文档库 最新最全的文档下载
当前位置:文档库 › 霍尼韦尔SSC系列压力传感器模拟输出型

霍尼韦尔SSC系列压力传感器模拟输出型

霍尼韦尔SSC系列压力传感器模拟输出型
霍尼韦尔SSC系列压力传感器模拟输出型

DESCRIPTION

The TruStability ? Standard Accuracy Silicon Ceramic (SSC) Series is a piezoresistive silicon pressure sensor offering a ratiometric analog output for reading pressure over the specified full scale pressure span and temperature range.

The SSC Series is fully calibrated and temperature

compensated for sensor offset, sensitivity, temperature effects, and non-linearity using an on-board Application Specific

Integrated Circuit (ASIC). Calibrated output values for pressure are updated at approximately 1 kHz.

The SSC Series is calibrated over the temperature range of -20 C to 85 C [-4 F to 185 F]. The sensor is characterized for operation from a single power supply of either 3.3 Vdc or 5.0 Vdc.

These sensors measure absolute, differential, and gage pressures. The absolute versions have an internal vacuum reference and an output value proportional to absolute

pressure. Differential versions allow application of pressure to either side of the sensing diaphragm. Gage versions are referenced to atmospheric pressure and provide an output proportional to pressure variations from atmosphere.

The TruStability ?

pressure sensors are intended for use with non-corrosive, non-ionic gases, such as air and other dry gases. An available option extends the performance of these sensors to non-corrosive, non-ionic liquids.

All products are designed and manufactured according to ISO 9001 standards.

FEATURES

Industry-leading long-term stability

Extremely tight accuracy of 0.25% FSS BFSL (Full Scale

Span Best Fit Straight Line)

Total error band of

2% full scale span maximum

Modular and flexible design offers customers a variety of package styles and options, all with the same industry-

leading performance specifications

Miniature 10 mm x 10 mm [0.39 in x 0.39 in] package

Low operating voltage

Extremely low power consumption

Ratiometric analog output

High resolution (min. 0.03 %FSS) Precision ASIC conditioning and temperature compensated over -20 C to 85 C [-4 F to 185

F] temperature range

RoHS compliant

Virtually insensitive to mounting orientation

Internal diagnostic functions increase system reliability

Also available with I 2

C or SPI digital output

Absolute, differential and gage types

Pressure ranges from 1 psi to 150 psi (60 mbar to 10 bar)

Custom calibration available

Various pressure port options Liquid media option

2 https://www.wendangku.net/doc/9e17649081.html,/sensing

POTENTIAL APPLICATIONS Medical:

- Airflow monitors

- Anesthesia machines - Blood analysis machines - Gas chromatography - Gas flow instrumentation - Kidney dialysis machines - Oxygen concentrators - Pneumatic controls - Respiratory machines - Sleep apnea equipment - Ventilators

Industrial:

- Barometry

- Flow calibrators

- Gas chromatography - Gas flow instrumentation - HVAC

- Life sciences

- Pneumatic controls

1

Honeywell Sensing and Control 3

10

1. Absolute maximum ratings are the extreme limits the device will withstand without damage.

2. Ratiometricity of the sensor (the ability of the device to scale to the supply voltage) is achieved within the specified operating voltage for each

option.

3. The sensor is not reverse polarity protected. Incorrect application of supply voltage or ground to the wrong pin may cause electrical failure.

4. The compensated temperature range is the temperature range over which the sensor will produce an output proportional to pressure within

the specified performance limits.

5. The operating temperature range is the temperature range over which the sensor will produce an output proportional to pressure but may not

remain within the specified performance limits.

6. Accuracy: The maximum deviation in output from a Best Fit Straight Line (BFSL) fitted to the output measured over the pressure range at

25 °C [77 °F]. Includes all errors due to pressure non-linearity, pressure hysteresis, and non-repeatability.

7. Total Error Band: The maximum deviation from the ideal transfer function over the entire compensated temperature and pressure range.

Includes all errors due to offset, full scale span, pressure non-linearity, pressure hysteresis, repeatability, thermal effect on offset, thermal effect on span, and thermal hysteresis.

8. Full Scale Span (FSS) is the algebraic difference between the output signal measured at the maximum (Pmax.) and minimum (Pmin.) limits of

the pressure range. (See Figure 1 for ranges.)

9. Life may vary depending on specific application in which sensor is utilized. 10. Contact Honeywell Customer Service for detailed material information.

Ensure liquid media is applied to Port 1 only; Port 2 is not compatible with liquids.

Ensure liquid media contains no particulates. All TruStability ?

sensors are dead-ended devices. Particulates can accumulate Recommend that the sensor be positioned with Port 1 facing downwards; any particulates in the system are less likely to Ensure liquid media does not create a residue when dried; build-up inside the sensor may affect sensor output. Rinsing of a Ensure liquid media are compatible with wetted materials. Non-compatible liquid media will degrade sensor performance and

4 https://www.wendangku.net/doc/9e17649081.html,/sensing

11. The transfer function limits define the output of the sensor at a given pressure input. By specifying Pmin. and Pmax., the output at Pmin. and

Pmax., the complete transfer function of the sensor is defined. See Figure 2 for a graphical representation of the transfer function. Other transfer functions are available. Contact Honeywell Customer Service for more information.

