文档库 最新最全的文档下载
当前位置:文档库 › 基于学习的图像超分辨率算法

基于学习的图像超分辨率算法

基于学习的图像超分辨率算法
基于学习的图像超分辨率算法

超分辨率图像重建方法综述_苏衡

第39卷第8期自动化学报Vol.39,No.8 2013年8月ACTA AUTOMATICA SINICA August,2013 超分辨率图像重建方法综述 苏衡1,2周杰1张志浩1 摘要由于广泛的实用价值与理论价值,超分辨率图像重建(Super-resolution image reconstruction,SRIR或SR)技术成为计算机视觉与图像处理领域的一个研究热点,引起了研究者的广泛关注.本文将超分辨率图像重建问题按照不同的输入输出情况进行系统分类,将超分辨率问题分为基于重建的超分辨率、视频超分辨率、单帧图像超分辨率三大类.对于其中每一大类问题,分别全面综述了该问题的发展历史、常用算法的分类及当前的最新研究成果等各种相关问题,并对不同算法的特点进行了比较分析.本文随后讨论了各不同类别超分辨率算法的互相融合和图像视频质量评价的方法,最后给出了对这一领域未来发展的思考与展望. 关键词超分辨率图像重建,计算机视觉,图像处理,方法综述 引用格式苏衡,周杰,张志浩.超分辨率图像重建方法综述.自动化学报,2013,39(8):1202?1213 DOI10.3724/SP.J.1004.2013.01202 Survey of Super-resolution Image Reconstruction Methods SU Heng1,2ZHOU Jie1ZHANG Zhi-Hao1 Abstract Because of its extensive practical and theoretical values,the super-resolution image reconstruction(SRIR or SR)technique has become a hot topic in the areas of computer vision and image processing,attracting many researchers attentions.This paper categorizes the SR problems according to their input and output conditions into three main cat-egories:reconstruction-based SR,video SR and single image SR.For each category,the development history,common algorithm classes and state-of-the-art research achievements are reviewed comprehensively.We also analyze the charac-teristics of di?erent algorithms.Afterwards,we discuss the combination of di?erent super-resolution categories and the evaluation of image and video qualities.Thoughts and foresights of this?eld are given at the end of this paper. Key words Super-resolution image reconstruction,computer vision,image processing,survey Citation Su Heng,Zhou Jie,Zhang Zhi-Hao.Survey of super-resolution image reconstruction methods.Acta Auto-matica Sinica,2013,39(8):1202?1213 超分辨率图像重建(Super resolution image re-construction,SRIR或SR)是指用信号处理和图像处理的方法,通过软件算法的方式将已有的低分辨率(Low-resolution,LR)图像转换成高分辨率(High-resolution,HR)图像的技术.它在视频监控(Video surveillance)、图像打印(Image printing)、刑侦分析(Criminal investigation analysis)、医学图像处理(Medical image processing)、卫星成像(Satellite imaging)等领域有较广泛的应用. 收稿日期2011-08-31录用日期2013-01-29 Manuscript received August31,2011;accepted January29, 2013 国家自然科学基金重大国际(地区)合作研究项目(61020106004),国家自然科学基金(61005023,61021063),国家杰出青年科学基金项目(61225008),教育部博士点基金(20120002110033)资助 Supported by Key International(Regional)Joint Research Pro-gram of National Natural Science Foundation of China(6102010 6004),National Natural Science Foundation of China(61005023, 61021063),National Science Fund for Distinguished Young Scholars(61225008),and Ph.D.Programs Foundation of Min-istry of Education of China(20120002110033) 1.清华大学自动化系北京100084 2.北京葫芦软件技术开发有限公司北京100084 1.Department of Automation,Tsinghua University,Beijing 100084 2.Beijing Hulu Inc.,Beijing100084 超分辨率问题的解决涉及到许多图像处理(Im-age processing)、计算机视觉(Computer vision)、优化理论(Optimization problem)等领域中的基本问题[1],例如图像配准(Image registration)、图像分割(Image segmentation)、图像压缩(Image com-pression)、图像特征提取(Image feature extrac-tion)、图像质量评价(Image quality estimation)、机器学习(Machine learning)、最优化算法(Opti-mization algorithm)等,超分辨率是这些基本问题的一个具体应用领域,同时也对它们的研究进展起到了推动的作用.因此超分辨率问题本身的研究具有重要的理论意义.目前超分辨率问题已经成为相关研究领域的热点之一. 在上世纪80~90年代,就有人开始研究超分辨率图像重建的方法,1984年Tsai的论文[2]是最早提出这个问题的文献之一.在这之后有很多相关的研究对超分辨率的问题进行更加深入的讨论.有关超分辨率问题的研究成果,在计算机视觉、图像处理与信号处理领域的顶级会议和期刊都有大量收录. 1998年,Borman等[3]发表了一篇超分辨率图像重建的综述文章.2001年,Kluwer出版了一本详细介

