文档库 最新最全的文档下载
当前位置:文档库 › 转子的动平衡实验(1)

转子的动平衡实验(1)

转子的动平衡实验(1)
转子的动平衡实验(1)

转子的动平衡实验

一、实验目的

1.掌握刚性转子动平衡的试验方法;

2.初步了解动平衡试验机的工作原理及操作特点;

3.了解动平衡精度的基本概念;

二、实验设备和工具

1.YYQ—300型硬支承动平衡试验机

2.转子试件

3.平衡配重

4.天平

5.胶带等

三、实验原理

动平衡试验机是用来测量转子不平衡量的大小和相角位置的精密设备。一般由机座部套,左右支承架,圈带驱动装置,计算机显示系统,传感器限位支架,光电头等部套组成,参见实物。

该试验机是硬支承平衡机。

根据刚性转子的动平衡原理,一个动不平衡的刚性转子总可以在与旋转轴线垂直而不与转子相重合的二个校正平面上减去或加上适当的质量来达到动平衡目的。为了精确、方便、迅速地测量转子的动不平衡,通常把力这一非电量的检测转换成电量的检测,本机用压电式力传感作为换能器,由于传感器是装在支承轴承处,故测量平面即位于支承平面上,但转子的二个校正平面,根据各种转子的不同要求(如形状,校正手段等),一般选择在轴承以外的各个不同位置上,所以有必要把支承处测量到的不平衡力信号换算到二个校正平面上去,这可以利用静力学原理来实现。

在动平衡以前,必须首先解决两校正平面不平衡的相互影响是通过两个校正平面间距b,校正平面到左,右支承间距a, c,而a, b, c几何参数可以很方便地由被平衡转子确定。

校正平面上不平衡量的计算:

转子其形状和装载方式如图示:

FL FR

图中

F L ,F R: 左,右支承轴承上承受的动压力

f L , f R : 左,右校正平面上不平衡质量的离心力

m L, m R : 左,右校正平面上的不平衡质量

a, c : 左,右校正平面至左,右支承间的距离

b : 左,右校正平面之间距离

r1 r2 : 左,右校正平面的校正半径

四、实验步骤

1、平衡校测的准备工作

(1)调整两支承间的距离并紧固,调整滚轮架高度一致,装好转子试件,紧固滚轮架。

(2)调整好限位支架,防止转子试件轴向窜动。

(3)在转子试件外圆上做黑白标记,调整光电头位置,从上方对准黑白标记。

2、平衡校测的操作步骤

(1)接通电源开关,按“退出”键,指示面板显示:HP-2003-DH

(2)按“执行”键,指示面板显示:No-X,X可输入1-6中任何一个数字,这里输入1 。

(3)按“执行”键,指示面板显示:A=XXX(表示A的尺寸)

(4)依次输入B、C、R1、R2的尺寸。

(5)按“执行”键,指示面板显示:SP=XXX(表示转速)

(6)按“执行”键,指示面板显示:run ,按“起动”按钮,启动转子。

(7)在指示面板显示:

左去或加重量转速右去或加重量

左相位右相位

(8)按照上述窗口显示的数值,在两校正平面上的对应相位按配重要求配重,当每再按门上“起动”按钮时,上一次的测量数据会保存下来;

(9)重复2、3项,直到校测工件达到动平衡要求为止。工件在接近完全平衡时,其相角指示不太稳定,可以认为平衡已经完成,若凭试凑法亦可继续平衡,此时所得的平衡精度将比本机的标定值更高。

五、实验数据

1、在指定位置加重后测出不平衡量。

2、三次配重

2、每次配重后的不平衡减少率

URR=(Q-Qc)/Q

其中Q为配重前的不平衡量,Qc为配重后的不平衡量。

六、思考题

1、指出影响动平衡精度的一些因素。

答:(1)一般影响最大的是由于转子试件的重量低于测量最小值或者高于测量最大值!(2)感应头松动,比如支架松动,再者,比如地面没有打地脚螺丝固定住!

2、哪些类型的试件需要进行动平衡实验?理论依据是什么?

3、试件经过动平衡后,是否还需要进行静平衡?

转子现场动平衡实验

实验一 转子现场动平衡实验 实验目的 通过本实验了解动平衡实验的基本方法 1. 实验原理 在实际工作过程中人们通常用单面加重三元作图法进行叶轮、转子等设备的现场动平衡,以消除过大的振动超差。这一方法的优点是设备简单——只需一块测振表。但缺点是作图分析的过程复杂,不易被掌握,而且容易出现错误。为此,我们在这里提出了一种简单易行的方法——单面现场动平衡的三点加重法。 假设在假设转子上有一不平衡量m ,所处角度为α,用分量m x 、m y 表示不平衡量。 m x =mcos α m y =msin α 为了确定不平衡量m 的大小和位置α,启动转子在工作转速下旋转,用测振设备在一固定点测试振动振速,设振速为V 0,则存在下列关系 式中K为比例系数 图42.1 三点加重法示意图 在P 1(α=0 )点加试重M ,启动转子到工作转速,测得振动振速V 1,有如下关系: 用同样的方式分别在P 2(α=120o )和P 3(α=240 o )点加试重M ,并测得振动值V 2 ,V 3, 有如下关系: 2 2V m m K y x =+ x ) (3P 1 2 2)(V m M m K y x =++222)2 3 ()21(V M m M m K y x =++- 322)2 3()21(V M m M m K y x =-+-

从以上三式推导可得: 从而可以进一步推得: 即由m x ,m y 计算不平衡质量m 和位置α。 2. 实验仪器和设备 1. 计算机 n 台 2. DRVI 快速可重组虚拟仪器平台 1套 3. 速度传感器(CD-21) 1套 4. 蓝津数据采集仪(DRDAQ-EPP2) 1台 5. 开关电源(DRDY-A ) 1套 6. 5芯-BNC 转接线 1条 7. 转子实验台(DRZZS-A ) 1 套 3. 实验步骤及内容 1. 转子动平衡实验结构如图4 2.2所示,将速度传感器通过配套的磁座吸附在转子实 验台底座上,然后通过一根带五芯航空插头-BNC 转接电缆和对应通道连接。图42.5是本实验的信号处理流程框图。 图42.2 转子动平衡实验结构示意图 2. 启动服务器,运行DRVI 主程序,点击DRVI 快捷工具条上的“联机注册”图标, 选择其中的“DRVI 采集仪主卡检测”进行服务器和数据采集仪之间的注册。在实验目录中选择“转子现场动平衡”实验。将参考的实验脚本文件读入DRVI 软件平台,如图42.3所示 3. 在转子实验台的配重盘上选取一个位置(比如贴反光纸的位置)作为初始位置(即 P 1点),然后用转子实验台附件中的螺钉,任意选取一个位置加上,作为不平衡重。 4. 启动转子/振动实验台到稳定转速,点击“数据采集开始”按钮,再点击“获取初 始振动数据”按钮,获取初始振动数据,然后停止运行转子实验台。 ) (3212 12/)(3/)3(23222 220212202322212V V MK m M MK V V m M V V V V K y x -= --=-++=) /(12 2x y y x m m tg a m m m -=+ =