12. Digital outputs (SPI or I 2C) are also available. Contact Honeywell Customer Service for more information. 13. Custom pressure ranges are available. Contact Honeywell Customer Service for more information. 14. See Table 5 for an explanation of sensor pressure types. 15. See CAUTION on previous page.

Honeywell Sensing and Control 5

SSCSANN100PGAA3 SIP package, AN pressure port, no diagnostics, 100

Output is proportional to the difference between the pressures applied to each port. (Port 1 Port 2)

25 C [77 F]) 0.25% FSS 0.25% FSS 0.25% FSS 0.25% FSS 0.25% FSS 0.35% FSS 0.35% FSS 0.25% FSS 0.25% FSS 0.25% FSS 0.35% FSS 0.35% FSS 0.25% FSS 0.25% FSS 0.25% FSS 0.25% FSS 0.25% FSS

6 https://www.wendangku.net/doc/9e17649081.html,/sensing

25 C [77 F]) 0.25% FSS 0.25% FSS 0.25% FSS 0.25% FSS 0.25% FSS 0.25% FSS 0.35% FSS 0.35% FSS 0.35% FSS 0.35% FSS 0.35% FSS 0.25% FSS 0.25% FSS 0.25% FSS 0.25% FSS 0.25% FSS 0.35% FSS 0.35% FSS 0.35% FSS

0.35% FSS 0.35% FSS

0.35% FSS 0.25% FSS 0.25% FSS 0.25% FSS 0.25% FSS 0.25% FSS 0.25% FSS

16. Overpressure: The maximum pressure which may safely be applied to the product for it to remain in specification once pressure is returned to

the operating pressure range. Exposure to higher pressures may cause permanent damage to the product. Unless otherwise specified this applies to all available pressure ports at any temperature with the operating temperature range.

17. Burst pressure: The maximum pressure that may be applied to any port of the product without causing escape of pressure media. Product

should not be expected to function after exposure to any pressure beyond the burst pressure.

18. Common mode pressure: The maximum pressure that can be applied simultaneously to both ports of a differential pressure sensor without

causing changes in specified performance.

Honeywell Sensing and Control

7

8 https://www.wendangku.net/doc/9e17649081.html,/sensing

Honeywell Sensing and Control

9

10 https://www.wendangku.net/doc/9e17649081.html,/sensing

Honeywell Sensing and Control 11

Sensing and Control Honeywell

1985 Douglas Drive North

Golden Valley, MN 55422 https://www.wendangku.net/doc/9e17649081.html, 008215-2-EN IL50 GLO Printed in USA March 2011

? 2011 Honeywell International Inc.

WARNING

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Honeywell s standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgement or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items it finds defective. The foregoing is buyer s sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.

While we provide application assistance personally, through our literature and the Honeywell web site, it is up to the customer to determine the suitability of the product in the application.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.

WARNING

The information presented in this product sheet is for

Complete installation, operation, and maintenance

SALES AND SERVICE

Honeywell serves its customers through a worldwide network of sales offices, representatives and distributors. For application assistance, current specifications, pricing or name of the nearest Authorized Distributor, contact your local sales office or:

E-mail: info.sc@https://www.wendangku.net/doc/9e17649081.html,

Internet: https://www.wendangku.net/doc/9e17649081.html,/sensing

Phone and Fax:

Asia Pacific +65 6355-2828; +65 6445-3033 Fax

Europe +44 (0) 1698 481481; +44 (0) 1698 481676 Fax Latin America +1-305-805-8188; +1-305-883-8257 Fax

USA/Canada +1-800-537-6945; +1-815-235-6847

+1-815-235-6545 Fax

压力传感器 HX711 程序

#include #define uchar unsigned char #define uint unsigned int #define ulong unsigned long uchar code table[]="0123456789"; uchar code table1[]=".Kg"; sbitlcden=P3^4; sbitlcdrs=P3^5; sbit ADDO=P2^3; sbit ADSK=P2^4; sbit beep=P2^2; uintshiqian,qian,bai,shi,ge; ulongzhl; void delay(uintms) { uinti,j; for(i=ms;i>0;i--) for(j=110;j>0;j--); } voidwrite_com(uchar com) { lcdrs=0; P1=com; delay(10); lcden=1; delay(5); lcden=0; } voidinit() { lcden=0; write_com(0x38);//0011 1000 显示模式16*2显示,5*7点阵,8位数据接口 write_com(0x0c);//0000 1100 开显示不显示光标光标不闪烁 write_com(0x06);//0000 0110 当读或写一字符后地址指针加一且光标加一,显示不移动write_com(0x01);//0000 0001 显示清零数据指针清零 } voidwrite_data(uchar date) {

P1=date; delay(10); lcden=1; delay(5); lcden=0; } void display() { ulongtamp,zhl; if(zhl>0||zhl<16777216)//进行判断是否满足条件 { tamp=((zhl*298)/100000)-24714;//进行AD转换计算 shiqian=tamp/10000; //进行计算 qian=tamp%10000/1000; bai=tamp%10000%1000/100; shi=tamp%10000%1000%100/10; ge=tamp%10000%1000%100%10; write_com(0x80+0x05); //表示使用哪个1602中的地址显示 write_data(table[shiqian]); // 显示值 delay(50); write_com(0x80+0x06); //表示使用哪个1602中的地址显示 write_data(table[qian]); // 显示值 delay(50); //延时,主要是用来解决显示屏是否忙还是不忙 write_com(0x80+0x07); write_data(table1[0]); delay(50); write_com(0x80+0x08); write_data(table[bai]); delay(50); write_com(0x80+0x09); write_data(table[shi]); delay(50); write_com(0x80+0x0A); write_data(table[ge]);