超分辨率算法综述

超分辨率复原技术的发展 The Development of Super2Re solution Re storation from Image Sequence s 1、引言 在图像处理技术中,有一项重要的研究内容称为图像融合。通常的成像系统由于受到成像条件和成像方式的限制,只能从场景中获取部分信息,如何有效地弥 补观测图像上的有限信息量是一个需要解决的问题。图像融合技术的含义就是把相关性和互补性很强的多幅图像上的有用信息综合在一起,产生一幅(或多幅) 携带更多信息的图像,以便能够弥补原始观测图像承载信息的局限性。 (图象融合就是根据需要把相关性和互补性很强的多幅图象上的有用信息综合在一起,以供观察或进一步处理,以弥补原始单源观测图象承载信息的局限性,它是一门综合了传感器、图象处理、信号处理、计算机和人工智能等技术的现代高新技术,于20 世纪70 年代后期形成并发展起来的。由于图象融合具有突出的探测优越性,在国际上已经受到高度重视并取得了相当进展,在医学、遥感、计算机视觉、气象预报、军事等方面都取得了明显效益。从图象融合的目标来看,主要可将其归结为增强光谱信息的融合和增强几何信息的融合。增强光谱信息的融合是综合提取多种通道输入图象的信息,形成统一的图象或数据产品供后续处理或指导决策,目前在遥感、医学领域都得到了比较广泛的应用。增强几何信息的融合就是从一序列低分辨率图象重建出更高分辨率的图象(或图象序列) ,以提 高图象的空间分辨率。对图象空间分辨率进行增强的技术也叫超分辨率 (super2resolution) 技术,或亚像元分析技术。本文主要关注超分辨率(SR) 重建技术,对SR 技术中涉及到的相关问题进行描述。) (我们知道,在获取图像的过程中有许多因素会导致图像质量的下降即退化,如 光学系统的像差、大气扰动、运动、离焦和系统噪音,它们会造成图像的模糊和变形。图像复原的目的就是对退化图像进行处理,使其复原成没有退化前的理想图像。按照傅里叶光学的观点,光学成像系统是一个低通滤波器,由于受到光学衍射的影响,其传递函数在由衍射极限分辨率所决定的某个截止频率以上值均为零。显然,普通的图像复原技术如去卷积技术等只能将物体的频率复原到衍射极