回转体的动平衡实验实验指导书样本

回转体的动平衡实验 一、实验目的 1、掌握刚性转子动平衡的试验方法。 2、初步了解动平衡试验机的工作原理及操作 特点。 3、了解动平衡精度的基本概念。 二、实验设备及工具 1、 CYYQ—50TNC型电脑显示硬支承动平衡机 2、转子试件 3、橡皮泥, M6螺钉若干 4、电子天平( 精度0.01g) , 游标卡尺, 钢直尺 图 1 硬支承动平衡机三、 CYYQ—50TNC型硬支承动平衡机的结构与 工作原理 1、硬支承动平衡机的结构 该试验机是硬支承动平衡机, 实物如图1所示。 动平衡试验机是用来测量转子不平衡量的大小和相角位置的精密设备, 一 般由机座6、左右支承架4、圈带驱动装置2、计算机检测显示系统、传感 器5、限位支架3和光电头1等部件组成, 如图2所示。

图2 硬支承动平衡机结构示意图 1.光电头 2.圈带驱动装置 3.限位支架 4.支承架 5.传感器 6.机座 左右支承架是动平衡机的重要部件, 中间装有压电传感器, 此传感器在出厂前已严格调整好, 切不可自行打开或转动有关螺丝( 否则会严重影响检测质量) 。左右移动只需松开支承架下面与机座连接的两个紧固螺钉, 把左右支承架移到适当位置后再拧紧即可。支承架下面有一导向键, 保证两支架在移动后能互相平行, 支承架中部有升降调节螺丝, 可调节转子的左右高度, 使之达到水平。外侧有限位支架, 可防止转子在旋转时向左右窜动。 转子的平衡转速必须根据转子的外径及质量, 并考虑电机拖动功率及摆架动态承载能力来进行选择。本动平衡机采用变频器对电动机调频变速, 使工作速度控制自如。 2、 转子动平衡的力学条件 由于转子材料的不均匀、 制造的误差、 结构的不对称等诸因素导致转子存在不平衡质量。因此当转子旋转后就会产生离心惯性力, 它们组成一个空间力系, 使转子动不平衡。要使转子达到动平衡, 则必须满足空间力系的平衡条件 ?????==∑∑00M F 或 ?????==∑ ∑00B A M M ( 1)

实验二机构运动简图测绘

《机械设计基础》实验指导书课程编号:02106220、02106420、02107220、02106520 课程名称:机械设计基础(A)、机械设计基础(B)、机械设计基础(C) 注:1、实验01和10可合并在一起,分两个单元进行; 2、实验03和04应根据学时和专业方向从中选择一个。 实验一机构认识实验 一、实验目的 1.初步了解《机械原理》课程所研究的各种常用机构的结构、类型、特点及应用实例。 2.增强学生对机构与机器的感性认识。 二、实验内容 陈列室展示各种常用机构的模型,通过模型的动态展示,增强学生对机构与机器的感性认识。实验教师只作简单介绍,提出问题,供学生思考,学生通过观察,增加对常用机构的结构、类型、特点的理解,培养对课程理论学习和专业方向的兴趣。 三、实验设备和工具 机构陈列室机构展柜和各种机构模型。 四、实验原理

(一)对机器的认识:通过实物模型和机构的观察,学生可以认识到:机器是由一个机构或几个机构按照一定运动要求组合而成的。所以只要掌握各种机构的运动特性,再去研究任何机器的特性就不困难了。在机械原理中,运动副是以两构件的直接接触形式的可动联接及运动特征来命名的。如:高副、低副、转动副、移动副等。 (二)平面四杆机构:平面连杆机构中结构最简单,应用最广泛的是四杆机构,四杆机构分成三大类:即铰链四杆机构;单移动副机构;双移动副机构。 1.铰链四杆机构分为:曲柄摇杆机构、双曲柄机构、双摇杆机构,即根据两连架杆为曲柄,或摇杆来确定。 2.单移动副机构,它是以一个移动副代替铰链四杆机构中的一个转动副演化而成的。可分为:曲柄滑块机构,曲柄摇块机构、转动导杆机构及摆动导杆机构等。 3.双移动副机构是带有两个移动副的四杆机构,把它们倒置也可得到:曲柄移动导杆机构、双滑块机构及双转块机构。 (三)凸轮机构:凸轮机构常用于把主动构件的连续运动,转变为从动件严格地按照预定规律的运动。只要适当设计凸轮廓线,便可以使从动件获得任意的运动规律。由于凸轮机构结构简单、紧凑,因此广泛应用于各种机械,仪器及操纵控制装置中。 凸轮机构主要有三部分组成,即:凸轮(它有特定的廓线)、从动件(它由凸轮廓线控制着)及机架。 凸轮机构的类型较多,学生在参观这部分时应了解各种凸轮的特点和结构,找出其中的共同特点。 (四)齿轮机构:齿轮机构是现代机械中应用最广泛的一种传动机构。具有传动准确、可靠、运转平稳、承载能力大、体积小、效率高等优点,广泛应用于各种机器中。根据轮齿的形状齿轮分为:直齿圆柱齿轮、斜齿圆柱齿轮、圆锥齿轮及蜗轮、蜗杆。根据主、从动轮的两轴线相对位置,齿轮传动分为:平行轴传动、相交轴传动、交错轴传动三大类。 1.平行轴传动的类型有:外、内啮合直齿轮机构、斜齿圆柱齿轮机构、人字齿轮机构、齿轮齿条机构等。 2.相交轴传动的类型有圆锥齿轮机构,轮齿分布在一个截锥体上,两轴线夹角常为90°。 3.交错轴传动的类型有:螺旋齿轮机构、圆柱蜗轮蜗杆机构,弧面蜗轮蜗杆机构等。 在参观这部分时,学生应注意了解各种机构的传动特点,运动状况及应用范围等。 4.齿轮机构参数:齿轮基本参数有齿数z、模数m、分度圆压力角α、齿顶高系数h*a、顶隙系数c*等。 在参观这部分时学生们一定要知道,什么是渐开线?渐开线是如何形成的?什么是基圆、发生线? 并注意观察基圆、发生线、渐开线三者间关系,从而得出渐开线有什么性质?

