文档库 最新最全的文档下载
当前位置:文档库 › 高数下复习题

高数下复习题

高数下复习题
高数下复习题

二期复习B解

一、填空与选择(每题2分,共12分)

1.函数z =

1ln()

x y +的定义域是 {(x ,y )|x +y >0,x +y ≠0} .

2.若函数f (x ,y )=2x 2+ax +xy 2+2y 在(1,-1)处取得极值,则常数a = -5 .(多元函数取得极值的必要条件)

3.设D :|x |≤3,|y |≤1,则[c o s (t a n )]D

x x y y d x d y

+蝌= 36 .(奇偶性) 4

.1

dx

蝌=

6

π.(3

43

V πR

=

=

43

π,积分=

8

V =

6

π.二重积分的几何意

义)

5.已知1

(2)n n u ¥

=-?收敛,则l i m

n

s i n ( )

n n

πu u = 0 .

6.函数f (x ,y )在点M (x 0,y 0)处不连续,则 C .(可微必连续,故不连续必不可微)

A .0

lim x x y y ??f (x ,y )必不存在. B .f (x ,y )在(x 0,y 0)必无定义.

C .f (x ,y )在(x 0,y 0)必不可微.

D .f x (x 0,y 0)、f y (x 0,y 0)必不存在.

二、计算下列各题(共88分)

1.(6')设

4, a p q b p k q

=+=+ ,k 是常数,且|

p

|=1,|

q |=4,p

⊥q

;Pr j a

b =

(1)求k ;

(2)求以a

,b

为邻边的平行四边形的面积. 解 ∵

a ?b

=(4p q + )?(p k q

+ )=4+16k , |

a |

p q

^

∴Pr j a b =||

a b a ×

=

,k =54.

S =|a ×b

|=|(4p q + )×(p k q + )|=|4p ×p +q ×p +4k p ×q +k q ×q |

=(4k -1)|p ×q |=4|p ||q

|=16.

2.(6')在平面3x -2z =0上求一点,使它到两点A (1,0,1)、B (2,2,3)距离的平方和为最小.(限定用拉格朗日法)

解 设平面上的点为M (x ,y ,z ),则目标函数为

d =(x -1)2+(y -0)2+(z -1)2+(x -2)2+(y -2)2+(z -3)2

拉格朗日函数为

L =(x -1)2+(y -0)2+(z -1)2+(x -2)2+(y -2)2+(z -3)2+λ(3x -2z )

由2(1)2(2)3022(2)02(1)2(3)20320x x λy y z z λx z ì-+-+=???

?+-=?í

?-+--=??

?-=???

=>4630

4404820

320

x λy z λx z ì-+=??

?

?-=?í

?--=

???-=???

x =

1813

,y =1,z =

2713

因为平面上的点与点A 、B 之间距离的平方和确有最小值存在,故唯一驻点(1813

,1,

2713

)即

为所求.

3.(8')设z =f (sin x ,cos y ,e x +y

),f 具有二阶连续偏导数,求

z x

??,

z y

??,

2

2

z x

??,

2

2

z y

??,

2

z x y

?抖.

z x ??=cos xf 1'+e x +y f 3',

2

2z x

??=-sin xf 1'+cos x (cos xf 11"+e x +y f 13")+e x +y f 3'+e x +y (cos xf 31"+e x +y f 33")

=-sin xf 1'+e x +y f 3'+cos 2xf 11"+e 2(x +y )f 33"+2cos xe x +y f 13",

z y

??=-sin yf 2'+e x +y f 3',

2

2

z y

??=-cos yf 2'+sin y (-sin yf 22"+e x +y f 23")+e x +y f 3'+e x +y (-sin yf 32"+e x +y f 33") =-cos yf 2'+e x +y f 3'+sin 2yf 22"+e 2(x +y )f 33"-2sin ye x +y f 23",

2

z x y

?抖=cos x (-sin yf 12"+e x +y f 13")+e x +y f 3'+e x +y (-sin yf 32"+e x +y f 33")

=e x +y f 3'-cos x sin yf 12"+cos xe x +y f 13"-e x +y sin yf 32"+e 2(x +y )f 33".

4.(6')交换积分次序s i n 0s i n

2

(,)π

x x d x

f x y d y -蝌.

解 当x ∈[0,

]2

π时,y =sin x ,则

x =arcsin y ;当x ∈[

,]2

ππ时,y =sin x ,超出了反三角函数表达的

值域范围.但可以这样表示,当x ∈[0,

]2

π时,y =sin(π-x ),则

x =π-arcsin y ,故

sin 0

sin

2

(,)π

x x dx

f x y dy

-蝌=

1

arcsin 1

2arcsin 0

arcsin (,)(,)π

πy

y

y

dy

f x y dx dy

f x y dx

---+

蝌蝌.

5.(12')分别按:1?先z 后y 再x ;2?先y 后x 再z ;

3?先x 后z 再y ,分别写出I =Ω

(,,)f x y z dv

蝌 的三次积分,其中Ω由x =0,z =0,z =h (h

>0),x +2

y =a ,及x 2+y 2=a 2(a >0)所围成的第一卦限的立体.

解 先作出Ω域的简图. 1? I =00

2(,,)a

h

a x dx

f x y z dz

-蝌

; 2? I =0

2

(,,)h

a a x dz

dx f x y z dy

-蝌

3? I =

2

20

2

(,,)(,,)a

h

a

h a a y

dy

dz f x y z dx dy dz

f x y z dx

-+

蝌蝌.