图像超分辨率重建

收稿日期:2008唱08唱21;修回日期:2008唱10唱28 作者简介:王培东(1953唱),男,黑龙江哈尔滨人,教授,硕导,CCF会员,主要研究方向为计算机控制、计算机网络、嵌入式应用技术;吴显伟(1982唱),男(回族),河南南阳人,硕士,主要研究方向为计算机控制技术(wu_xianwei@126.com). 一种自适应的嵌入式协议栈缓冲区管理机制 王培东,吴显伟 (哈尔滨理工大学计算机科学与技术学院,哈尔滨150080) 摘 要:为避免创建缓冲区过程中必须指定大小和多次释放而导致可能的内存泄露和代码崩溃的弊端,提出一种自适应的嵌入式协议栈的缓冲区管理机制AutoBuf。它是基于抽象缓冲区接口而设计的,具有自适应性,支持动态内存的自动分配与回收,同时实现了嵌入式TCP/IP协议栈各层之间的零拷贝通信。在基于研究平台S3C44B0X的Webserver网络数据监控系统上的测试结果表明,该缓冲区的设计满足嵌入式系统网络通信的应用需求,是一种高效、可靠的缓冲区管理机制。 关键词:嵌入式协议栈;抽象缓冲区;零拷贝;内存分配 中图分类号:TP316 文献标志码:A 文章编号:1001唱3695(2009)06唱2254唱03doi:10.3969/j.issn.1001唱3695.2009.06.077 Designandimplementationofadaptivebufferforembeddedprotocolstack WANGPei唱dong,WUXian唱wei (CollegeofComputerScience&Technology,HarbinUniversityofScience&Technology,Harbin150080,China) Abstract:Toavoidtraditionalmethodofcreatingbuffer,whichmusthavethesizeofbufferandfreememoryformanytimes,whichwillresultinmemoryleaksandcodescrash.ThispaperproposedaflexiblebuffermanagementmechanismAutoBufforembeddednetworkprotocolstack.Itwasadaptiveandscalableandbasedonanabstractbufferinterface,supporteddynamicme唱moryallocationandbackup.ByusingtheAutoBufbuffermanagementmechanismwithdatazerocopytechnology,itimplementedtotransferdatathroughtheembeddednetworkprotocolstack.ThemanagementmechanismhadbeenappliedtotheWebserversystembaseonS3C44b0Xplatformsuccessfully.Theresultsinrealnetworkconditionshowthatthesystemprovidesagoodper唱formanceandmeetsthenecessaryofembeddednetworksystem.Keywords:embeddedstack;abstractbuffer;zero唱copy;memoryallocation 随着网络技术的快速发展,主机间的通信速率已经提高到了千兆数量级,同时多媒体应用还要求网络协议支持实时业务。嵌入式设备网络化已经深入到日常生活中,而将嵌入式设备接入到互联网需要网络协议栈的支持。通过分析Linux系统中TCP/IP协议栈的实现过程,可以看出在协议栈中要有大量数据不断输入输出,而管理这些即时数据的关键是协议栈中的缓冲区管理机制,因此对嵌入式协议栈的缓冲区管理将直接影响到数据的传输速率和安全。通用以太网的缓冲区管理机制,例如4.4BSDmbuf [1] 和现行Linux系统中的sk_buf [2] 多是在大内存、 高处理速率的基础上设计的,非常庞大复杂。由于嵌入式设备的硬件资源有限,特别是可用物理内存的限制,通用的协议栈必然不适用于嵌入式设备,在应用时要对标准的TCP/IP协议进行裁剪 [3] 和重新设计缓冲区管理机制。 1 缓冲区管理机制的性能需求分析 缓冲区管理 [4] 是对内存提供一种统一的管理手段,通过该 手段能够对可用内存提供分配、回收、数据操作等行为。内存的分配操作是根据一定的内存分配策略从缓冲区中获得相应大小的内存空间;缓冲区的数据操作主要是向缓冲区写数据,从缓冲区读数据,在缓冲区中删除数据,对空闲的内存块进行合并等行为;内存的回收就是将已空闲的内存重新变为可用内存,以供存 储其他新的数据。 为了满足长度不一的即时数据的需求,缓冲区对内存的操作主要集中在不断地分配、回收、合并空闲的内存块等操作。因为网络中的数据包小到几个字节大到几千个字节,不同长度的数据对内存的需求必然不同。现存嵌入式设备中的内存多是以物理内存,即实模式形式存在的,没有虚拟内存的形式,对内存的操作实际是操作真实的物理内存,所以对内存操作要特别谨慎。在传统使用动态分配的缓冲区(通过调用malloc()/free())在函数之间传递数据。尽管该方法提供了灵活性,但它也带来了一些性能影响。首先考虑对缓冲区的管理(分配和释放内存块)。如果分配和释放不能在相同的代码位置进行,那么必须确保在某个内存块不再需要时,释放一次(且仅释放一次)该内存块是很重要的,否则就会导致内存泄露。其次是必须确定缓冲区的大小才能分配该内存块。然而,确定数据大小并非那么容易,传统做法是采用最大的数据尺寸的保守估计。而采用保守估计预分配的内存大小总是远超过实际需要的大小,而且没有一定的范围标准,这样难免会导致资源的严重浪费。 随着数据在协议栈中的不断流动,内存块的多次释放和多次分配是难以避免的,而保守估计对于有限的资源来说又是一种浪费的策略。因此为了能有效地利用资源,设计一种可自控的、不用预判断大小的数据缓冲区接口就势在必行。 第26卷第6期2009年6月  计算机应用研究 ApplicationResearchofComputers Vol.26No.6Jun.2009