压力传感器对电压的要求

一般普通压力传感器的输出为模拟信号,近距离满量程输出电压可达100 - 150mV ,输出电流为0- 0101mA. 远距离输出信号电压便会衰减,应采用电流信号输出。经压力变送器将电流放大后可以输出20mA 以下的电流信号。这样,价格就成倍增加。 另外,只有经过A/ D 和V/ F 变换后才能得到数字信号和频率信号。 恒流源和恒压源都是通常传感器采用的两种激励源。两种激励方法是有区别的,其作用不同。 恒流源激励有利于热灵敏度漂移的补偿作用。 因为桥臂电阻器的温度系数为正,而灵敏度温度系数为负。恒流源激励时的输出信号电压的温度系数是两者的代数和。而恒压激励不能直接提供灵敏度温度补偿效果。但用恒压源激励时可在桥外串接热敏电阻或二极管以补偿热灵敏度漂移。用恒流源激励时,这种灵敏度补偿方法便不起作用。可见,恒压源激励和恒流源激励相互之间不能随意互换。 一般精度测量时用恒流源激励。恒压源激励时,测量的精度取决于恒压源稳压器件的精度。 另外,又可将压力传感器的激励电源分为正比激励和固定激励。前者是将压力传器电桥直接接到电源上,当电源改变时,压力传感器的灵敏度和零点都随之发生变化。后者内部有一个参照电压,压力传感器电桥由参照电压供电激励。参考电压是恒定的,与电源电压无关。只要电源电压在一指定电压范围内变化,参照电压不变。因而传感器的输出不变,不受电源电压的影响。 压力传感器可以用电池供电,但更普遍的是采用直流稳压电源技术。电池供电时噪声小,但随电池使用,供电电压逐渐降低,特别是当传感器用正比激励时,灵敏度便逐渐减小。这就会造成读数不准。因此要采用补偿办法(例如压力传感器和A/ D 变换器共用一个电池供电),或者使用低功耗、小电流的压力传感器,长寿命电池,或者测量压力时接上电源,测量完毕后,将电池关闭节省电能。换上新电池后,压力传感器需要重新校准标定。这是因为不同牌号的电池其电动势、内阻都存在一定的差异。压力传感器的电桥激励电压的变化会造成灵敏度的改变。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。https://www.wendangku.net/doc/9e17649081.html,/

压力传感器分类与简介

将压力转换为电信号输出的传感器。通常把压力测量仪表中的电测式仪表称为压力传感器。压力传感器一般由弹性敏感元件和位移敏感元件(或应变计)组成。弹性敏感元件的作用是使被测压力作用于某个面积上并转换为位移或应变,然后由位移敏感元件(见位移传感器)或应变计(见电阻应变计、半导体应变计)转换为与压力成一定关系的电信号。有时把这两种元件的功能集于一体,如压阻式传感器中的固态压力传感器。压力是生产过程和航天、航空、国防工业中的重要过程参数,不仅需要对它进行快速动态测量,而且还要将测量结果作数字化显示和记录。大型炼油厂、化工厂、发电厂和钢铁厂等的自动化还需要将压力参数远距离传送(见遥测),并要求把压力和其他参数,如温度、流量、粘度等一起转换为数字信号送入计算机。因此压力传感器是极受重视和发展迅速的一种传感器。压力传感器的发展趋势是进一步提高动态响应速度、精度和可靠性以及实现数字化和智能化等。常用压力传感器有电容式压力传感器、变磁阻式压力传感器(见变磁阻式传感器、差动变压器式压力传感器)、霍耳式压力传感器、光纤式压力传感器(见光纤传感器)、谐振式压力传感器等。 传感器的基本知识 一、传感器的定义 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 二、传感器的分类 目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种: 1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器 2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。 3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。 关于传感器的分类: 1.按被测物理量分:如:力,压力,位移,温度,角度传感器等; 2.按照传感器的工作原理分:如:应变式传感器、压电式传感器、压阻式传感器、电感式传感器、电容式传感器、光电式传感器等; 3.按照传感器转换能量的方式分: (1)能量转换型:如:压电式、热电偶、光电式传感器等; (2)能量控制型:如:电阻式、电感式、霍尔式等传感器以及热敏电阻、光敏电阻、湿敏电阻等; 4.按照传感器工作机理分: (1)结构型:如:电感式、电容式传感器等; (2)物性型:如:压电式、光电式、各种半导体式传感器等; 5.按照传感器输出信号的形式分: (1)模拟式:传感器输出为模拟电压量; (2)数字式:传感器输出为数字量,如:编码器式传感器。 三、传感器的静态特性 传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方