6.(10')将对坐标的曲面积分I =Σ

(,,)(,,)(,,)P x y z dydz Q x y z dzdx R x y z dxdy ++蝌化为对面

积的曲面积分,其中

(1)Σ:3x +2y +

=6在第一卦限部分的上侧; (2)Σ:z =8-(x 2+y 2)在xOy 面上方部分的上侧. 解(1)平面3x +2y +

=6的方向余弦为

cos α

=

35,

cos β

=

25

cos γ

=

5

I

=

Σ

32(,,)(,,)(,,)555dS P x y z Q x y z R x y z 轾犏++犏臌

(2)曲面z +(x 2+y 2)-8=0的方向余弦为

cos α

=

, cos β

=

cos γ

=

=

I =

[

Σ

2(,,)2(,,)(,,)xP x y z yQ x y z R x y z ++蝌.

7.(6')判断级数1

1[1(1)]s i n

n

n n

n

=+-?

的敛散性.

解 这是正项级数,注意到对于任意n 有sin 1

n

<

1n

,于是

1[1(1)]sin

n

n

n

+-<

12sin

n

n

<

2

2n

而2

1

2n n

=?

是收敛的,由比较判别法知,级数1

1[1(1)]s i n

n

n n

n

=+-?

绝对收敛.

8.(7')求级数1

1

2

n n n

+¥

=?

(x +1)n

的和函数,并求1

12

n

n n ¥

=×?

的和.

解 ∵ ρ=lim n

|

1n n

a a +|=2,

∴ R =

12

,收敛区间为(-32

,-

12

).在x =-

32

处,级数是收敛的交错级数;在x =-

12

处,

级数是发散的调和级数,故其收敛域为

[-

32

,-

12

).

S (x )=1

1

2

n n n

+¥

=?

(x +1)n

=

1

1

1

1

2

(1)

x

n n n x dx

+--=+?

ò=41

1

1

[2(1)]

x

n n x dx

--=+?

ò

=41

1

12(1)

x

dx

x --+ò

=-41

1

12x

dx x

-+ò

=-2ln|1+2x |=-ln(1+2x )2

,-

32

≤x <-

12

1

12

n

n n ¥

=×?

=12

S (-

34

)=-12ln(-

12

)2=

12

ln4.

9.(6')将函数f (x )=1

34x

+展成(x -1)的幂级数.

解 f (x )=

134x

+=

1744

x +-=11471(1)

7x ×+

-

=

17

(1)

n

n ¥

=-?

[

47

(x -1)]n

=

1

71

4(1)()

7n n

n ¥

=-?

(x -1)n ,(-

34

114

)

10.(6')求微分方程(x 2+y 2)dx =xydy 满足y |x =1=0的特解. 解 这是齐次微分方程.变形得

d y d x

=

x y

+

y x

令u =

y x

,则y =ux ,

d y d x

=u +x

du dx

,于是有

udu =

d x x

积分得

2

2

u

=ln|x |+C

y 2=x 2ln x 2+Cx 2

由y |x =1=0得,C =0.于是满足条件的特解为

y 2=x 2ln x 2.

这也是伯努利方程.变形得

d y d x

-y x

=

x y

其中α=-1,于是有

y 2

=2dx

x

e

ò

[22dx

x

xe

dx

-

ò

ò+C ]=x 2ln x 2+Cx 2.

由y |x =1=0得,C =0.于是满足条件的特解为

y 2=x 2ln x 2.

11.(7')求微分方程y "-4y '+3y =xe 5x 的通解. 解 这是二阶常系数线性微分方程.其特征方程为

r 2-4r +3=0

对应的特征根为

r 1=1,r 2=3

对应齐次方程的通解为

Y =C 1e x +C 2e 3x

自由项f (x )=8e 5x ,属于P m (x )e αx 型.故有型如

y*=x k P m (x )e αx

的特解.因α=5,m =1,且α=5不是特征根,故设

y*=(Ax +B )e 5x

代入非齐次方程得

8Ax +8B +6A =x

A =1

8,B =-

332

于是非齐次方程的通解为

y =C 1e x +C 2e 3x +(

13832

x -)e 5x

12.(8')已知f (x )为可微函数,设f (x )=1+2

1

()()

()

x

f t f t dt

tf t +ò,求:f (x ).

解 所给方程是积分方程,两边关于x 求导得

f '(x )=

2

()()

()

f x f x xf x +=

()f x x

+

1x

f '(x )-

()f x x

=

1x

这是一阶线性微分方程,其通解为

f (x )=

1dx

x e ò

[11dx

x

e

dx

x

-

ò

ò

+C ]=x [-

1x

+C ]=-1+Cx .

注意到f (1)=1,于是得C =2,故函数为

f (x )=-1+2x .

