文档库 最新最全的文档下载
当前位置:文档库 › 二项分布的可加性与泊松分布的例题-修正版.pdf

二项分布的可加性与泊松分布的例题-修正版.pdf

随机变量及其分布列经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量、 ①随机变量就是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化、 2.表示:随机变量常用字母X ,Y,ξ,η,…表示. 3、所有取值可以一一列出的随机变量,称为离散型随机变量 ( dis cre te ran dom var ia ble ) . 二、离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,xi ,…,x n, X 取每一个值x i (i=1,2,…, n)的概率P (X =xi)=pi ,则称表: 为离散型随机变量X P(X =x i )=p i , i =1,2,…,n, 也可以用图象来表示X 的分布列、 2.离散型随机变量的分布列的性质 ①pi ≥0,i=1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X 的分布列具有上表形式,则称服从两点分布,并称p =P (X =1)为成功概率. 2、超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M,N ∈N * . 三、二项分布 一般地,在n 次独立重复试验中,用 X 表示事件A 发生的次数,设每次试验中事件A发生的概率为p ,则P (X=k )=C 错误!p k (1-p)n - k ,k=0,1,2,…,n 、此时称随机变量X服从二项分布,记作X ~B (n ,p),并称p 为成功概率.易得二项分布的分布列如下;

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。应用场景

在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导 泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。在一定时间内某交通路口所发生的事故个数,是一个典型的例子。泊松分布的产生机制可以通过如下例子来解释。

二项分布专题练习

二项分布专题练习 1.已知随机变量X 服从二项分布,X ~B 16,3?? ??? ,则P (X =2)=( ). A . 316 B . 4243 C . 13 243 D . 80 243 2.设某批电子手表正品率为 34,次品率为1 4 ,现对该批电子手表进行测试,设第X 次首次测到正品,则P (X =3)等于( ). A .223 13C 44??? ??? B .2 2331C 44 ??? ? ?? C .2 1344 ??? ??? D .2 3144 ??? ??? 3.甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为0.4,乙投中的概率为0.6,而且不受其他次投篮结果的影响,设投篮的轮数为X ,若甲先投,则P (X =k )等于( ). A .0.6k - 1×0.4 B .0.24k -1×0.76 C .0.4k -1×0.6 D .0.76k - 1×0.24 4.10个球中有一个红球,有放回地抽取,每次取出一球,直到第n 次才取得k (k ≤n )次红球的概率为( ). A .2191010n k -???? ? ? ???? B . 191010k n k -???? ? ? ???? C .1119C 1010k n k k n ---???? ? ????? D .1 1119C 1010k n k k n ----???? ? ??? ?? 5.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为 65 81 ,则事件A 在1次试验中发生的概率为( ). A . 13 B . 25 C . 56 D . 34 6.某一批花生种子,如果每一粒发芽的概率为4 5 ,那么播下4粒种子恰有2粒发芽的概率是__________. 7.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为__________.(用数字作答) 8.假定人在365天中的任意一天出生的概率是一样的,某班级中有50名同学,其中有两个以上的同学生于元旦的概率是多少?(结果保留四位小数)

《概率论与数理统计》习题随机变量及其分布

第二章 随机变量及其分布 一. 填空题 1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =9 5 , 则P(Y ≥ 1) = _________. 解. 9 4951)1(1)0(=-=≥-==X P X P 94)1(2 = -p , 3 1=p 2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为c c c c 162 , 85,43,21, 则c = ______. 解. 2,16321628543211==+++= c c c c c c 3. 用随机变量X 的分布函数F(x)表示下述概率: P(X ≤ a) = ________. P(X = a) = ________. P(X > a) = ________. P(x 1 < X ≤ x 2) = ________. 解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1) 4. 设k 在(0, 5)上服从均匀分布, 则02442 =+++k kx x 有实根的概率为_____. 解. k 的分布密度为??? ??=0 51 )(k f 其它50≤≤k P{02442 =+++k kx x 有实根} = P{03216162 ≥--k k } = P{k ≤-1或k ≥ 2} =5 3 515 2=?dk 5. 已知2}{,}{k b k Y P k a k X P =-== =(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++ a a a a . 49 36 ,194= =++b b b b (X, Y)

二项分布经典例题+测验题资料

二项分布经典例题+测 验题

二项分布 1.n 次独立重复实验 一般地,由n 次实验构成,且每次实验相互独立完成,每次实验的结果仅有两种对立的状态,即A 与A ,每次实验中()0P A p =>。我们将这样的实验称为n 次独立重复实验,也称为伯努利实验。 (1)独立重复实验满足的条件第一:每次实验是在同样条件下进行的;第二:各次实验中的事件是互相独立的;第三:每次实验都只有两种结果。 (2)n 次独立重复实验中事件A 恰好发生k 次的概率 ()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k ==k k n k n C p q -,其中 0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)X B n p 。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3.甲乙两人各进行3次射击,甲每次击中目标的概率为2 1,乙每次击中目标的概率为3 2. (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】