压力传感器工作原理

电阻应变式压力传感器工作原理细解 2011—10-14 15:37元器件交易网 字号: 中心议题: 电阻应变式压力传感器工作原理 微压力传感器接口电路设计 微压力传感器接口系统得软件设计 微压力传感器接口电路测试与结果分析 解决方案: 电桥放大电路设计 AD7715接口电路设计 单片机接口电路设计 本文采用惠斯通电桥滤出微压力传感器输出得模拟变量,然后用INA118放大器将此信号放大,用7715A/D 进行模数转换,将转换完成得数字量经单片机处理,最后由LCD 将其显示,采用LM334 做得精密5 V 恒流源为电桥电路供电,完成了微压力传感器接口电路设计,既能保证检测得实时性,也能提高测量精度。 微压力传感器信号就是控制器得前端,它在测试或控制系统中处于首位,对微压力传感器获取得信号能否进行准确地提取、处理就是衡量一个系统可靠性得关键因素.后续接口电路主要指信号调节与转换电路,即能把传感元件输出得电信号转换为便于显示、记录、处理与控制得有用电信号得电路。由于用集成电路工艺制造出得压力传感器往往存在:零点输出与零点温漂,灵敏度温漂,输出信号非线性,输出信号幅值低或不标准化等问题。本文得研究工作,主要集中在以下几个方面: (1)介绍微压力传感器接口电路总体方案设计、系统得组成与工作原理。

(2)系统得硬件设计,介绍主要硬件得选型及接口电路,包括A/D 转换电路、单片机接口电路、1602显示电路。 (3)对系统采用得软件设计进行研究,并简要阐述主要流程图,包括主程序、A/D转换程序、1602显示程序。 1 电阻应变式压力传感器工作原理 电阻应变式压力传感器就是由电阻应变片组成得测量电路与弹性敏感元件组合起来得传感器。当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面得电阻应变片也会产生应变,表现为电阻值得变化。这样弹性体得变形转化为电阻应变片阻值得变化。把4 个电阻应变片按照桥路方式连接,两输入端施加一定得电压值,两输出端输出得共模电压随着桥路上电阻阻值得变化增加或者减小。一般这种变化得对应关系具有近似线性得关系。找到压力变化与输出共模电压变化得对应关系,就可以通过测量共模电压得到压力值。 当有压力时各桥臂得电阻状态都将改变,电桥得电压输出会有变化. 式中:Uo为输出电压,Ui 为输入电压。 当输入电压一定且ΔRi 〈

压力传感器的灵敏度产品

一、传感器的定义 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 二、传感器的分类 目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种: 1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。 3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。 关于传感器的分类: 1.按被测物理量分:如:力,压力,位移,温度,角度传感器等; 2.按照传感器的工作原理分:如:应变式传感器、压电式传感器、压阻式传感器、电感式传感器、电容式传感器、光电式传感器等; 3.按照传感器转换能量的方式分: (1)能量转换型:如:压电式、热电偶、光电式传感器等; (2)能量控制型:如:电阻式、电感式、霍尔式等传感器以及热敏电阻、光敏电阻、湿敏电阻等; 4.按照传感器工作机理分: 结构型:如:电感式、电容式传感器等; (2)物性型:如:压电式、光电式、各种半导体式传感器等; 5.按照传感器输出信号的形式分: (1)模拟式:传感器输出为模拟电压量; (2)数字式:传感器输出为数字量,如:编码器式传感器。 三、传感器的静态特性

压力传感器

给煤机称重传感器原理和使用知识 2011-8-23 20:11:00 来源: 称重传感器按转换原理分为电磁力式、光电式、液压式、电容式、磁极变形式、振动式、陀螺仪式、电阴应变式等8类传感器,以电阻应变式使用最广。在称重传感器主要技术指标的基本概念和评价方法上,新旧国标有质的差异。本文介绍称重传感器的工作原理和使用注意事项等知识。 电阻应变式称重传感器是基于这样一个原理:弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。 由此可见,电阻应变片、弹性体和检测电路是电阻应变式称重传感器中不可缺少的几个主要部分。下面就这三方面简要论述称重传感器工作原理。 称重传感器原理图 一、传感器电阻应变片 电阻应变片是把一根电阻丝机械的分布在一块有机材料制成的基底上,即成为一片应变片。他的一个重要参数是灵敏系数K。我们来介绍一下它的意义。 设有一个金属电阻丝,其长度为L,横截面是半径为r的圆形,其面积记作S,其电阻率记作ρ,这种材料的泊松系数是μ。当这根电阻丝未受外力作用时,它的电阻值为R: R = ρL/S(Ω) (2—1) 当他的两端受F力作用时,将会伸长,也就是说产生变形。设其伸长ΔL,其横截面积则缩小,即它的截面圆半径减少Δr。此外,还可用实验证明,此金属电阻丝在变形后,电阻率也会有所改变,记作Δρ。 对式(2--1)求全微分,即求出电阻丝伸长后,他的电阻值改变了多少。我们有: ΔR = ΔρL/S + ΔLρ/S –ΔSρL/S2 (2—2) 用式(2--1)去除式(2--2)得到 ΔR/R = Δρ/ρ + ΔL/L –ΔS/S (2—3) 另外,我们知道导线的横截面积S = πr2,则Δs = 2πr*Δr,所以 ΔS/S = 2Δr/r (2—4) 从材料力学我们知道 Δr/r = -μΔL/L (2—5)