关于图像超分辨率重构的现状研究

关于图像超分辨率重构的现状研究 摘要:图像超分辨率的重构技术是近20年来兴起的一门新的数字图像处理技术。随着计算机硬件技术和软件设计技术的不断发展,各种图像超分辨率重构算法被提出。综述超分辨率重构的相关研究,指出图像超分辨率重构技术近几年来的一些研究成果。 关键字:图像超分辨率;图像超分辨率重构;迭代法投影法 Abstract:Image super-resolution reconstruction technology is nearly 20 years the rise of a new digital image processing technology. With the continuous development of computer hardware and software design technology, all kinds of image super-resolution reconstruction algorithm was proposed. Of related studies on super-resolution reconstruction, and points out that the technology of image super-resolution reconstruction in recent years, some of the research. Keywords:image super-resolution; image super-resolution reconstruction; iterative projection method 1引言 超分辨率重构算法始于20世纪80年代,其目的在于恢复一些已丢失的频率分量。在成像过程中,由于受成像系统的物理性质和天气条件的影响,图像中存在着光学和运动模糊、采样不足和附加噪声等退化现象,图像空间分辨率较低。而在实际应用中,需要高分辨率的图像,如在遥感检测、军事侦查、交通及安全监控、医学诊断和模式识别等方面。在现有的传感器不作改变的情况下,人们希望利用信号处理的方法,通过一系列低分辨率图像来重构高分辨率图像。这种从同一场景的低分辨率图像序列中,通过信息融合来提高空间分辨率的方法通常被称为超分辨率重构。

超分辨率算法综述

图像超分辨率算法综述 摘要:介绍了图像超分辨率算法的概念和来源,通过回顾插值、重建和学习这3个层面的超分辨率算法,对图像超分辨率的方法进行了分类对比,着重讨论了各算法在还原质量、通用能力等方面所存在的问题,并对未来超分辨率技术的发展作了一些展望。 关键词:图像超分辨率;插值;重建;学习; Abstract:This paper introduced the conception and origin of image super resolu- tion technology. By reviewing these three kinds of methods(interpolation,reconstruct, study), it contrasted and classified the methods of image super-resolution,and at last, some perspectives of super-resolution are given. Key words: image super-resolution;interpolation;reconstruct;study;