高等数学(下册)期末复习试题及答案

一、填空题(共21分 每小题3分) 1.曲线???=+=0 12x y z 绕z 轴旋转一周生成的旋转曲面方程为122++=y x z . 2.直线35422:1z y x L =--=-+与直线?? ???+=+-==t z t y t x L 72313:2的夹角为2π. 3.设函数22232),,(z y x z y x f ++=,则=)1,1,1(grad f }6,4,2{. 4.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0. 5.设周期函数在一个周期内的表达式为???≤<+≤<-=, 0,10,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于21π +. 6.全微分方程0d d =+y x x y 的通解为 C xy =. 7.写出微分方程x e y y y =-'+''2的特解的形式x axe y =*. 二、解答题(共18分 每小题6分) 1.求过点)1,2,1(-且垂直于直线???=+-+=-+-0 2032z y x z y x 的平面方程. 解:设所求平面的法向量为n ,则{}3,2,11 11121=--=k j i n (4分) 所求平面方程为 032=++z y x (6分) 2.将积分???Ω v z y x f d ),,(化为柱面坐标系下的三次积分,其中Ω是曲面 )(222y x z +-=及22y x z +=所围成的区域. 解: πθ20 ,10 ,2 :2 ≤≤≤≤-≤≤Ωr r z r (3分)

???Ωv z y x f d ),,(???-=221020d ),sin ,cos (d d r r z z r r f r r θθθπ (6分) 3.计算二重积分??+-=D y x y x e I d d )(22,其中闭区域.4:22≤+y x D 解 ??-=2020d d 2r r e I r πθ??-- =-20220)(d d 212r e r πθ?-?-=202d 221r e π)1(4--=e π 三、解答题(共35分 每题7分) 1.设v ue z =,而22y x u +=,xy v =,求z d . 解:)2(232y y x x e y ue x e x v v z x u u z x z xy v v ++=?+?=?????+?????=?? (3分) )2(223xy x y e x ue y e y v v z y u u z y z xy v v ++=?+?=?????+?????=?? (6分) y xy x y e x y y x x e z xy xy d )2(d )2(d 2332+++++= (7分) 2.函数),(y x z z =由方程0=-xyz e z 所确定,求y z x z ????,. 解:令xyz e z y x F z -=),,(, (2分) 则 ,yz F x -= ,xz F y -= ,xy e F z z -= (5分) xy e yz F F x z z z x -=-=??, xy e xz F F y z z z y -=-=??. (7分) 3.计算曲线积分 ?+-L y x x y d d ,其中L 是在圆周22x x y -=上由)0,2(A 到点)0,0(O 的有 向弧段. 解:添加有向辅助线段OA ,有向辅助线段OA 与有向弧段OA 围成的闭区域记为D ,根据格林 公式 ????+--=+-OA D L y x x y y x y x x y d d d d 2d d (5分) ππ=-? =022 (7分) 4.设曲线积分?++L x y x f x y x f e d )(d )]([与路径无关,其中)(x f 是连续可微函数且满足1)0(=f ,

高等数学下试题及参考答案

高等数学下试题及参考 答案 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

华南农业大学期末考试试卷(A 卷 ) 2016~2017学年第2 学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一、填空题(本大题共5小题,每小题3分,共15分) 1.二元函数2ln(21)z y x =-+的定义域为 。 2. 设向量(2,1,2)a =,(4,1,10)b =-,c b a λ=-,且a c ⊥,则λ= 。 3.经过(4,0,2)-和(5,1,7)且平行于x 轴的平面方程为 。 4.设yz u x =,则du = 。 5.级数11 (1)n p n n ∞ =-∑,当p 满足 条件时级数条件收敛。 二、单项选择题(本大题共5小题,每小题3分,共15分) 1.微分方程2()'xy x y y +=的通解是 ( ) A .2x y Ce = B .22x y Ce = C .22y y e Cx = D .2y e Cxy =

2 .求极限(,)(0,0)lim x y →= ( ) A .14 B .12- C .14- D .12 3.直线:3 27 x y z L = =-和平面:32780x y z π-+-=的位置关系是 ( ) A .直线L 平行于平面π B .直线L 在平面π上 C .直线L 垂直于平面π D .直线L 与平面π斜交 4.D 是闭区域2222{(,)|}x y a x y b ≤+≤ ,则D σ= ( ) A .33()2 b a π- B .332()3 b a π- C .334()3 b a π - D . 3 33()2 b a π- 5.下列级数收敛的是 ( ) A .11(1)(4)n n n ∞ =++∑ B .2111n n n ∞=++∑ C .1 1 21n n ∞ =-∑ D .n ∞ = 三、计算题(本大题共7小题,每小题7分,共49分) 1. 求微分方程'x y y e +=满足初始条件0x =,2y =的特 解。 2. 计算二重积分22 D x y dxdy x y ++?? ,其中22 {(,):1,1}D x y x y x y =+≤+≥。

高等数学下册试题(题库)及参考答案

高等数学下册试题库 一、选择题(每题4分,共20分) 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是:( A ) A )5 B ) 3 C ) 6 D )9 解 ={1-1,2-0,1-2}={0,2,-1}, |AB |= 5)1(20222=-++. 2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B ) A ){-1,1,5}. B ) {-1,-1,5}. C ) {1,-1,5}. D ){-1,-1,6}. 解 (1) c =3a -2b =3{1,-1,3}-2{2,-1,2}={3-4,-3+2,9-4}={-1,-1,5}. 3. 设a ={1,-1,3}, b ={2, 1, -2},求用标准基i , j , k 表示向量c=a-b ; ( A ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k 解c ={-1,-2,5}=-i -2j +5k . 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:(C ) A )2π B )4π C )3 π D )π 解 由公式(6-21)有 2 1112)1(211)1(1221cos 2222222 121= ++?-++?-+?+?= ??= n n n n α, 因此,所求夹角 32 1 arccos π α= =. 5. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:(D ) A )2x+3y=5=0 B )x-y+1=0 C )x+y+1=0 D )01=-+y x . 解 由于平面平行于z 轴,因此可设这平面的方程为 0=++D By Ax 因为平面过1M 、2M 两点,所以有 ?? ?=+-=+020D B A D A 解得D B D A -=-=,,以此代入所设方程并约去)0(≠D D ,便得到所求的 平面方程 01=-+y x 6.微分方程()043 ='-'+''y y y x y xy 的阶数是( D )。 A .3 B .4 C .5 D . 2