压力传感器工作原理

电阻应变式压力传感器工作原理细解 2011-10-14 15:37元器件交易网 字号: 中心议题: 电阻应变式压力传感器工作原理 微压力传感器接口电路设计 微压力传感器接口系统的软件设计 微压力传感器接口电路测试与结果分析 解决方案: 电桥放大电路设计 AD7715接口电路设计 单片机接口电路设计 本文采用惠斯通电桥滤出微压力传感器输出的模拟变量,然后用INA118放大器将此信号放大,用7715A/D 进行模数转换,将转换完成的数字量经单片机处理,最后由LCD 将其显示,采用LM334 做的精密5 V 恒流源为电桥电路供电,完成了微压力传感器接口电路设计,既能保证检测的实时性,也能提高测量精度。 微压力传感器信号是控制器的前端,它在测试或控制系统中处于首位,对微压力传感器获取的信号能否进行准确地提取、处理是衡量一个系统可靠性的关键因素。后续接口电路主要指信号调节和转换电路,即能把传感元件输出的电信号转换为便于显示、记录、处理和控制的有用电信号的电路。由于用集成电路工艺制造出的压力传感器往往存在:零点输出和零点温漂,灵敏度温漂,输出信号非线性,输出信号幅值低或不标准化等问题。本文的研究工作,主要集中在以下几个方面:

(1)介绍微压力传感器接口电路总体方案设计、系统的组成和工作原理。 (2)系统的硬件设计,介绍主要硬件的选型及接口电路,包括A/D 转换电路、单片机接口电路、1602显示电路。 (3)对系统采用的软件设计进行研究,并简要阐述主要流程图,包括主程序、A/D 转换程序、1602显示程序。 1 电阻应变式压力传感器工作原理 电阻应变式压力传感器是由电阻应变片组成的测量电路和弹性敏感元件组合起来的传感器。当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面的电阻应变片也会产生应变,表现为电阻值的变化。这样弹性体的变形转化为电阻应变片阻值的变化。把4 个电阻应变片按照桥路方式连接,两输入端施加一定的电压值,两输出端输出的共模电压随着桥路上电阻阻值的变化增加或者减小。一般这种变化的对应关系具有近似线性的关系。找到压力变化和输出共模电压变化的对应关系,就可以通过测量共模电压得到压力值。 当有压力时各桥臂的电阻状态都将改变,电桥的电压输出会有变化。 式中:Uo 为输出电压,Ui 为输入电压。 当输入电压一定且ΔRi <

毕业设计---智能压力传感器系统设计

毕业设计任务书 一、题目 智能压力传感器系统设计 二、指导思想和目的要求 1.培养学生综合运用所学职业基础知识、职业专业知识和职业技能,提高解决实际问题的能力,从而达到巩固、深化所学的知识与技能; 2. 培养学生建立正确的科学思想,培养学生认真负责、实事求是的科学态度和严谨求实作风; 3.培养学生调查研究,收集资料,熟悉有关技术文件,锻炼学生的科研工作能力和培养学生的团结合作攻关能力。 三、主要技术指标 1.培养学生综合运用所学职业基础知识、职业专业知识和职业技能,提高解决实际问题的能力,从而达到巩固、深化所学的知识与技能; 2. 培养学生建立正确的科学思想,培养学生认真负责、实事求是的科学态度和严谨求实作风; 3.培养学生调查研究,收集资料,熟悉有关技术文件,锻炼学生的科研工作能力和培养学生的团结合作攻关能力。 三、主要技术指标 本设计主要设计一个智能压力传感器的设计,要求如下: 被测介质:气体、液体及蒸气 量程:0Pa~500pa 综合精度:±0.25%FS 供电:24V Dc(12~36VDC) 介质温度:-20~150℃ 环境温度:-20~85℃ 过载能力:150%FS 响应时间:≤10mS 稳定性:≤±0.15%FS/年 能实时显示目标压力值和保存参数,并能和上位机进行通信,并具有较强的抗干扰能力。 所需要完成的工作: 1.系统地掌握控制器的开发设计过程,相关的电子技术和传感器技术等,进行设计任务和功能的描述;

2.进行系统设计方案的论证和总体设计; 3.从全局考虑完成硬件和软件资源分配和规划,分别进行系统的硬件设计和软件设计; 4.进行硬件调试,软件调试和软硬件的联调; 5.查阅到15篇以上与题目相关的文献,按要求格式独立撰写不少于15000字的设计说明书及1.5万(或翻译成中文后至少在3000字以上)字符以上的英文翻译。 四、进度和要求 第01周----第02周:查阅相关资料,并完成英文翻译; 第03周----第04周:进行市场调查,给出系统详细的设计任务和功能,进行系统设计方案的论证和总体设计; 第05周----第07周:完成硬件电路设计,并用PROTEL画出硬件电路图; 第08周----第10周:完成软件模块设计与调试; 第11周----第12周:进行硬件调试,软件调试和软硬件的联调; 第13周----第14周:撰写毕业设计论文; 五、主要参考书及参考资料 1. 单片机原理及应用,张鑫等,电子工业出版社 2. MCS51单片机应用设计,张毅刚等,哈尔滨工业大学 3. MCS51系列单片机实用接口技术,李华等,北京航天航空大学 4. PROTEL2004电路原理图及PCB设计,清源科技,机械工业出版社 5. 基于MCS-51系列单片机的通用控制模块的研究,曹卫芳,山东科技大 学,2005.5 6. 单片机应用技术选编,何立民,北京航空航天大学出版社,2000 7. 检测技术与系统设计,张靖等,中国电力出版社,2001

传感器仿真软件使用说明书

传感器仿真软件使用说明 书 The Standardization Office was revised on the afternoon of December 13, 2020