1 引言 1.1 超分辨率的概念 图像超分辨率率(super resolution,SR)是指由一幅低分辨率图像(low resolution,LR)或图像序列恢复出高分辨率图像(high resolution, HR)。HR意味着图像具有高像素密度,可以提供更多的细节,这些细节往往在应用中起到关键作用。要获得高分辨率图像,最直接的办法是采用高分辨率图像传感器,但由于传感器和光学器件制造工艺和成本的限制[1],在很多场合和大规模部署中很难实现。因此,利用现有的设备,通过超分辨率技术获取HR图像(参见图1)具有重要的现实意义。 图1 图像超分辨率示意图 图像超分辨率技术分为超分辨率复原和超分辨率重建,许多文献中没有严格地区分这两个概念,甚至有许多文献中把超分辨率图像重建和超分辨率图像复原的概念等同起来,严格意义上讲二者是有本质区别的,超分辨率图像重建和超分辨率图像复原有一个共同点,就是把在获取图像时丢失或降低的高频信息恢复出来。然而它们丢失高频信息的原因不同,超分辨率复原在光学中是恢复出超过衍射级截止频率以外的信息,而超分辨率重建方法是在工程应用中试图恢复由混叠产生的高频成分。几何处理、图像增强、图像复原都是从图像到图像的处理,即输入的原始数据是图像,处理后输出的也是图像,而重建处理则是从数据到图像的处理。也就是说输入的是某种数据,而处理结果得到的是图像。但两者的目的是一致的,都是由低分辨率图像经过处理得到高分辨率图像。另外有些文献中对超分辨率的概念下定义的范围比较窄,只是指基于同一场景的图像序列和视频序列的超分辨处理,实际上,多幅图像的超分辨率大多数都是以单幅图像的超分辨率为基础的。在图像获取过程中有很多因素会导致图像质量下降,如传感器的形

人脸图像超分辨率的自适应流形学习方法

第20卷第7期2008年7月 计算机辅助设计与图形学学报 JO U RN A L O F COM PU T ER -AID ED D ESIG N &COM P U T ER G RA PH ICS Vo l 120,N o 17 July,2008 收稿日期:2007-11-06;修回日期:2008-03-111基金项目:国家科技支撑计划重点项目(2006BAK07B04).张雪松,男,1977年生,博士研究生,工程师,主要研究方向为数字图像复原与超分辨率、模式识别、红外图像实时处理.江 静,女,1979年生,硕士,讲师,主要研究方向为数字图像处理.彭思龙,男,1971年生,博士,研究员,博士生导师,主要研究方向为小波分析、图像处理、视频增强、模式识别. 人脸图像超分辨率的自适应流形学习方法 张雪松1) 江 静2) 彭思龙 1) 1)(中国科学院自动化研究所国家专用集成电路设计工程技术研究中心 北京 100190)2) (华北科技学院机械与电气工程系 北京 101601)(xuesong.zhang@https://www.wendangku.net/doc/9017478801.html,) 摘要 样本规模与使用方法是基于学习的超分辨率中的一个重要问题.面向人脸图像超分辨率重建,提出一种基 于局部保持投影(L P P)的自适应流形学习方法.由于能够揭示隐含在高维图像空间中的非线性结构,L PP 是一种可以在局部人脸流形上分析其内在特征的、有效的流形学习方法.通过在L P P 特征子空间中动态搜索出与输入图像块最相似的像素块集合作为学习样本,实现了自适应样本选择,并且利用动态样本集合通过基于像素块的特征变换方法有效地恢复出低分辨率人脸图像中缺失的高频成分.实验结果证实:通过在局部人脸流形上自适应地选择学习样本,文中方法可以仅使用相对少量的样本来获得很好的超分辨率重建结果.关键词 人脸图像;超分辨率;局部保持投影;流形学习;非监督学习中图法分类号 T P391.4 Adaptive Manifold Learning Method for Face Hallucination Zhang Xuesong 1) Jiang Jing 2) Peng Silong 1) 1)(National AS I C Desig n Eng inee ring Center ,Institute of A utomation,Chinese A cad emy of S cie nces ,B eij ing 100190)2) (Dep artment of M ec hanic s and E lectricity En gineering ,N or th Ch ina I nstitu te of S cie nce and Te chnolog y ,B eij ing 101601) Abstract T he size of training set as well as the usage thereof is an important issue of learning -based super -resolution.T his w or k presents an adaptive learning metho d for face hallucination using Locality Preserving Pr ojectio n (LPP).LPP is an efficient manifold learning m ethod that can be used to analy ze the lo cal intrinsic features on the manifold of local facial areas by virtue of its ability to reveal no n -linear structures hidden in the hig h -dim ensional image space.We fulfilled the adaptive sam ple selection by searching out patches online in the LPP sub -space,w hich makes the resultant training set tailor ed to the testing patch,and then effectively r estored the lo st hig h -frequency com ponents of the low -resolution face image by patched -based eig en transform ation using the dy namic training set.The ex perim ental r esults fully dem onstrate that the proposed m ethod can achieve goo d super -reso lution reconstruction perfo rmance by utilizing a relative small am ount o f samples. Key words face im ag e;super -r esolutio n;lo cality preserv ing projections;m anifold learning;unsuperv ised learning 超分辨率是指根据多张低分辨率图像重建出高分辨率图像的过程,在不同的应用中,输入的低分辨率图像可以是某个静态场景的图像序列 [1-3] (序列中 的图像间存在相对运动)或者是一段动态场景的视频[4-5].这些超分辨率方法通常是基于/重建约束0的:即认为低分辨率图像是待求高分辨率图像在不