高等数学[下册]期末考试试题和答案解析

高等数学A(下册)期末考试试题 一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上) 1、已知向量a 、b 满足0a b +=,2a =,2b =,则a b ?= .

2、设ln()z x xy =,则32 z x y ?=?? . 3、曲面2 2 9x y z ++=在点(1,2,4)处的切平面方程为 . 4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数 在3x =处收敛于 ,在x π=处收敛于 . 5、设L 为连接(1,0)与(0,1)两点的直线段,则 ()L x y ds +=? . ※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级. 二、解下列各题:(本题共5小题,每小题7分,满分35分) 1、求曲线222 222 239 3x y z z x y ?++=??=+??在点0M (1,1,2)-处的切线及法平面方程. 2、求由曲面2222z x y =+及22 6z x y =--所围成的立体体积. 3、判定级数 1 1 (1)ln n n n n ∞ =+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 4、设(,)sin x z f xy y y =+,其中f 具有二阶连续偏导数,求2, z z x x y ?????. 5、计算曲面积分 ,dS z ∑ ??其中∑是球面2222x y z a ++=被平面(0)z h h a =<<截出的顶部. 三、(本题满分9分) 抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离 的最大值与最小值. (本题满分10分) 计算曲线积分 (sin )(cos )x x L e y m dx e y mx dy -+-? , 其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周2 2 (0)x y ax a +=>. 四、(本题满分10分) 求幂级数1 3n n n x n ∞ =?∑的收敛域及和函数.

高等数学1试卷(附答案)

一、填空题(共6小题,每小题3分,共18分) 1. 由曲线2cos r θ=所围成的图形的面积是 π 。 2. 设由方程22x y =所确定的隐函数为)(x y y =,则2y dy dx x = - 。 3. 函数2 sin y x =的带佩亚诺余项的四阶麦克劳林公式为2 44 1()3 x x o x -+。 4. 1 1 dx =? 。 5. 函数x x y cos 2+=在区间?? ? ???20π,上的最大值为 6 π +。 6. 222222lim 12n n n n n n n n →∞?? +++ ?+++? ? = 4 π。 二、选择题(共7小题,每小题3分,共21分) 1. 设21cos sin ,0 ()1,0x x x f x x x x ? +

暨南大学《高等数学I 》试卷A 考生姓名: 学号: 3. 1 +∞=? C 。 A .不存在 B .0 C .2π D .π 4. 设()f x 具有二阶连续导数,且(0)0f '=,0 lim ()1x f x →''=-,则下列叙述正确的是 A 。 A .(0)f 是()f x 的极大值 B .(0)f 是()f x 的极小值 C .(0)f 不是()f x 的极值 D .(0)f 是()f x 的最小值 5.曲线2x y d t π-=?的全长为 D 。 A .1 B .2 C .3 D .4 6. 当,a b 为何值时,点( 1, 3 )为曲线3 2 y ax bx =+的拐点? A 。 A .32a =- ,92b = B. 32a =,9 2b =- C .32a =- ,92b =- D. 32a =,92 b = 7. 曲线2x y x -=?的凸区间为 D 。 A.2(,)ln 2-∞- B.2(,)ln 2-+∞ C.2(,)ln 2+∞ D.2(,)ln 2 -∞ 三、计算题(共7小题,其中第1~5题每小题6分, 第6~7题每小题8分,共46分) 1. 2 1lim cos x x x →∞?? ?? ? 解:()2 1 cos lim , 1 t t t x t →==原式令 )0 0( cos ln lim 2 0型t t t e →= (3分) t t t t e cos 2sin lim ?-→= 12 e - = (6分)

(完整)同济版高等数学下册练习题(附答案)