THSRZ-2型传感器系统综合实验装置仿真软件使用说明书THSRZ-2型传感器系统综合实验装置仿真软件 ................. 错误!未定义书签。 实验一属箔式应变片――单臂电桥性能实验。 ................. 错误!未定义书签。 实验二金属箔式应变片――半桥性能实验 ......................... 错误!未定义书签。 实验三金属箔式应变片――全桥性能实验 ......................... 错误!未定义书签。 实验四直流全桥的应用――电子秤实验 ............................. 错误!未定义书签。 实验五交流全桥的应用――振动测量实验 ......................... 错误!未定义书签。 实验六扩散硅压阻压力传感器差压测量实验 ..................... 错误!未定义书签。 实验七差动变压器的性能实验 ............................................. 错误!未定义书签。 实验八动变压器零点残余电压补偿实验 ............................. 错误!未定义书签。 实验九励频率对差动变压器特性的影响实验 ..................... 错误!未定义书签。 实验十差动变压器的应用――振动测量实验 ..................... 错误!未定义书签。 实验十一电容式传感器的位移特性实验 ............................. 错误!未定义书签。 实验十二容传感器动态特性实验 ......................................... 错误!未定义书签。 实验十三直流激励时霍尔式传感器的位移特性实验 ......... 错误!未定义书签。 实验十四流激励时霍尔式传感器的位移特性实验 ............. 错误!未定义书签。 实验十五霍尔测速实验 ......................................................... 错误!未定义书签。 实验十六霍尔式传感器振动测量实验 ................................. 错误!未定义书签。 实验十七磁电式转速传感器的测速实验 ............................. 错误!未定义书签。 实验十八压电式传感器振动实验 ......................................... 错误!未定义书签。 实验十九电涡流传感器的位移特性实验 ............................. 错误!未定义书签。 实验二十被测体材质、面积大小对电涡流传感器的特性影响实验错误!未定义书签。 实验二十一电涡流传感器测量振动实验 ............................. 错误!未定义书签。 实验二十二光纤传感器的位移特性实验 ............................. 错误!未定义书签。 实验二十三光纤传感器的测速实验 ..................................... 错误!未定义书签。 实验二十四光纤传感器测量振动实验 ................................. 错误!未定义书签。 实验二十五光电转速传感器的转速测量实验 ..................... 错误!未定义书签。 实验二十六 PT100温度控制实验 .......................................... 错误!未定义书签。 实验二十七集成温度传感器的温度特性实验 ..................... 错误!未定义书签。 实验二十八铂电阻温度特性实验 ......................................... 错误!未定义书签。 实验二十九热电偶测温实验 ................................................. 错误!未定义书签。 实验三十 E型热电偶测温实验 .......................................... 错误!未定义书签。 实验三十一热电偶冷端温度补偿实验 ................................. 错误!未定义书签。 实验三十二气敏传感器实验 ................................................. 错误!未定义书签。 实验三十三湿敏传感器实验 ................................................. 错误!未定义书签。 实验三十四转速控制实验 ..................................................... 错误!未定义书签。

智能压力传感器的设计

密级: NANCHANG UNIVERSITY 学士学位论文 THESIS OF BACHELOR (2009—2013年) 题目智能化压力传感器的设计 学院:环化学院系测控系 专业班级:测控技术与仪器093班 学生姓名:钟刚学号: 5801209114 指导教师:刘诚职称:讲师 起讫日期: 2013.3.15—2013.6.6 南昌大学 学士学位论文原创性申明 本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本申明的法律后果由本人承担。

作者签名:日期: 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在年解密后适用本授权书。 本学位论文属于 不保密□。 (请在以上相应方框内打“√”) 作者签名:日期: 导师签名:日期:

传感器及转换器形成系统的“前端”,没有它,许多现代化的电子系统都无法正常工作。传感器已广泛的应用于工业控制系统和能源工业装置当中(如石油和天然气的生产、配电工业)。它们也是制造录音机和录像机这些原始设备产品的重要内在组成部分。大多数这些数字电子系统之所以具有普遍性和强大优势是得益于传感器广泛应用于这些电子电路中。 本课题将深入研究智能压力传感器系统理论及其在压力测试方面的应用,对新型智能压力传感器系统的智能化功能、智能化软件和硬件配置进行全面的设计。提出了一种差动电容式传感器的前置电路,基于电容/ 电压转换的原理,对微小电容变化量进行测量。电路输出的直流电压与差动电容变化量成线性关系,且能对偏差电容和电路的漂移进行自动补偿。 完善智能化软件,实现温度补偿、自动校准、总线数字通讯、自动增益控制等多种智能化特性,使智能化程度尽可能的提高。 关键词:传感器;压力;智能化。