图像的超分辨率处理方法研究现状

超分辨率图像处理技术是利用多帧关于同一场景的有相互位移的低分辨率降质图像来重建高分辨率高质量图像的技术。介绍了超分辨率图像处理技术的概念和起源;综述了超分辨率图像恢复研究现状。重点对单帧和多帧超分辨率图像处理的主要方法进行了评述,并总结对比了频域和空域方法的优缺点。最后对超分辨率图像处理技术的技术难点和前沿问题研究前景进行介绍和展望。 0引言 图像超分辨率处理技术是指利用多帧关于同一场景的有相互位移的低分辨率降质图像(LR,lowresolution)来重建高分辨率高质量图像(HR,highresolution)的技术[1]。图像超分辨率处理技术可突破图像采集设备的分辨率限制,充分利用多帧图像之间的互补信息,实现像素级的图像信息融合。在计算机视觉、卫星遥感、天文学、生物医学成像、民用安防等多个领域都有广泛的应用。图像超分辨率处理常被认为是广义的图像复原(Restoration)或图像重建(Reconstruction)。实际上它与两者有一定联系但是又不完全相同。图像复原是指去除或减轻获取数字图像过程中发生的图像质量下降(退化)[2],目标是恢复光学系统截止频率以内的成分,而图像超分辨率处理的目标是得到系统截止频率以外的成分。图像重建可用于现有成像系统不能提供满意图像分辨率的情况,如提高遥感图像、CT、核磁共振、超声波图像和各种监控图像等的分辨率[3]。在超分辨率处理中,多帧低分辨率降质图像可以认为是高分辨率理想图像经成像系统在观测平面上的一个投影,因此图像超分辨率处理也可以认为是由多帧低分辨率降质图像来重建高分辨率理想图像。 1超分辨率图像处理技术研究概况 J.L.Harris[4]和J.W.Goodman[5]提出的基于单帧图像的Harris-Goodman频谱外推法是最早的超分辨率图像处理的方法。随后,Tsai与Huang提出了基于序列或多帧图像的超分辨率重建问题,并给出了基于频域逼近的重建图像方法。此后,极大后验概率估计法、反向投影迭代法、凸集投影法和自适应滤波方法等许多有使用价值的方法被提出并发展。 目前,国内外对超分辨率的研究较突出的有:美国加州大学多维信号处理研究小组的PeymanMilanfar等提出了大量的实用算法和集成各种算法的超分辨率图像恢复软件包[6];美国Dayton大学和Wright实验室对红外CCD相机进行了机载试验,利用20幅低分辨率的红外图像,取得了分辨率提高近5倍的实验结果。香港R. F. Chars等研究了超分辨率图像恢复的有效预处理共扼梯度迭代算法[7]。以色列耶鲁撒冷大学M.Elad等[8]对存在任意运动的图像序列,以及动态的和彩色的多媒体等的超分辨率恢复进行了研究。以色列的EROS-A卫星利用“过采样”技术使影像的分辨率提高一倍以上。印度S.Chaudhuri等研究了迭代的超分辨率图像恢复方法[9]。韩国Pohang理工大学在各向异性扩散用于超分辨率[10]方面进行了研究。国内近几年在频谱外推、混叠效应的消除、无损检测、成像探测元的阵列改进以及一些超分辨率方法的改进方面做过类似研究,但研究水平无论从深度和广度上都较国外存在一定的差距[11]。 2超分辨率图像处理方法 图像超分辨率处理技术通常可以分为两大类:单帧图像重建(静态图像插值)方法和多帧图像处理(序列图像重建)方法。单帧图像处理也称为图像放大,是指利用一帧探测器采集到的低分辨率图像的信息,通过重建算法提高图像分辨率的方法。为了增加利用图像的信息,人们逐渐将研究热点转向多帧图像处理。多帧图像处理充分利用了不同帧图像之间的互补信息,其超分辨率复原能力好于利用单帧图像处理。其主要方法大致可以分为两类:频域法和空域法。早期的超分辨率图像处理方法研究都集中在频域,后来转向空域超分辨率图像处理复原方法的研究。频域法不能利用图像的先验知识,而空域方法则能够充分利用图像先验知识。频域方法的基本流程如图1(a)所示。其中图像配准和运动模型估计的精度越高,图像重建的效果就越好。当考虑到普遍的运动类型以及退化模型时,频率域方法仅能进行整体运动估计,