第八章 测 验 题 一、选择题: 1、若a → ,b → 为共线的单位向量,则它们的数量积 a b →→ ?= ( ). (A) 1; (B)-1; (C) 0; (D)cos(,)a b →→ . 向量a b →→?与二向量a → 及b → 的位置关系是( ). 共面; (B)共线; (C) 垂直; (D)斜交 . 3、设向量Q → 与三轴正向夹角依次为,,αβγ,当 cos 0β=时,有( ) ()(); (); ()A Q xoy B Q yoz C Q xoz D Q xoz ⊥r r r r 面; 面面面 5、2 ()αβ→ → ±=( ) (A)22αβ→→±; (B)2 2 2ααββ→→→ →±+; (C)2 2 ααββ→→→ →±+; (D)2 2 2ααββ→→→ →±+. 6、设平面方程为0Bx Cz D ++=,且,,0B C D ≠, 则 平面( ). (A) 平行于轴;x ;(B) y 平行于轴; (C) y 经过轴;(D) 经过轴y . 7、设直线方程为111122 00A x B y C z D B y D +++=??+=?且 111122,,,,,0A B C D B D ≠,则直线( ). (A) 过原点; (B)x 平行于轴; (C)y 平行于轴; (D)x 平行于轴. 8、曲面2 50z xy yz x +--=与直线5 13 x y -=- 10 7 z -= 的交点是( ). (A)(1,2,3),(2,1,4)--;(B)(1,2,3); (C)(2,3,4); (D)(2,1,4).-- 9、已知球面经过(0,3,1)-且与xoy 面交成圆周 22160 x y z ?+=?=?,则此球面的方程是( ). (A)2 2 2 6160x y z z ++++=; (B)222 160x y z z ++-=; (C)2 2 2 6160x y z z ++-+=; (D)2 2 2 6160x y z z +++-=. 10、下列方程中所示曲面是双叶旋转双曲面的是( ). (A)2 2 2 1x y z ++=; (B)22 4x y z +=; (C)22 2 14y x z -+=; (D)2221916 x y z +-=-. 二、已知向量,a b r r 的夹角等于3 π ,且2,5a b →→==,求 (2)(3)a b a b →→→→ -?+ . 三、求向量{4,3,4}a → =-在向量{2,2,1}b → =上的投影 . 四、设平行四边形二边为向量 {1,3,1};{2,1,3}a b → → =-=-{}2,1,3b =-,求其面积 . 五、已知,,a b →→ 为两非零不共线向量,求证: ()()a b a b →→→→-?+2()a b →→ =?. 六、一动点与点(1,0,0)M 的距离是它到平面4x =的距离的一半,试求该动点轨迹曲面与yoz 面的交线方程 . 七、求直线L :31258x t y t z t =-?? =-+??=+? 在三个坐标面上及平面 π380x y z -++=上的投影方程 . 八、求通过直线 122 232 x y z -+-==-且垂直于平面3250x y z +--=的平面方程 .

高等数学下册试题及答案解析word版本

高等数学(下册)试卷(一) 一、填空题(每小题3分,共计24分) 1、 z =)0()(log 2 2>+a y x a 的定义域为D= 。 2、二重积分 ?? ≤++1 ||||22)ln(y x dxdy y x 的符号为 。 3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示 为 ,其值为 。 4、设曲线L 的参数方程表示为),() () (βαψ?≤≤?? ?==x t y t x 则弧长元素=ds 。 5、设曲面∑为92 2 =+y x 介于0=z 及3=z 间的部分的外侧,则 =++?? ∑ ds y x )122 ( 。 6、微分方程x y x y dx dy tan +=的通解为 。 7、方程04) 4(=-y y 的通解为 。 8、级数 ∑∞ =+1) 1(1 n n n 的和为 。 二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续; (B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C ) y y x f x y x f z y x ?'-?'-?),(),(0000当0)()(2 2→?+?y x 时,是无穷小; (D )0) ()(),(),(lim 2 2 00000 =?+??'-?'-?→?→?y x y y x f x y x f z y x y x 。 2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222y u y x u x ??+??等于( ) (A )y x +; (B )x ; (C)y ; (D)0 。 3、设Ω:,0,12 2 2 ≥≤++z z y x 则三重积分???Ω = zdV I 等于( ) (A )4 ? ??20 20 1 3cos sin π π ???θdr r d d ;

大一下学期高等数学考试题

大一下学期高等数学考试 题 This manuscript was revised by the office on December 10, 2020.

一、单项选择题(6×3分) 1、设直线,平面,那么与之间的夹角为() 、二元函数在点处的两个偏导数都存在是在点处可微的() A.充分条件 B.充分必要条件 C.必要条件 D.既非充分又非必要条件 3、设函数,则等于() . C. D. 4、二次积分交换次序后为() . . 5、若幂级数在处收敛,则该级数在处() A.绝对收敛 B.条件收敛 C.发散C.不能确定其敛散性 6、设是方程的一个解,若,则在 处() A.某邻域内单调减少 B.取极小值

C.某邻域内单调增加 D.取极大值 二、填空题(7×3分) 1、设=(4,-3,4),=(2,2,1),则向量在上的投影 = 2、设,,那么 3、D为,时, 4、设是球面,则= 5、函数展开为的幂级数为 6、= 7、为通解的二阶线性常系数齐次微分方程为 三、计算题(4×7分) 1、设,其中具有二阶导数,且其一阶导数不为1,求。 2、求过曲线上一点(1,2,0)的切平面方程。 3、计算二重积分,其中 4、求曲线积分,其中是沿曲线由点(0,1)到点(2,1)的弧段。 5、求级数的和。

四、综合题(10分) 曲线上任一点的切线在轴上的截距与法线在轴上的截距之比为3,求此曲线方程。 五、证明题(6分) 设收敛,证明级数绝对收敛。 一、单项选择题(6×3分) 1、A 2、C 3、C 4、B 5、A 6、D 二、填空题(7×3分) 1、2 2、 3、 4、 5、6、07、 三、计算题(5×9分) 1、解:令则,故 2、解:令 则 所以切平面的法向量为: 切平面方程为: 3、解:=== 4、解:令,则 当,即在x轴上方时,线积分与路径无关,选择由(0,1)到(2,1)则

最新高等数学下考试题库(附答案)

《高等数学》试卷1(下) 一.选择题(3分?10) 1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ). A.3 B.4 C.5 D.6 2.向量j i b k j i a +=++-=2,2,则有( ). A.a ∥b B.a ⊥b C.3,π=b a D.4 ,π=b a 3.函数11 22222-++--=y x y x y 的定义域是( ). A.(){ }21,22≤+≤y x y x B.(){}21,22<+p D.1≥p 8.幂级数∑∞ =1n n n x 的收敛域为( ). A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1- 9.幂级数n n x ∑∞=?? ? ??02在收敛域内的和函数是( ).