压力传感器对电压的要求

压力传感器对电压的要求 Last updated on the afternoon of January 3, 2021

一般普通压力传感器的输出为模拟信号,近距离满量程输出电压可达100-150mV,输出电流为0-0101mA.远距离输出信号电压便会衰减,应采用电流信号输出。经压力变送器将电流放大后可以输出20mA以下的电流信号。这样,价格就成倍增加。 另外,只有经过A/D和V/F变换后才能得到数字信号和频率信号。 恒流源和恒压源都是通常传感器采用的两种激励源。两种激励方法是有区别的,其作用不同。 恒流源激励有利于热灵敏度漂移的补偿作用。 因为桥臂电阻器的温度系数为正,而灵敏度温度系数为负。恒流源激励时的输出信号电压的温度系数是两者的代数和。而恒压激励不能直接提供灵敏度温度补偿效果。但用恒压源激励时可在桥外串接热敏电阻或二极管以补偿热灵敏度漂移。用恒流源激励时,这种灵敏度补偿方法便不起作用。可见,恒压源激励和恒流源激励相互之间不能随意互换。 一般精度测量时用恒流源激励。恒压源激励时,测量的精度取决于恒压源稳压器件的精度。 另外,又可将压力传感器的激励电源分为正比激励和固定激励。前者是将压力传器电桥直接接到电源上,当电源改变时,压力传感器的灵敏度和零点都随之发生变化。后者内部有一个参照电压,压力传感器电桥由参照电压供电激励。参考电压是恒定的,与电源电压无关。只要电源电压在一指定电压范围内变化,参照电压不变。因而传感器的输出不变,不受电源电压的影响。 压力传感器可以用电池供电,但更普遍的是采用直流稳压电源技术。电池供电时噪声小,但随电池使用,供电电压逐渐降低,特别是当传感器用正比激励时,灵敏度便逐渐减小。这就会造成读数不准。因此要采用补偿办法(例如压力传感器和A/D变换器共用一个电池供电),或者使用低功耗、小电流的压力传感器,长寿命电池,或者测量压力时接上

51单片机压力传感器

目录 一、设计题目与设计任务....................... 错误!未定义书签。 1.设计题目:单片机压力测控系统设计........... 错误!未定义书签。 2.设计任务................................... 错误!未定义书签。 二、前言..................................... 错误!未定义书签。 三、主体设计................................. 错误!未定义书签。 1、系统设计.................................. 错误!未定义书签。 2、系统框图.................................. 错误!未定义书签。 3、设计思路.................................. 错误!未定义书签。 4、压力传感器和A/D转换芯片选择.............. 错误!未定义书签。(1)压力传感器1210—030 G—3 S ............. 错误!未定义书签。 (2)AD模数转换芯片ADC0809 ............... 错误!未定义书签。 四、参考文献................................. 错误!未定义书签。 五、结束语................................... 错误!未定义书签。 六、完整程序................................. 错误!未定义书签。 七、仿真结果................................. 错误!未定义书签。 八、程序流程图............................... 错误!未定义书签。

压力传感器应用中的注意事项

压力传感器应用中的注意事项与型号、类型的选择 在压力传感器的使用上我们应该注意些什么呢?我们应该在压力传感器的使用前,使用中都要做一个全面的检测,下面我们就介绍一下压力传感器使用注意事项: 考虑现场压力的温度范围,标准工业温度范围-20-85范围内才用通用性压力即可,要是超过85度,要考虑采用降温措施。 测量压力传感器介质有无腐蚀性。 考虑所测压力是否存在经常过压,如果是要采取防过压措施。关于压力传感器的选用现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。 1、根据测量对象与测量环境确定压力传感器的类型 要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。 在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指针。 2、灵敏度的选择 通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽量减少从外界引入的干扰信号。 压力传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。 3、频率响应特性 传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。 传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。 在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差。 4、线性范围 传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保

压力传感器生产厂家

压力传感器将压力转换成电输出信号,如电压、电流、频率,同时,允许传感器按比例对压力施加的力。压力传感器通常用于压力测量,从泄漏检测空气质量监测。有许多行业所依赖的压力传感器,包括:暖通空调(压缩机、过滤器监测、能源管理);机器人(工厂自动化设备);发电厂(管道蒸汽压力);交通运输(断裂、压缩机、电梯、空调);非公路车辆(称重系统和液压反馈);天然气设备(压缩机、点胶设备)。市面上有众多压力传感器厂家,无论是价格和质量都有一定差别,航伽科技提醒您:一定要选择口碑好、技术先进且售后服务完善的压力传感器厂家,只有这样才能更好的满足您的需求,如果想要深度了解压力传感器可以直接拨打屏幕上的电话或者在线与我们技术专家沟通。 压力传感器工作原理 压力传感器有五种常见的类型,以下是五种常见压力传感器的工作原理介绍: 1、压电式压力传感器:压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。 2、陶瓷压力传感器:陶瓷压力传感器基于压阻效应,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥,由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,标准的信号根据压力量程的不同标定为2.0/3.0/3.3mv/v等,可以和应变式传感器相兼容。 3、扩散硅压力传感器:扩散硅压力传感器工作原理也是基于压阻效应,利用压阻效应原理,被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,利用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。

压力传感器仿真程序

#i n c l u d e #include #include #include #define uchar unsigned char #define uint unsigned int #define BUSY 0x80 //常量定义 #define DATAPORT P0 //ADC0832的引脚 sbit ADCS =P3^5; //ADC0832 chip seclect sbit ADDI =P3^7; //ADC0832 k in sbit ADDO =P3^7; //ADC0832 k out sbit ADCLK =P3^6; //ADC0832 clock signal sbit LCM_RS=P2^0; sbit LCM_RW=P2^1; sbit LCM_EN=P2^2; uchar ad_data; //采样值存储 sbit Alarm_led_red =P1^5; //超过压力表量程最大值红色led 报警定义 sbit Alarm_led_green=P1^6; //低于压力表量程最小值绿色led 报警定义 //adc采样值存储单元 char press_data; //标度变换存储单元 unsigned char ad_alarm; //报警值存储单元 unsigned char press_bai=0; //显示值百位 unsigned char press_shi=0; //显示值十位 unsigned char press_ge=0; //显示值个位 unsigned char press_dot=0; //显示值十分位 uchar code str0[]={"Press: . kpa "}; uchar code str1[]={" Check BY Jack "}; void delay(uint); void lcd_wait(void); void delay_LCM(uint); //LCD延时子程序 void initLCM( void); //LCD初始化子程序 void lcd_wait(void);