超分辨率

浅谈超分辨率 摘要:超分辨率图像重建是现在研究的一个热点,旨在实现由一系列低分辨率的图像得到一幅较高分辨率的图像。本文对超分辨率的概念,技术实现和应用场合都进行了基本的阐述。可以预见,超分辨率重建的应用前途十分广泛;其图像重建的实现、完成方法都将是我们今后研究的重点。 关键词:超分辨率,图像重建 一、引言 在数字图像采集的过程中,由于机器设备性能的限制以及拍摄条件的影响,会使采集到的图像分辨率较低。这样的图像比较模糊,对于后期的处理、应用有较大的影响,因此提高图像的分辨率是我们必须要解决的。提高分辨率最直接的方法当然是使用分辨率更高的设备,不过这存在两个问题:一是高分辨率的设备价格昂贵;二是每一种设备都存在着它的极限,受到硬件设备的限制很难得到真正高分辨率的图像。因此可以考虑采用软件的方法对图像的分辨率进行提高,这就是本文要讨论的超分辨率(SR:Super-Resolution)图像重建。 二、超分辨率的定义 低分辨率的图像包含的细节信息较少,但我们可以得到一系列低分辨率的图像,这些图像包含的部分细节信息各有不同,能够相互补充。通过这一系列低分辨的图像,经过一定的处理,可以得到一幅分辨率较高、包含信息较多的图像。这个处理过程就是超分辨率重建。超分辨率重建的核心思想就是用时间带宽(获取同一场景的多帧图像序列)换取空间分辨率,实现时间分辨率向空间分辨率的转换。 三、超分辨率的应用场景 超分辨率图像重建在现实生活中有十分广泛的用途。这里,我们列举了一些生活中用到的地方: 1)数字高清。在数字电视领域,可以利用超分辨率重建技术将数字电视(DTV)信号转化为高清晰度电视(HDTV)接收机相匹配的信号,从而提高观众的体验。 2)医学图像。在医疗中,高分辨率的医疗图像对于医生做出正确的诊断是非常有帮助的。 因此利用超分辨率重建得到更加清晰的图像,将会使医生治疗更加的准确、有效。 3)卫星图像分析。在军事、气象领域,使用高分辨率卫星图像就很容易地从相似物中区别相似的对象。因此可以利用超分辨率重建技术获得高分辨率的图像,更好的服务于军事安全和日常生活。 4)安全检测。银行、居民小区、道路口等都是需要安全检测的地方。虽然这些地方一般都会安装摄像头,但图像都非常模糊。利用超分辨率重建技术,将会帮助工作人员得到更