A.x -11 B.x -22 C.x -12 D.x -21 10.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cx e y = 二.填空题(4分?5) 1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________. 2.函数()xy z sin =的全微分是______________________________. 3.设133 23+--=xy xy y x z ,则=???y x z 2_____________________________. 4. x +21的麦克劳林级数是___________________________. 三.计算题(5分?6) 1.设v e z u sin =,而y x v xy u +==,,求.,y z x z ???? 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,y z x z ???? 3.计算σd y x D ??+22sin ,其中22224:ππ≤+≤y x D . 4.求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径). 四.应用题(10分?2) 1.要用铁板做一个体积为23 m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省? . 试卷1参考答案 一.选择题 CBCAD ACCBD 二.填空题 1.0622=+--z y x . 2.()()xdy ydx xy +cos . 3.1962 2--y y x . 4. ()n n n n x ∑∞=+-01 21.

高等数学下考试题库(附答案)复习过程

《高等数学》试卷1(下) 一.选择题(3分?10) 1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ). A.3 B.4 C.5 D.6 2.向量j i b k j i a ρρρρρ??+=++-=2,2,则有( ). A.a ρ∥b ρ B.a ρ⊥b ρ C.3,π=b a ρρ D.4 ,π=b a ρρ 3.函数11 22222-++--=y x y x y 的定义域是( ). A.(){ }21,22≤+≤y x y x B.(){}21,22<+p D.1≥p 8.幂级数∑∞ =1n n n x 的收敛域为( ). A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1- 9.幂级数n n x ∑∞=?? ? ??02在收敛域内的和函数是( ).

A.x -11 B.x -22 C.x -12 D.x -21 10.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cx e y = 二.填空题(4分?5) 1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________. 2.函数()xy z sin =的全微分是______________________________. 3.设133 23+--=xy xy y x z ,则=???y x z 2_____________________________. 4. x +21的麦克劳林级数是___________________________. 三.计算题(5分?6) 1.设v e z u sin =,而y x v xy u +==,,求.,y z x z ???? 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,y z x z ???? 3.计算σd y x D ??+22sin ,其中22224:ππ≤+≤y x D . 4.求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径). 四.应用题(10分?2) 1.要用铁板做一个体积为23 m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省? . 试卷1参考答案 一.选择题 CBCAD ACCBD 二.填空题 1.0622=+--z y x . 2.()()xdy ydx xy +cos . 3.1962 2--y y x . 4. ()n n n n x ∑∞=+-01 21.

高数下期末复习题(解答题)

1.求曲面6322 2 2 =++z y x 在点 ()1,1,1P 处的切平面方程和法线方程. 2.设z=z(x,y)由方程y z z x ln =所确 定,求y z x z ????, 3.设 g ,f y x g )xy (f z 其中 ??? ? ??++=为可微函数,求 y x z ????z , 4. 设),(v u f 具有二阶连续偏导数,且满足 2222 1f f u v ??+=??,又 )](2 1,[),(2 2y x xy f y x g -=,求.22 22y g x g ??+?? 5.将正数a 分成三个正数之和,使它们的乘积为最大. 6.设长方体内接于半径为R 的半球,问长

方体各边为多少时,其体积为最大. 7.求椭球面 142222=++z y x 与平面07=-++z y x 之间的最短距离. 8.设),(y x z z =是由0),(=++nz y mz x F 确定的函数,其中F 是可微函数,m 、n 是常数,求y z n x z m ??+?? 9.计算二重积分?? +D dxdy y x 22 , 其中 D 是由圆周 y y x 22 2 =+所围成的闭区域. 10.设函数)(t f 在),0[+∞上连续,且满足方程,dxdy y x f e t f t y x t )2 1()(2 222 422 4?? ≤+++ =π求)(t f . 11.求三重积分??? Ω zdxdydz ,其中Ω为 球面42 22 =++z y x 与抛物面 z y x 32 2 =+所围成的闭区域

12.求由曲面2 2 5y x z --=与 物面z y x 42 2 =+所围成的立体 体积。 13.计算 ?-+++-=L dy x y dx y x I )635()42(,其中L 为三顶点分别为(0, 0)、(3, 0)和 (3, 2)的三角形正向边界. 14.计算? L xds ,其中曲线L 为直线y=x 及 抛物线2 x y =所围成的区域的边界 15.计算曲线积分 ?-+++- L dy x y dx y x )635()42(其中L 为从点(0,0)到点(3,2)再到点(4,0)的折线段. 16.问当 a 取何值时,曲线积分 ? --+-) 2,1() 0,1(2232dy )y x 2xy (a dx )y xy 6(与路径无 关,并计算此曲线积分的值. 17.设函数)(x f 在),(∞+∞-内具有一阶连续