机械原理实验室方案方案----上海顶邦教育设备制造有限公司

机械原理实验室方案 目前职业教育所培养出的人才最大的特点就是专门性强,专业性差。虽然可以适应社会的发展,但是对社会的发展起不到很好的推动作用,这也是企业在招聘人才时存在的最大问题。要解决这一现象,职业教育的人才培养思路最好贴近于基础扎实、实践能力强、综合素质高。 机械原理课程是机电类各专业中研究机械共性问题的主干课程,属专业基础课。它的任务是使学生掌握常用机构的工作原理、基本理论并初步具有分析和设计机械零件的能力。其专业覆盖面约占工科专业的80%,在培养和增强学生对机械技术工作的适应能力方面具有举足轻重的作用。 机械原理课程实验课是机械原理课中重要的实践环节。以前的机械原理课程实验大多是验证性的试验,只偏重于一些几何参数、运动参数、动力参数的测定和分析。这些实验对学生掌握课堂中所学的基本概念,加深理解一些基本原理具有显著的效果,但这些实验作为课程教学的一部分,在培养学生初步具有拟定机械运动方案,分析和设计新机构的能力,以及培养学生的创新与动手能力方面还远远不够。 提高学生理论学习融会贯通的能力,分析问题和解决问题的能力以及综合运用基本理论、基本原理的能力是课程教学的最终目标,也同我们的培养思想“基础扎实、实践能力强、综合素质高”相吻合。 机械原理实验室是机械原理系列课程:《机械原理》和《机械原理》的教学实验基地。承担机械与汽车工程系机械原理制造及自动化专业和汽车服务工程专业的教学实验课,以及机电综合实践的部分实践环节。 机械原理实验室旨在培养学生的综合设计能力、创造性设计能力及工程实践能力;打破传统的演示性、验证性、单一性的实验模式,建立新型的设计型、搭接型、综合型的实验体系;实验教学从以教师为中心转变成以学生为中心,从强调学术型转变为强调理论与实践相结合和应用型。实验室开设了机械创新设计陈列演示实验、带传动实验、机齿轮综合实验、转动平衡实验、机械系统创意组合综合实验、机构运动方案创新设计实验等。

转子动平衡

实验六转子动平衡 一、实验目的 1.巩固转子动平衡知识,加深转子动平衡概念的理解; 2.掌握刚性转子动平衡实验的原理及基本方法。 二、实验设备与工具 1.CS-DP-10型动平衡试验机; 2.试件(试验转子); 3.天平; 4.平衡块(若干)及橡皮泥(少许)。 三、实验原理与方法 本实验采用的CS-DP-10型动平衡试验机的简图如图1所示。待平衡的试件1安放在框形摆架的支承滚轮上,摆架的左端与工字形板簧3固结,右端呈悬臂。电动机4通过皮带带动试件旋转,当试件有不平衡质量存在时,则产生的离心惯性力将使摆架绕工字形板簧做上下周期性的微幅振动,通过百分表5可观察振幅的大小。 1. 转子试件 2. 摆架 3. 工字形板簧 4. 电动机 5. 百分表 6. 补偿盘 7. 差速器 8. 蜗杆 图1 CS-DP-10型动平衡试验机简图 试件的不平衡质量的大小和相位可通过安装在摆架右端的测量系统获得。这个测量系统由补偿盘6和差速器7组成。差速器的左端为转动输入端(n1)通过柔性联轴器与试件联接,右端为输出端(n3)与补偿盘联接。 差速器由齿数和模数相同的三个圆锥齿轮和一个蜗轮(转臂H)组成。当转臂蜗轮不转动时:n3=-n1,即补偿盘的转速n3与试件的转速n1大小相等转向相反;当通过手柄摇动蜗杆8从而带动蜗轮以n H转动时,可得出:n3=2n H-n1,即n3≠-n1,所以摇动蜗杆可改变补偿盘与试件之间的相对角位移。

图2所示为动平衡机工作原理图,试件转动后不平衡质量产生的离心惯性力F =ω2mr,它可分解为垂直分力F y和水平分力F x,由于平衡机的工字形板簧在水平方向(绕y轴)的抗弯刚度很大,所以水平分力F x对摆架的振动影响很小,可忽略不计。而在垂直方向(绕x轴)的抗弯刚度小,因此在垂直分力产生的力矩M = F y·l =ω2mrlsinφ的作用下,摆架产生周期性上下振动。 图2 动平衡机工作原理图 由动平衡原理可知,任一转子上诸多不平衡质量,都可以用分别处于两个任选平面Ⅰ、Ⅱ内,回转半径分别为rⅠ、rⅡ,相位角分别为θⅠ、θⅡ,的两个不平衡质量来等效。只要这两个不平衡质量得到平衡,则该转子即达到动平衡。找出这两个不平衡质量并相应的加上平衡质量(或减去不平衡质量)就是本试验要解决的问题。 设试件在圆盘Ⅰ、Ⅱ各等效着一个不平衡质量mⅠ和mⅡ,对x轴产生的惯性力矩为: MⅠ=0 ;MⅡ=ω2mⅡrⅡlsin(θⅡ+ωt) 摆架振幅y大小与力矩MⅡ的最大值成正比:y∝ω2mⅡrⅡl ;而不平衡质量mⅠ产生的惯性力以及皮带对转子的作用力均通过x轴,所以不影响摆架的振动,因此可以分别平衡圆盘Ⅱ和圆盘Ⅰ。 本实验的基本方法是:首先,用补偿盘作为平衡平面,通过加平衡质量和利用差速器改变补偿盘与试件转子的相对角度,来平衡圆盘Ⅱ上的离心惯性力,从而实现摆架的平衡;然后,将补偿盘上的平衡质量转移到圆盘Ⅱ上,再实现转子的平衡。具体操作如下: 在补偿盘上带刻度的沟槽端部加一适当的质量,在试件旋转的状态下摇动蜗杆手柄使蜗轮转动(正转或反转),从而改变补偿盘与试件转子的相对角度,观察百分表振动使其达到最小,停止转动手柄。(摇动手柄要讲究方法:蜗杆安装在机架上,蜗轮安装在摆架上,两者之间有很大间隙。蜗杆转动一定角度后,稍微反转一下,脱离与蜗轮的接触,这样才能使摆架自由振动,这时观察振幅。通过间歇性地使蜗轮向前转动和观察振幅变化,最终可找到振幅最小的位置。)停机后在沟槽内再加一些平衡质量,再开机左右转动手柄,如振幅已很小(百分表摆动±1~2格)可认为摆架已达到平衡。亦可将最后加在沟槽内的平衡质量的位置沿半径方向作一定调整,来减小振幅。将最后调整到最小振幅的手柄位置保持不动,停机后用手转动试件使补偿盘上的平衡质量转到最高位置。由惯性力矩平衡条件可知,圆盘Ⅱ上的不平衡质量mⅡ必在圆盘Ⅱ的最低位置。再将补偿盘上的平衡质量m p'按力矩等效的原则转换为位于圆盘Ⅱ上最高位置的平衡质量m p,即可实现试件转子的平衡。根据等效条件有:

《转子动平衡——原理、方法和标准》

技术讲课教案 主讲人:范经伟 技术职称(或技能等级):高级工所在岗位:锅炉辅机点检员 讲课时间: 2011年 06月24日

培训题目:《转子动平衡——原理、方法和标准》 培训目的: 多种原因会引起转子某种程度的不平衡问题,分布在转子上的所有不平衡矢量的和可以认为是集中在“重点”上的一个矢量,动平衡就是确定不平衡转子重点的位置和大小的一门技术,然后在其相对应的位置处移去或添加一个相同大小的配重。 内容摘要: 动平衡前要确认的条件: 1.振动必须是因为动不平衡引起。并且要确认动不平衡力占 振动的主导。 2.转子可以启动和停止。 3.在转子上可以添加可去除重量。 培训教案: 第一章不平衡问题种类 为了以最少的启停次数,获得最佳的平衡效果,我们不仅要认识到动不平衡问题的类型(静不平衡、力偶不平衡、动不平衡),而且还要知道转子的宽径比及转速决定了采用单平面、双平面还是多平面进行动平衡操作。同时也要认识到转子是挠性的还是刚性的。

●刚性转子与挠性转子 ?对于刚性转子,任何类型的不平衡问题都可以通过 任选的二个平面得以平衡。 ?对于挠性转子,当在一个转速下平衡好后,在另一 个转速下又会出现不平衡问题。当一个挠性转子首 先在低于它的70%第一监界转速下,在它的两端平 面内加配重平衡好后,这两个加好的配重将补偿掉 分布在整个转子上的不平衡质量,如果把这个转子 的转速提高到它的第一临界转速的70%以上,这个 转子由于位于转子中心处的不平衡质量所产生的离 心力的作用,而产生变形,如图10所示。由于转子 的弯曲或变形,转子的重心会偏离转动中心线,而 产生新的不平衡问题,此时在新的转速下又有必要 在转子两端的平衡面内重新进行动平衡工作,而以 后当转子转速降下来后转子又会进入到不平衡状 态。为了能在一定的转速范围内,确保转子都能处 在平衡的工作状态下,唯一的解决办法是采用多平 面平衡法。 ?挠性转子平衡种类 1.如果转子只是在一个工作转速下运转,小量的变 形不会产生过快的磨损或影响产品的质量,那么

动平衡试验思考题参考答案

自己看个一遍再抄,挑着抄,之前都预习过,只要把数据整理下,然后思考题写上,再把实验遇到的困难与总结写下就可以了,4/4晚上我来收! 第一题: 1、当试件作旋转运动的零部件时,例如各种传动轴、主轴、风机、水泵叶轮、刀具、电动机和汽轮机的转子等,统称为回转体。在理想的情况下回转体旋转与不旋转时,对轴承产生的压力是一样的,这样的回转体是平衡的回转体。但工程中的各种回转体,由于材质不均匀或毛坯缺陷、加工及装配中产生的误差,甚至设计时就具有非对称的几何形状等多种因素,使得回转体在旋转时,其上每个微小质点产生的离心惯性力不能相互抵消,离心惯性力通过轴承作用到机械及其基础上,引起振动,产生了噪音,加速轴承磨损,缩短了机械寿命,严重时能造成破坏性事故。为此,必须对转子进行平衡,使其达到允许的平衡精度等级,或使因此产生的机械振动幅度降在允许的范围内。 2、转子动平衡和静平衡的区别: 1)静平衡:在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。 2)动平衡:在转子两个及以上校正面上同时进行校正平衡,校正后的剩余不平衡量,以保证转子动态时是在许用不平衡量的规定范围内,为动平衡又称双 面平衡。 3、转子平衡的选择与确定 1)如何选择转子的平衡方式,是一个关键问题。通常以试件的直径D与两校正面的距离b,即当D/b≥5时,试件只需做静平衡,相反,就必需做动平衡。 2)然而据使用要求,只要满足于转子平衡后用途需要的前提下,能做静平衡的,就不要做动平衡,能做动平衡的,则不要做静动平衡。原因很简单,静 平衡比动平衡容易做,省功、省力、省费用。 第二题: 主要原因是因为偏重太大会产生强大的离心惯性力..将在构件运动副中引起附加动压力,使机械效率,工作精度和可靠性下降,加速零件的损坏.当惯性力的大小和方向呈周期性变化时,机械将产生振动和噪音.因此,特别是在高速,重载,精密机械中,,必须对转子进行平衡以尽可能减少偏重... 第三题: 造成转子不平衡的因素很多,例如:转子材质的不均匀性,联轴器的不平衡、键槽不对称,转子加工误差,转子在运动过程中产生的腐蚀、磨损及热变形等。