图像超分辨率重建技术的研究背景意义及应用

图像超分辨率重建技术的研究背景意义及应用图像超分辨率重建技术的研究背景意义及应用 1 研究背景及研究意义 2 图像超分辨率重建的应用 1 研究背景及研究意义 伴随着计算机技术、信息处理技术和视觉通信技术的高速发展,人类进入了一个全新的信息化时代。人们所能能够获取的知识量呈爆炸式的增长,因此迫切的要求信息处理技术不断的完善和发展,以便能够为人们提供更加方便、快捷和多样化的服务。数字图像及其相关处理技术是信息处理技术的重要内容之一,在很多领域得到了越来越广泛的应用。对于数字图像在一些情况下一般要求是高分辨图像,如:医学图像要求能够显示出那些人眼不能辨别出的细微病灶;卫星地面要求卫星图像至少能够辨别出人的脸相甚至是证件;有些检测识别控制装置需要足够高分辨率的图像才能保证测量和控制的精度。因此提高图像分辨率是图像获取领域里追求的一个目标。 1970年以来,CCD和CMOS图像传感器广泛的被用来获取数字图像,在很多的 应用场合,需要获取高分辨图像,提高图像分辨率最直接的方法是提高成像装置的分辨力,但是受传感器阵列排列密度的限制,提高传感器的空间分辨率越来越难,通常采用的方法是减少单位像素的尺寸(即增加单位面积内的像素数量),对于数字摄机,比如CCD,就是减少其传感单元的尺寸从而提高传感器的阵列密度,使其能够分辨出更多场景细节。但是这样将导致数字摄像机的价格大幅度提高。技术工艺的制约也限制了图像分辨率的进一步提高。事实上随着像素尺寸的减少,每个像素接收到的光照强度也随之降低,传感器自身的噪声将严重影响图像的质量,造成拍摄的影像信噪比不高,因此,像素尺寸不可能无限制的降低,而是有下限的,当CCD传感器阵列密度增加到一定程度时,图像的分辨率不但不会提高反而会下降,

图像超分辨率重建--图像处理课程设计

目录 1 课程设计目的 (1) 2图像处理系统设计内容及要求 (2) 2.1设计内容 (2) 2.2设计要求 (2) 3 设计方案 (3) 4 功能模块的具体实现 (5) 4.1 空域插值放大的方法 (5) 4.1.1 最邻近插值算法 (5) 4.1.2 双线性插值算法 (6) 4.1.3 双三次插值算法 (7) 4.2 频域重建的方法 (8) 4.2.1 DCT变换的介绍 (8) 4.2.2 DCT放大图像放大算法原理 (8) 4.3 频域分块重建的方法 (10) 4.4 同态滤波器滤波处理 (11) 4.4.1 同态滤波器原理 (11) 4.4.2 同态滤波函数的确定 (12) 5 总结与体会 (14) 参考文献 (15) 附录 (16)

1课程设计目的 MATLAB7.0软件。MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言的编辑模式,代表了当今国际科学计算软件的先进水平。通过用MATLAB 对图像进行处理,以实现以下目的。 1.培养严谨的科学态度,正确的设计思想,科学的设计方法和良好的工作作风。 2.培养独立思考的能力,独立检索资料、阅读文献、综合分析、计算机应用、数据及文字处理等能力。 3.培养综合运用基础理论、基本知识的能力。通过课程设计得到工程设计的初步锻炼。

相关文档