大学高等数学下考试试题库及答案

《高等数学》试卷6(下) 一.选择题(3分?10) 1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ). A.3 B.4 C.5 D.6 2.向量j i b k j i a +=++-=2,2,则有( ). A.a ∥b B.a ⊥b C.3,π=b a D.4 ,π =b a 3. 设有直线1158 :121x y z L --+== -和26:23 x y L y z -=??+=?,则1L 与2L 的夹角为( ) (A ) 6π; (B )4π; (C )3π; (D )2 π . 4.两个向量a 与b 垂直的充要条件是( ). A.0=?b a B.0 =?b a C.0 =-b a D.0 =+b a 5.函数xy y x z 33 3 -+=的极小值是( ). A.2 B.2- C.1 D.1- 6.设y x z sin =,则 ?? ? ????4,1πy z =( ). A. 2 2 B.22- C.2 D.2- 7. 级数 1 (1)(1cos ) (0)n n n α α∞ =-->∑是( ) (A )发散; (B )条件收敛; (C )绝对收敛; (D )敛散性与α有关. 8.幂级数∑∞ =1 n n n x 的收敛域为( ). A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1- 9.幂级数n n x ∑∞ =??? ??02在收敛域内的和函数是( ). A. x -11 B.x -22 C.x -12 D.x -21 二.填空题(4分?5)

1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________. 2.函数()xy z sin =的全微分是______________________________. 3.设133 2 3 +--=xy xy y x z ,则 =???y x z 2_____________________________. 4. 设L 为取正向的圆周:22 1x y +=,则曲线积分 2(22)d (4)d L xy y x x x y -+-=? ____________. 5. .级数1 (2)n n x n ∞ =-∑的收敛区间为____________. 三.计算题(5分?6) 1.设v e z u sin =,而y x v xy u +==,,求 .,y z x z ???? 2.已知隐函数()y x z z ,=由方程052422 2 2 =-+-+-z x z y x 确定,求 .,y z x z ???? 3.计算 σd y x D ??+22sin ,其中22224:ππ≤+≤y x D . 4. .计算1 d d y x y x x ? . 试卷6参考答案 一.选择题 CBCAD ACCBD 二.填空题 1.0622=+--z y x . 2.()()xdy ydx xy +cos . 3.1962 2 --y y x . 4. ()n n n n x ∑ ∞ =+-0 1 21. 5.()x e x C C y 221-+= . 三.计算题 1. ()()[]y x y x y e x z xy +++=??cos sin ,()()[]y x y x x e y z xy +++=??cos sin .

(word完整版)高数一试题及答案,推荐文档

《 高等数学(一) 》复习资料 一、选择题 1. 若23lim 53 x x x k x →-+=-,则k =( ) A. 3- B.4- C.5- D.6- 2. 若21lim 21 x x k x →-=-,则k =( ) A. 1 B.2 C.3 D.4 3. 曲线3sin 1x y e x =-+在点(0,2)处的切线方程为( ) A.22y x =+ B.22y x =-+ C.23y x =+ D.23y x =-+ 4. 曲线3sin 1x y e x =-+在点(0,2)处的法线方程为( ) A.122y x =+ B.122y x =-+ C.132y x =+ D.1 32 y x =-+ 5. 211 lim sin x x x →-=( ) A.0 B.3 C.4 D.5 6.设函数0()(1)(2)x f x t t dt =+-?,则(3)f '=( ) A 1 B 2 C 3 D 4 7. 求函数43242y x x =-+的拐点有( )个。 A 1 B 2 C 4 D 0 8. 当x →∞时,下列函数中有极限的是( )。 A. sin x B. 1x e C. 21 1x x +- D. arctan x 9.已知'(3)=2f ,0(3)(3) lim 2h f h f h →--=( ) 。 A. 32 B. 3 2- C. 1 D. -1 10. 设42()=35f x x x -+,则(0)f 为()f x 在区间[2,2]-上的( )。

A. 极小值 B. 极大值 C. 最小值 D. 最大值 11. 设函数()f x 在[1,2]上可导,且'()0,(1)0,(2)0,f x f f <><则()f x 在(1,2)内( ) A.至少有两个零点 B. 有且只有一个零点 C. 没有零点 D. 零点个数不能确定 12. [()'()]f x xf x dx +=?( ). A.()f x C + B. '()f x C + C. ()xf x C + D. 2()f x C + 13. 已知2 2 (ln )y f x =,则y '=( C ) A.2222(ln )(ln )f x f x x ' B. 24(ln )f x x ' C. 224(ln )(ln ) f x f x x ' D. 222(ln )()f x f x x ' 14. ()d f x ? =( B) A.'()f x C + B.()f x C.()f x ' D.()f x C + 15. 2ln x dx x =?( D ) A.2ln x x C + B. ln x C x + C.2ln x C + D.()2ln x C + 16. 211 lim ln x x x →-=( ) A.2 B.3 C.4 D.5 17. 设函数0()(1)(2)x f x t t dt =-+?,则(2)f '-=( ) A 1 B 0 C 2- D 2 18. 曲线3y x =的拐点坐标是( ) A.(0,0) B.( 1,1) C.(2,2) D.(3,3) 19. 已知(ln )y f x =,则y '=( A ) A. (ln )f x x ' B.(ln )f x ' C.(ln )f x D.(ln ) f x x 20. ()d df x =?( A) A.()df x B.()f x C.()df x ' D.()f x C +