全息动平衡实验报告

柔性转子全息现场动平衡实验报告 一、实验目的 ◆巩固转子动平衡知识,加深转子动平衡概念的理解; ◆掌握刚性转子动平衡实验的原理及基本方法。 二、实验设备及工具 柔性转子现场动平衡实验台,其中包括PC机及其相关采集分析软件,数据采集箱,试重 块若干,传感器信号连接线等 三、实验原理步骤与方法 本实验应用西安交通大学智能仪器与监测诊断研究所自行研制的对称转子全息动平衡系统对平衡转子实验台进行现场数据采集的基础上,进行试重的添加,测试和计算得出不平衡位置所要求添加的不平衡质量和加重位置,然后通过添加配重完成转子动平衡的实验过程。实验步骤如下: 1.在平衡转速下测量原始失衡状态的转子振动,获取振动的原始数据及信息; 2.停车后在转子左右加重盘上添加试重质量,启动转子到平衡转速,测量并获取添加试重后转子的振动数据及信息; 3.停车后除去添加的试重; 4.根据前两步测量的振动数据和添加试重大小、方位等信息,计算转子实际平衡配重的大小和方位; 5.按照计算结果分别在左右平衡盘上添加平衡配重; 6.启动转子到平衡转速,验证平衡效果。 注:试验截图便于叙述的情况下,请酌情加入截图在本报告后面给出! 结果简要分析及结论: 本实验将影响系数法和全息动平衡法相结合,在原始平衡转速下,由不平衡质量产生的离心力引起较强烈的强迫振动响应,基于原始振动数据和初次添加的振动质量,进行影响系数法计算后,再次配重结果如下图所示: 1测量面X、Y振动峰峰值配重前后比分别为1.90:1,1.99:1; 2测量面X、Y振动峰峰值配重前后比分别为3.91:1,2.12:1。

说明合理配重后,转子不平衡振动情况得到了明显改善。同时,采用影响系数法进行计算分析,可以以较少的试重起车次数获得较好的配重结果。 另外,采用全息动平衡法,消除了信号中的噪音,轴心轨迹较为清晰。同时,我们观察到轨迹上有许多突变的尖点,说明有可能存在动静碰面。 实验注意事项: 1)检验传感器安装和数据线是否正确,以及所有电源是否已经打开。 2)检验加重块是否安置正确,加重用的螺丝刀是否放置完好。 3)启车时,首先启动右侧的启车按钮,然后再选择升速,注意,右侧有三个档位依次: 盘车、启车和停车。 4)升速和减速时,速率不能过小,以便与快速冲过临界转速; 5)本转子的临界转速为2000r/min,实验转速不宜选择太接近; 6)停车时,先减速至盘车转速,再停车,不能直接停车。 7)加重时,必须带上手套,并在转子平衡后添加,注意加重块的角度和质量; 8)实验完成后,检验加重块是否取下,放置好加重块。清洁好实验台,盖好台布。 三、试验记录及结果 试验记录及分析结果: 1

动平衡实验.doc

实验八 零件设计专项能力训练 ——回转件的动平衡 一、实验目的 1. 熟悉运动平衡机的工作原理及转子动平衡的基本方法 2. 掌握用动平衡机测定回转件动平衡的实验方法。 二、设备和工具 简易动平衡试验机、药架天平。 三、原理和方法 T ?、 ? 内,回转半径分别为r o ?、r o ?的两个不平 G o ?、G o ?所产生,如图8-1所示。因 进行动平衡试验时,只需对G o ?、G o ?进 简易动平衡试验机可以分别测出上述 平衡重径积G o ?r o ?和 o ?r o ?的大小和方位,使回转件达到动平 图8-2是简易动平衡机的工作原理图。 图8-1 图8-2 如图所示,框架1经弹簧2与固定的底座3相联,它只能绕OX 轴线摆动,构成一个振动系统。框架上装有主轴4,由固定在底座上的电动机14通过带和带轮12驱动。主轴4上装有螺旋齿轮6,它与齿轮5齿数相等,并相互啮合,齿轮6可以沿主轴4移动。移动的距离和齿轮的轴向宽度相等,比齿轮5的节圆圆周要大,因此调节手轮18,使齿轮6从左端位置移到右端位置时,齿轮5及和它固定的轴9可以回转一周以上,借此调节φc ,φc 的大小由指针15指示。圆盘7固定在轴9上,通过调节手轮17可以使圆盘8沿轴向9上下移动,以调节两圆盘间的距离l c ,l c 由指针16指示。7、8两圆盘大小、重量完全相等,上面分别

装有一重量为G c的重块,其重心都与轴线相距r c,但相位差180°。 被平衡的回转件10架于两个滚动支承13上,通过挠性联轴器11由主轴4带动,因此回转件10与圆盘7、8转速相等,当选取T?和T?为平衡校正面后,回转件10的不平衡就可以看作平面T?和T?内向径为r o?和r o?的不平衡重量G o?和G o?所产生。平衡时可先令摆架的振摆轴线OX处于平面T?内(如图8-2所示)。当回转构件转动时,不平衡重量G o?的离心力P o?对轴线OX的力矩为零,不影响框架的振动,仅有G o?的离心力P o?对轴线OX形成的力矩M o,使框架发生振动,其大小为 M o=P o??l?cosφ 这个力矩使整个框架产生振动。 为了测出T?面上的不平衡重量大小和相位,加上一个补偿重径积G c r c,使产生一个补偿力矩,即在圆盘7和8上各装上一个平衡重量G c。当电机工作时,带动主轴4并带动齿轮5、6,因而圆盘7、8也旋转,这时G c的离心力P c,就构成一个力偶矩M c,它也影响到框架绕OX轴的振摆,其大小为 M c=P c?l c?cosφc 框架振动的合力矩为 M=M o=M c=P o??l?cosφ-P c?l c?cosφc 如果合力为零,则框架静止不动。此时 M=P o??l?cosφ-P c?l c?cosφc=0 满足上式条件为 G o?r o?=G c r c?l c/l(1) φo=φc(2)在平衡机的补偿装置中G c、r c是已知的,试件的两平衡平面是预先选定的,因而两平衡平面间的距离l也是一定的,因此(1)式可以写成 G o?r o?=A?l c(3)其中A=G c?r c/l 为便于观察和提高测量精度,在框架上装有重块19,移动19,可改变整个振动系统的自振频率,使框架接近共振,即振幅放大。 通过调节手轮17和18,使框架静止不动,读出l c和φc的数值,由公式(3)即可计算出不平衡重量G o?的大小为 G o?=A?l c?r o? 其相位可以这样确定,停车后,使指针15转到图8-2所示与OX轴垂直的虚线位置,此时G o?的位置就在平面T?内回转中心的铅直上方。 测量另一个平衡平面T?上的不平衡重径积,只需将试件调头,使平面T?通过OX轴,测量方法与上述相同。 四、实验步骤 1.在被平衡试件上机以前,先开动电机,调节手轮18,使圆盘8与7的重块G c产生的离心力在一直线上,这时力矩M c=0,从主轴下的指针可看出框架是静止状态,此时标尺16所示的读数为l c的零点位置。 2.装上试件,试件的一端联轴节应与带轮接好,以免开动电机时发生冲击。 3.移动重块19以改变框架的自振频率,使框架接近共振状态,这时框架振幅放大,以提高平衡精度,调共振后锁紧。 4.先调节手轮17,即加一定的补偿力矩(将圆盘7、8分开一定距离),然后调节手轮18,即移动齿轮6,使齿轮5与圆盘7、8得到附加转动,当调节到框架振动的振幅最小时不平衡重量相位已找到。然后再调节手轮18,即调节l c,使框架最后振动消除,振动系统