称重压力传感器HX711AD模块电路+程序

称重模块电路+程序(测试通过) 总体电路 电源+串口通讯 单片机最小系统:

存储模块+下载模块+蜂鸣器+矩阵键盘

称重模块: 淘宝链接: 主程序: #include "main.h" #include "LCD1602.h" #include "HX711.h" unsigned long HX711_Buffer = 0; unsigned long Weight_Maopi = 0,Weight_Shiwu = 0; char Price_Count = 0; unsigned char KEY_NUM = 0; unsigned char Price_Buffer[3] = {0x00,0x00,0x00}; unsigned long Money = 0; bit Flag_OK = 0; //**************************************************** //主函数

//**************************************************** void main() { Init_LCD1602(); //初始化LCD1602 LCD1602_write_com(0x80); //指针设置 LCD1602_write_word("Welcome to use! "); //开机画面第一行 Delay_ms(2000); //延时2s loop:Price_Count = 0; Price_Buffer[0] = 0; Price_Buffer[1] = 0; Price_Buffer[2] = 0; Flag_OK = 0; LCD1602_write_com(0x80); //指针设置 LCD1602_write_word("+WEI |PRI | MON "); LCD1602_write_com(0x80+0x40); //指针设置 LCD1602_write_word("0.000| . | . "); Get_Maopi(); //称毛皮重量 while(1) { if( Flag_OK == 0) { Get_Weight(); //称重 //显示当前重量 LCD1602_write_com(0x80+0x40); LCD1602_write_data(Weight_Shiwu/1000 + 0x30); LCD1602_write_data('.'); LCD1602_write_data(Weight_Shiwu%1000/100 + 0x30); LCD1602_write_data(Weight_Shiwu%100/10 + 0x30); LCD1602_write_data(Weight_Shiwu%10 + 0x30); } KEY_NUM = KEY_Scan();

智能压力传感器的设计说明

前言 (1) 1 压力传感器 (1) 1.1压力传感器的简介 (1) 1.2 压力传感器的种类 (1) 1.3压力传感器的结构与特点 (1) 2 智能压力传感器 (1) 2.1智能压力传感器的构造 (1) 2.2智能压力传感器的作用 (2) 2.3智能压力传感器的优势 (2) 与传统传感器相比,智能压力传感器的特点是: (2) 2.4智能压力传感器的前景 (3) 3 智能压力传感器的系统设计 (3) 3.1系统结构整体设计 (3) 3.2系统的特点 (3) 4 系统硬件设计 (4) 4.1前端传感器模块 (4) 4.2信号调理电路模块 (5) 4.3 A/D转换模块 (5) 4.4微处理器 (8) 4.5显示模块 (9) 4.6温度补偿模块 (11) 4.7 硬件设计原理图 (11) 5软件程序设计 (16) 5.1软件程序语言介绍 (16) 5.2程序流程图 (16) 5.3 C语言程序设计 (16) 6问题与探究 (16) 7总结.......................................... 错误!未定义书签。

参考文献 (17)

前言 压力传感器是目前最为大众常见所知的传统传感器,这种传感器以压力形变为指标体现压力变化,这种结构传感器存在质量大,敏感度低,不能和电路器件相连使用等缺陷。随便科技的进步,半导体的迅猛发展,半导体压力传感器的诞生弥补了这些不足,半导体压力传感器,不仅体积小,重量轻,而且可以和电路元器件配套使用,从而大大的提高了智能化和可操作性。压力传感器大大的推动了传感器的发展,让人们能够更好的实现压力体现发展。 1 压力传感器 1.1压力传感器的简介 压力传感器是最为普遍的一种传感器,大多使用在各种自动化环境中,涉及到电力石化,军工科技,船舶制造,数码产品等多方面。一般压力传感器都是用模拟信号转换成输出信号,将输出信号转换为数值表现。这种转换方式大大的提高了工作效率。进而为智能化提供了强有力的发展基础。 1.2 压力传感器的种类 压力传感器通常分为以下几种:1;电容式,2;电阻式,3;压电式,4;电感式,5;智能式。智能式传感器是通过和微处理器相连,与传感器相结合,从而产生了智能化效果,它具有信号处理,信号记忆和逻辑思辨的能力。 1.3压力传感器的结构与特点 本次论文采用差压式电容传感器,电容式传感器灵敏度高,性价比高,操作简单,质量高,过载能力强,在极端环境下,能够稳定工作,提供持续的传感能力,保证了整个元器件工作,并把环境影响降到最低,特点鲜明。 2 智能压力传感器 2.1智能压力传感器的构造 智能压力传感器是利用精密机械制造工艺和集成电路原理,将智能芯片和传感器紧密结合在一个半导体原件上,与传统传感器相比,智能式传感器体积更小,质量小,适用围更大。整个智能压力传感器结构如下图所示;

相关文档