高等数学练习题库及答案

高等数学练习题库及答 案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

《高等数学》练习测试题库及答案 一.选择题 1.函数y= 1 1 2 +x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数 2.设f(sin 2 x )=cosx+1,则f(x)为( ) A 2x 2-2 B 2-2x 2 C 1+x 2 D 1-x 2 3.下列数列为单调递增数列的有( ) A . ,,, B . 23 ,32,45,54 C .{f(n)},其中f(n)=?????-+为偶数,为奇数n n n n n n 1,1 D. {n n 21 2+} 4.数列有界是数列收敛的( ) A .充分条件 B. 必要条件 C.充要条件 D 既非充分也非必要 5.下列命题正确的是( ) A .发散数列必无界 B .两无界数列之和必无界 C .两发散数列之和必发散 D .两收敛数列之和必收敛 6.=--→1 ) 1sin(lim 21x x x ( ) .0 C 2 7.设=+∞→x x x k )1(lim e 6 则k=( ) .2 C 6 8.当x →1时,下列与无穷小(x-1)等价的无穷小是( ) 2 B. x 3-1 C.(x-1)2 (x-1) (x)在点x=x 0处有定义是f(x)在x=x 0处连续的( )

A.必要条件 B.充分条件 C.充分必要条件 D.无关条件 10、当|x|<1时,y= () A、是连续的 B、无界函数 C、有最大值与最小值 D、无最小值 11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为() A、B、e C、-e D、-e-1 12、下列有跳跃间断点x=0的函数为() A、 xarctan1/x B、arctan1/x C、tan1/x D、cos1/x 13、设f(x)在点x 0连续,g(x)在点x 不连续,则下列结论成立是() A、f(x)+g(x)在点x 必不连续 B、f(x)×g(x)在点x 必不连续须有 C、复合函数f[g(x)]在点x 必不连续 D、在点x0必不连续 f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b 14、设 满足() A、a>0,b>0 B、a>0,b<0 C、a<0,b>0 D、a<0,b<0 15、若函数f(x)在点x 0连续,则下列复合函数在x 也连续的有() A、 B、

高等数学(下)期末复习题(附答案)

《高等数学(二)》期末复习题 一、选择题 1、若向量b 与向量)2,1,2(-=a 平行,且满足18-=?b a ,则=b ( ) (A ) )4,2,4(-- (B )(24,4)--, (C ) (4,2,4)- (D )(4,4,2)--. 2、在空间直角坐标系中,方程组2201x y z z ?+-=?=? 代表的图形为 ( ) (A )直线 (B) 抛物线 (C ) 圆 (D)圆柱面 3、设22 ()D I x y dxdy =+?? ,其中区域D 由222x y a +=所围成,则I =( ) (A) 2240 a d a rdr a π θπ=? ? (B) 2240 2a d a adr a π θπ=? ? (C) 2230 02 3 a d r dr a π θπ=? ? (D) 2240 01 2 a d r rdr a π θπ=? ? 4、 设的弧段为:2 3 0,1≤ ≤=y x L ,则=? L ds 6 ( ) (A )9 (B) 6 (C )3 (D) 2 3 5、级数 ∑∞ =-1 1 ) 1(n n n 的敛散性为 ( ) (A ) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不确定 6、二重积分定义式∑??=→?=n i i i i D f d y x f 1 0),(lim ),(σηξσλ中的λ代表的是( ) (A )小区间的长度 (B)小区域的面积 (C)小区域的半径 (D)以上结果都不对 7、设),(y x f 为连续函数,则二次积分??-1 010 d ),(d x y y x f x 等于 ( ) (A )??-1010 d ),(d x x y x f y (B) ??-1010d ),(d y x y x f y (C) ? ?-x x y x f y 10 1 0d ),(d (D) ?? 1 010 d ),(d x y x f y 8、方程2 2 2z x y =+表示的二次曲面是 ( ) (A )抛物面 (B )柱面 (C )圆锥面 (D ) 椭球面

大学高等数学下考试题库附复习资料

一.选择题(3分?10) 1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ). A.3 B.4 C.5 D.6 2.向量j i b k j i a +=++-=2,2,则有( ). A.a ∥b B.a ⊥b C.3,π=b a D.4 ,π =b a 3.函数1 122 2 22-++ --= y x y x y 的定义域是( ). A.(){ }21,22≤+≤y x y x B.( ){} 21,22<+p D.1≥p 8.幂级数∑∞ =1 n n n x 的收敛域为( ). A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1- 9.幂级数n n x ∑∞ =?? ? ??02在收敛域内的和函数是( ). A. x -11 B.x -22 C.x -12 D.x -21

10.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cx e y = 二.填空题(4分?5) 1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________. 2.函数()xy z sin =的全微分是______________________________. 3.设133 2 3 +--=xy xy y x z ,则 =???y x z 2_____________________________. 4. x +21 的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分?6) 1.设v e z u sin =,而y x v xy u +==,,求 .,y z x z ???? 2.已知隐函数()y x z z ,=由方程052422 2 2 =-+-+-z x z y x 确定,求 .,y z x z ???? 3.计算 σd y x D ?? +2 2sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径). 5.求微分方程x e y y 23=-'在00 ==x y 条件下的特解. 四.应用题(10分?2)

相关文档
相关文档 最新文档