刚性转子动平衡实验实验报告

实验刚性转子动平衡实验任务书 一、 实验目的: 1. 掌握刚性转子动平衡的基本原理和步骤; 2. 掌握虚拟基频检测仪和相关测试仪器的使用; 3. 了解动静法的工程应用。 二、 实验内容 采用两平面影响系数法对一多圆盘刚性转子进行动平衡 三、 实验原理 工作转速低于最低阶临界转速的转子称为刚性转子,反之称为柔性转子。本实验采取一种刚性转子动平衡常用的方法—两平面影响系数法。该方法可以不使用专用平衡机,只要求一般的振动测量,适合在转子工作现场进行平衡作业。 根据理论力学的动静法原理,一匀速旋转的长转子,其连续分布的离心惯性力系,可向质心C 简化为过质心的一个力R (大小和方向同力系的主向量∑=i S R )和一个 力偶M (等于力系对质心C 的主矩()∑== c i c m S m M )。如果转子的质心在转轴上且 转轴恰好是转子的惯性主轴,即转轴是转子的中心惯性主轴,则力R 和力偶矩M 的值均为零。这种情况称转子是平衡的;反之,不满足上述条件的转子是不平衡的。不平衡转子的轴与轴承之间产生交变的作用力和反作用力,可引起轴承座和转轴本身的强烈振动,从而影响机器的工作性能和工作寿命。 刚性转子动平衡的目标是使离心惯性力系的主向量和主矩的值同时趋近于零。为此,先在转子上任意选定两个截面I 、II (称校正平面),在离轴线一定距离r 1、r 2(称校正半径),与转子上某一参考标记成夹角θ1、θ2处,分别附加一块质量为m 1、m 2的重块(称校正质量)。如能使两质量m 1和m 2的离心惯性力(其大小分别为m 1r 1ω2和m 2r 2ω2,ω为转动角速度)正好与原不平衡转子的离心惯性力系相平衡,那么就实现了刚性转子的动平衡。 两平面影响系数法的过程如下: (1)在额定的工作转速或任选的平衡转速下,检测原始不平衡引起的轴承或轴颈A 、B 在某方位的振动量11010V ψ∠=V 和22020V ψ∠=V ,其中V 10和V 20是振动位移(也可以是

转子试验台振动噪声测试综合实验

——转子实验台振动和噪声测试综合实验 机自22班第3组 组长:王蒙 组员:万旭任勇 邢欢李聪明 转子实验台振动和噪声测试综合实验 转子实验台振动和噪声测试综合实验 (1) 转子实验台振动和噪声测试综合实验 (1) 一、实验简介 (1) 1. 1 实验目的 (3) 1.2 实验仪器与设备 (3)

1.3 实验要求 (3) 二实验方案 (4) 1、准备阶段: (4) 2、实验阶段: (4) 3、总结分析及报告准备阶段: (5) 4、注意事项: (5) 三、测试系统搭建 (6) 3.1测试系统框架图 (6) 3.2 传感器的位置选择与搭建 (6) 3. 3 传感器通道连接 (9) 四、信号采集与分析 (10) 4.1 信号采集 (10) 4.2通道的连接、选择与初始化 (10) 4.3 转子轴心轨迹的测量 (12) 4.4 不同转速下转子振动的时域分析 (13) 4.5 不同转速下转子振动的频域分析 (17) 4.6 不同转速下噪声的时域分析 (21) 4.7 不同转速下噪声的频域分析 (23) 4.8 转子振动与噪声相干分析 (26) 4.9动平衡实验 (27) 五、实验总结 (37) 5. 1 实验结论 (37) 5.2 实验心得 (38)

一、实验简介 1. 1 实验目的 针对机械转子实验台,能够较熟练地掌握机械动态信号如振动、噪声等的测试系统设计、测试系统搭建、数据采集及信号处理的方法和技术。 1.2 实验仪器与设备 1.3 实验要求 1.针对转子实验台对象,按照机械动态特性测试要求,完成机械振动和噪声的计 算机测试系统设计。 2.选用合适的振动和噪声测试传感器及其信号调理装置 : 3. 构建计算机测试系统,掌握振动和噪声信号分析软件使用方法 : 4. 自主完成转子实验台振动和噪声的测量、信号采集 : 5. 通过信号分析,得出转子实验台在不同转速下的振动和噪声的时域波形、

机械动平衡

机械动平衡 一、实验目的 1.了解转子不平衡的危害。 2.巩固转子动平衡的理论知识。 3.掌握动平衡机的基本工作原理及动平衡机进行刚性转子动平衡的方法。 二、实验设备 实验设备为DPH-I型智能动平衡机,如图6-1所示,测试系统由计算机、数据采集器、高灵敏度有源压电力传感器和光电相位传感器等组成。当被测转子在部件上被拖动旋转后,由于转子的中心惯性主轴与其旋转轴线存在偏移而产生不平衡离心力,迫使支承做强迫震动,安装在左右两个硬支撑机架上的两个有源压电力传感器感受此力而发生机电换能,产生两路包含有不平衡信息的电信号输出到数据采集装置的两个信号输入端;与此同时,安装在转子上方的光电相位传感器产生与转子旋转同频同相的参考信号,通过数据采集器输入到计算机。 图 6-1 DPH-I型智能动平衡机结构简图 计算机通过采集器采集此三路信号,由虚拟仪器进行前置处理,跟踪滤波,幅度调整,相关处理,FFT变换,校正面之间的分离解算,最小二乘加权处理等。最终算出左右两面的不平衡量(g),校正角(°),以及实测转速(r/min)。 DPH-I型智能动平衡机有关内容简介见附录Ⅲ。 三、实验原理 由于转子结构不对称、材质不均匀或制造和安装不准确等原因,有可能会造成转子的质心偏离回转轴线。当其转动时,会产生离心惯性力。惯性力将在构件运动副中引起附加动压力,使机械效率、工作精度和可靠性下降,加速零件的损坏。当惯性力的大小和方向呈周期性变化时,机械将产生振动和噪音。因此,在高速、重载、精密机械中,为了消除或减少惯性力的不良影响,必须对转子进行平衡。 转子平衡问题可分为静平衡和动平衡两类。 对于轴向尺寸b 与径向尺寸D 的比值b/D ≤ 0.2,即轴向尺寸相对很小的回转构件(如砂轮、叶轮、飞轮等),常常可以认为不平衡质量近似的分布在同一回转平面内。因此只要在这个一回转面内加上或减去一定的质量,便可使转子达到静平衡。 当转子的b/D≥0.2(如电机转子、机床主轴等),或工作转速超过1000 r/min时,应考虑

