Fe-Fe3C相图中的相:

Ⅳ、过共析钢(0.77%4.3%) 二、钢中常见组织分类: 奥氏体:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格。特征:奥氏体塑性很好,强度较低,具有一定韧性,不具有铁磁性。

铁素体:碳与合金元素溶解在a-Fe中的固溶体,具有体心立方晶格,溶碳能力极差;特征:具有良好的韧性和塑性;呈明亮的多边形晶粒组织; 铁素体马氏体 马氏体:碳溶于α-Fe的过饱和的固溶体,体心正方结构;常见的马氏体形态:板条、片状;板条马氏体:在低、中碳钢及不锈钢中形成,由许多成群的、相互平行排列的板条所组成的板条束。空间形状是扁条状的,一个奥氏体晶粒可转变成几个板条束(通常3到5个); 片状马氏体(针状马氏体):常见于高、中碳钢及高Ni的Fe-Ni合金中;当最大尺寸的马氏体片小到光学显微镜无法分辨时,便称为隐晶马氏体。在生产中正常淬火得到的马氏体,一般都是隐晶马氏体。 回火马氏体:低温(150~250oC)回火产生的过饱和程度较低的马氏体和极细的碳化物共同组成的组织。这种组织极易受腐蚀,光学显微镜下呈暗黑色针状组织(保持淬火马氏体位向),与下贝氏体很相似,只有在高倍电子显微镜下才能看到极细小的碳化物质点。 片状马氏体回火马氏体

比较贝氏体转变与珠光体转变和马氏体转变的异同

比较马氏体贝氏体珠光体转变的异同 一.组织形态: 1.珠光体: 珠光体的组织形态特征: 珠光体的典型组织特征是由一层铁素体和一层渗碳体交替平行堆叠而形成的双相组织。根据片层间距的不同,可将珠光体分为三种: 珠光体:S0=450-150nm,形成温度为A1-650℃,普通光学显微镜可以分辨。 索氏体:S0=150-80nm,形成温度为650-600℃,高倍光学显微镜可以分辨。 屈氏体:S0=80-30nm,形成温度为600-550℃,电子显微镜可以分辨。 铁素体基体上分布着粒状渗碳体的组织为粒状珠光体。这种组织一般是通过球化退火或淬火后高温回火得到的。 在珠光体转变过程中,所形成的珠光体中的铁素体与母相奥氏体具有一定的晶体学位向关系。珠光体中,铁素体与渗碳体之间存在一定的晶体学位向关系。 2.马氏体: 马氏体的组织形态: ○1.板条马氏体是低、中碳钢中形成的一种典型马氏体组织,其形貌特征可描述如下:在一个原奥氏体晶粒内部有几个(3-5个)马氏体板条束,板条束间取向随意;在一个板条束内有若干个相互平行的板条块,块间是大角晶界;在一个板条块内是若干个相互平行的马氏体板条,板条间是小角晶界。马氏体板条内存在大量的位错,所以板条马氏体的亚结构是高密度的位错和位错缠结。板条状马氏体也称为位错型马氏体。 ○2.片状马氏体是中、高碳钢中形成的一种典型马氏体组织,其形貌特征可描述如下:在一个原奥氏体晶粒内部有许多相互有一定角度的马氏体片。马氏体片的空间形态为双凸透镜状,横截面为针状或竹叶状。在原奥氏体晶粒中首先形成的马氏体片贯穿整个晶粒,将奥氏体晶粒分割,以后陆续形成的马氏体片越来越小,所以马氏体片的尺寸取决于原始奥氏体晶粒的尺寸。 片状马氏体的形成温度较低,在马氏体片的周围往往存在着残余奥氏体。 片状马氏体的内部亚结构主要是孪晶。当碳含量较高时,在马氏体片中可以看到中脊,中脊面是密度很高的微孪晶区。 马氏体片形成时的相互撞击,马氏体片中存在大量的纤维裂纹。 3.贝氏体: 贝氏体的组织形态: ○1.上贝氏体 上贝氏体形成于贝氏体转变区较高温度范围,中、高碳钢大约在350-550℃形成。为成束分布、平行排列的条状铁素体和夹于其间的断续条状渗碳体的混合物。多在奥氏体晶界形核,自晶界的一侧或两侧向晶内长大,具有羽毛状特征。 上贝氏体中铁素体的亚结构是位错,其密度比板条马氏体低2-3个数量级,随形成温度降低,位错密度增大。随碳含量增加,上贝氏体中铁素体条增多、变薄,渗碳体数量增多、变细。随转变温度降低,上贝氏体中铁素体条变薄,渗碳体细化。上贝氏体中铁素体条间还可能存在未转变的残余奥氏体。

相关文档