转子动平衡技术实验报告

广州大学学生实验报告 开课学院及实验室:526室2015年12月26日 学院 机械与电气 工程 年级、专 业、班 机械121姓名吴海明学号1207200014 实验课程名称机械故障诊断技术成绩 实验项目名称转子动平衡技术 指导 老师 郑文 一、实验目的 1、掌握振动幅值及相位测量方法,熟悉相关测量仪器; 2、掌握旋转机械动平衡的基本步骤及方法。 通过运用振动监测手段,完成转子不平衡特征的测量,从而提高学生进行数据采集、 转子振动分析及状态评估、动平衡校正等方面的能力。 二、实验设备 1、列出所用振动分析仪器、软件、传感器的名称、型号、用途等; 加速度传感器 光电式传感器,用于测量振动的相位 数据采集器 质量块、天平 2、振动试验台 实验台配有两个质量盘(如图所示),可以在轴的任意位置固定安装。本实验 要求完成单面动平衡试验,把两个质量盘分开安装,并且在某个质量盘上加上一个 M5的螺钉作为质量块,使得转子不平衡。 1、质量盘 2、夹紧法兰 3、转轴备用螺纹孔(16个)5、夹紧法兰螺钉孔

图质量盘结构示意图 三、实验要求 1.熟悉实验的整个过程 2.实验过程要注意安全,防止转子高速时质量块脱落伤人。 3.正确布置质量块位置,并要记下各个具体位置。 4.实验后分析各频谱图以及参数与转子动平衡的关系。 5、绘出振动试验台的结构简图,列出主要结构参数,如电机参数、传动比、转速等。 6、画出测试系统的连接框图。 7、绘出振动试验台测点布置图,说明测量的位置、方向及传感器安装方法等。 8、描述不平衡质量的施加方法。 四、实验操作过程 1、仪器连接,传感器安装; 2、贴反光带,启动试验台; 3、开始动平衡测量及校正过程,完成转子台初始振动测量、试重、校正重量计算及施 加等工作; 4、评价动平衡后的效果; 5、填写附表。 要求学生绘出测量对象的结构简图,列出主要结构参数;计算不平衡的特征频率;选择测试参数;测量各测点的时域波形、频谱等数据;参照有关标准,判断各点的测量值是否在正常范围内;分析频谱图中的主要频率成分,解释频谱峰值的来源及其与转子不平衡的对应关系;综合判断机器的运行状态及存在的不平衡问题; 完成转子现场动平衡测量与校正。五、实验结果及分析 下表是实验过程中测出的实验数据 动平衡数据表 振动值 Vibration μm(p-p) 相位 Phase 度(°) 重量 Weight 克g 角度 Angel 度(°)初始振动测量值 Initial Vibration 17 80 动平衡试重 Trial Weight 8 45 加试重后的振动值 Trail Running Vibration 15 60 第一次动平衡配重 1st Correcting Weight 8 135 第一次加配重后的振动值 1st Residual Vibration 7 50 第二次动平衡配重 2nd Correcting Weight 7 135 第二次加配重后的振动值 2nd Residual Vibration 2 200 转子转速n=800r/min 以下是实验结果频谱图 初始振动测量值频谱图 (a)在转盘外圆贴有一反光带作为起始原点,并在外缘随意安装一质量块(相对原点逆时针旋转45°的位置加上8克重物),使转盘存在偏心量,并记录频谱图

刚性转子动平衡实验实验报告

实验刚性转子动平衡实验任务书 实验目的: 1.掌握刚性转子动平衡的基本原理和步骤; 2.掌握虚拟基频检测仪和相关测试仪器的使用; 3.了解动静法的工程应用。 实验内容 采用两平面影响系数法对一多圆盘刚性转子进行动平衡 三、实验原理 工作转速低于最低阶临界转速的转子称为刚性转子,反之称为柔性转子。本实验采取一种刚性转子动平衡常用的方法—两平面影响系数法。该方法可以不使用专用平衡机,只要求一般的振动测量,适合在转子工作现场进行平衡作业。 根据理论力学的动静法原理,一匀速旋转的长转子,其连续分布的离心惯性力系, 可向质心C简化为过质心的一个力R (大小和方向同力系的主向量R S i )和一个力偶M(等于力系对质心C的主矩M m c S i m.)。如果转子的质心在转轴上 且转轴恰好是转子的惯性主轴,即转轴是转子的中心惯性主轴,则力R和力偶矩M的 值均为零。这种情况称转子是平衡的;反之,不满足上述条件的转子是不平衡的。不平

衡转子的轴与轴承之间产生交变的作用力和反作用力,可引起轴承座和转轴本身的强烈振动,从而影响机器的工作性能和工作寿命。 刚性转子动平衡的目标是使离心惯性力系的主向量和主矩的值同时趋近于零。为此, 先在转子上任意选定两个截面I、II (称校正平面),在离轴线一定距离r i、「2 (称校正半径),与转子上某一参考标记成夹角B仆敗处,分别附加一块质量为m i、m2的重块(称校正质量)。如能使两质量m i和m2的离心惯性力(其大小分别为m i r i ?2和m2「2 w2,w 为转动角速度)正好与原不平衡转子的离心惯性力系相平衡,那么就实现了刚性转子的动平衡。 两平面影响系数法的过程如下: (i )在额定的工作转速或任选的平衡转速下,检测原始不平衡引起的轴承或轴颈A、B 在某方位的振动量V i。V io i和V20 V20 2,其中V io和V20是振动位移(也可以 是速度或加速度)的幅值,? i和? 2是振动信号对于转子上参考标记有关的参考脉冲的相位角。(2)根据转子的结构,选定两个校正面I、II并确定校正半径r i、「2。先在平面I上加一“试重"(试质量)Q i = mt i Z(3,其中m t i为试重质量,卩i为试重相对参考标记的方位角,以顺转向为正。在相同转速下测量轴承A、B的振动量V ii和V2i。

刚性转子动平衡实验1

刚性转子动平衡实验 一. 实验目的 1. 理解掌握刚性转子的动平衡原理; 2.掌握刚性转子动平衡实验机的测试及数据处理方法; 二. 实验设备与组成 DPH-I型智能动平衡机由机械转子部分与测试系统组成。测试系统包括了计算机、数据采集器、高灵敏度有源压力传感器和光电相位传感器等。图1是实验台结构组成。 1、光电传感器 2、被试转子 3、硬支承摆架组件 4、压力传感器 5、减振底座 6、传动带 7、电动机 8、零位标志 图1 实验台结构组成图 三、实验的基本原理 转子动平衡检测是一般用于轴向宽度B与直径D的比值大于的转子(小于的转子适用于静平衡)。转子动平衡检测时,必须同时考虑其惯性力和惯性力偶的平衡,即Pi=0,Mi=0。如图2-9-1所示,设一回转构件的偏心重Q1及Q2分别位于平面1和平面2内,r1及r2为其回转半径。当回转体以等角速度回转时,它们将产生离心惯性力P1及P2,形成一空间力系。

图2 由理论力学可知,一个力可以分解为与它平行的两个分力。因此可以根据该回转体的结构,选定两个平衡基面I和II作为安装配重的平面。将上述离心惯性力分别分解到平面I和II内,即将力P1及P2分解为P1I及P2I(在平面I内)及P1II及P2II (在平面II内)。这样就可以把空间力系的平衡问题转化为两个平面汇交力系的平衡问题了。显然,只要在平面I和II内各加入一个合适的配重QI和QII,使两平面内的惯性力之和均等于零,构件也就平衡了。 当被测转子在部件上被拖动旋转后,由于转子的中心惯性主轴与其旋转轴线存在偏移而产生不平衡离心力,迫使支承做强迫震动,安装在左右两个硬支撑机架上的两个有源压电力传感器感受此力而发生机电换能,产生两路包含有不平衡信息的电信号输出到数据采集装置的两个信号输入端;与此同时,安装在转子上方的光电相位传感器产生与转子旋转同频同相的参考信号,通过数据采集器输入到计算机。根据计算的结果在相应的位置施加一定质量的配重块,进而使转子达到平衡条件。实验中使用的转子,自身不平衡量很小,为了得到不平衡状态需要配置一定量的模拟偏重,在偏重存在的情况下,进行平衡的操作。 四、操作指导 动平衡实验台采集的数据通过USB端口传输给计算机,利用处理软件实时显示和处理,根据计算机输出地结果进行相应的操作。点击启动图标即可进入系统主界面,界面功能分布介绍如图3,图4,图5。

自平衡试验报告

(CMA章) ※※※※※※※※※※※工程 桩基自平衡试验报告 检测报告 工程名称:※ 工程地点:※ 委托单位:※(盖骑缝章)检测日期:※年※月※日 报告总页数:※(含此页) 报告编号:※ 合同编号:※ (报告专用章) ※※※※※※※※※※检测站 ※年※月※日

※※※※※※※※※※工程 ※※※桩自平衡试验检测报告 现场检测人员:※※※(1234) (上岗证号)※ 报告编写:※ (上岗证号) 校核: (上岗证号) 审核: (上岗证号) 技术负责人: 声明: 1、本检测报告涂改、错页、换页无效; 2.检测单位名称与检测报告专用章名称不符者无效; 3. 本报告无我单位“技术资格证书章”无效; 4. 本报告无检测、审核、技术负责人签字无效; 5.如对本检测报告有异议,可在报告发出后20 天内向本检测单位书面提请复议。 (报告专用章) ????? ※年※月※日 ??地址:邮政编码: ??电话:联系人:

一、工程概况 表1

二、试桩位置选择及工程地质条件 根据目前的施工进度和补勘资料显示的地质情况,拟定在35-4#桩和36-3#桩进行试桩试验,2根试桩均按端承桩设计。35-4#桩桩位对应的钻孔编号为BJ35-4,36-6#桩桩位对应的钻孔编号为BJ36-3,2根试桩桩位处地质钻孔参数如下表1.1、表1.2所示。 表1.1 试桩(35-4#)桩位处钻孔地质参数表 表1.2 试桩(36-3#)桩位处钻孔地质参数表

二、试验目的及参考依据 (1)试验目的 为了保证结构的安全可靠、施工的顺利进行,主要对桩基在各类土层中桩侧摩阻力、桩端承载力、桩基竖向位移、单桩极限承载力和成桩工艺等进行试验和验证,其主要目的为: 1) 2根试桩设计承载力为8500kN,验证基桩的承载力; 2) 实测桩侧土分层摩阻力和桩端阻力,侧阻及端阻的分担情况; 3) 实测桩身轴力、摩阻力分布; 4) 确定桩基沉降及桩身弹塑性变形; (2)试验参考依据 1)《公路桥涵地基与基础设计规范》(JTG D63-2007); 2)《广东省建筑地基基础设计规范》(DBJ-15-31-2003) 3)《基桩静载试验自平衡法》(JT/T 738-2009); 4) 肇花高速公路北江特大桥35-4#、36-3#钻孔地质资料; 5)《公路桥涵施工技术规范》(JTJ041-2000); 三、测试原理及试验方法 1.试验原理 自平衡测试法是利用试桩自身反力平衡的原则,在桩端附近或桩身某截面处预先埋设单层(或多层)荷载箱,加载时荷载箱以下将产生端阻和向上的侧阻以抵抗向下的位移,同时荷载箱以上将产生向下的侧阻以抵抗向上的位移,上下桩段的反力大小相等、方向相反,从而达到试桩自身反力平衡加载的目的。试验时,在地面上通过油泵加压,随着压力的增加,荷载箱伸长,上下桩段产生弹(塑)性变形,从而促使桩侧和桩端阻力逐步发挥。荷载箱施加的压力可通过预先标定的油泵压力表测得,荷载箱顶底板的位移可通过预先设置的位移棒(或位移丝),在桩顶(或工作平台)附近用位移传感器测得。由此可测得上

相关文档