1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球, 且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列。 (Ⅱ)求X的数学期望E(X). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每 次投篮投中的概率为1 3,乙每次投篮投中的概率为1 2 ,且各次投篮 互不影响. (Ⅰ) 求甲获胜的概率。 (Ⅱ) 求投篮结束时甲的投篮次数 的分布列与期望 3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场则比赛宣告结束,假定,A B在每场比赛中获胜的概率都是 1 2 ,试求需要比赛场数的期望. 3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图。

二维随机变量及其分布题目

一、单项选择题 1.设随机变量21,X X 独立,且2 1 }1{}0{= ===i i X P X P (2,1=i ),那么下列结论正确的是 ( ) A .21X X = B .1}{21==X X P C .2 1 }{21= =X X P D .以上都不正确 2设X 与Y 相互独立,X 服从参数为12的0—1分布,Y 服从参数为1 3 的0—1分布,则方程 220t Xt Y ++=中t 有相同实根的概率为 (A ) 13 (B )12 (C )16 (D )2 3 [] 3.设二维随机变量(X ,Y )的概率密度为 ()22 ,02,14, (,)0, .k x y x y f x y ?+<<<

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布) 生存分析 贝叶斯概率公式 全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。 下图为概率密度函数图(F(x)应为f(x),表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X 2分布、t 分布、F 分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution ):例子抛硬币 1、 重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定————伯努利试验) 2、 抽样分布

二项分布经典例题+测验题

二项分布 1.n 次独立重复实验 一般地,由n 次实验构成,且每次实验相互独立完成,每次实验的结果仅有两种对立的状态,即A 与A ,每次实验中()0P A p =>。我们将这样的实验称为n 次独立重复实验,也称为伯努利实验。 (1)独立重复实验满足的条件第一:每次实验是在同样条件下进行的;第二:各次实验中的事件是互相独立的;第三:每次实验都只有两种结果。 (2)n 次独立重复实验中事件A 恰好发生k 次的概率 ()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k == k k n k n C p q -,其中 0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)X B n p 。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3.甲乙两人各进行3次射击,甲每次击中目标的概率为2 1,乙每次击中目标的概率为3 2 . (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且

规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列。 (Ⅱ)求X的数学期望E(X). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投 篮投中的概率为1 3,乙每次投篮投中的概率为1 2 ,且各次投篮互不 影响. (Ⅰ) 求甲获胜的概率。 (Ⅱ) 求投篮结束时甲的投篮次数 的分布列与期望 3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜 4场则比赛宣告结束,假定,A B在每场比赛中获胜的概率都是1 2 , 试求需要比赛场数的期望. 3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查. 下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图。

第二章__随机变量及其概率分布_考试模拟题答案

第二章 随机变量及其概率分布 考试模拟题 (共90分) 一.选择题(每题2分共20分) 1.F(X)是随机变量X 的分布函数,则下列结论不正确的是( B ) A.≤0F(x )1≤ B.F(x )=P{X=x } C.F(x )=P{X x ≤} D.F(∞+)=1, F(∞-)=0 解析: A,C,D 都是对于分布函数的正确结论,请记住正确结论!B 是错误的。 2.设随机变量X 的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X ≤5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是( D ) 4x 01≤≤x 2x 10<≤x A.F(x)= B.F(x)= 1 其它 2 其它 -1 x<0 0 x<0 C.F(x)= 2x 10<≤x D.F(x)= 2x 5.00<≤x 1 其它 1 x ≥0.5 解析:由分布函数F(x)性质:01)(≤≤x F ,A,B,C 都不满足这个性质,选D 4 x 31<<-x 4.设X 的密度函数为f(x)= 则P{-2

A. 0 B.83 C. 43 D. 85 解析:P{-2

06二项分布及泊松分布

●Bernoulli 试验(Bernoulli T est): 将感兴趣的事件A出现的试验结果称为“成功”,事件A不出现的试验结果称为“失败”,这类试验就称为Bernoulli 试验 ●二项分布(binomial distribution): 是指在只会产生两种可能结果如阳性或阴性之一的n次独立重复试验中,当每次试验的阳性概率π保持不变时,出现阳性次数X=0,1,2,…,n的一种概率分布。 ●Poisson分布(Poisson distribution): 随机变量X服从Poisson分布式在足够多的n次独立试验中,X取值为1,2,…,的相应概率为 …的分布。 ★二项分布成立的条件: ①每次试验只能是互斥的两个结果之一;②每次试验的条件不变;③各次试验独立。 ★二项分布的图形: 当∏=0.5,二项分布图形是对称的,当∏不等于0.5,图形是偏态的,随着n增大,图形趋于对称。当n趋于无穷大时,只有∏不太靠近0或者1,二项分布近似正态分布。 ★二项分布的应用 总体率的区间估计,样本率与总体率比较,两样本率的比较 ★Poisson 分布的应用 总体均数的区间估计,样本均数与总体均数的比较,两个样本均数的比较:两个样本计数均较大时,可根据Poisson 分布的正态近似性对其进行u 检验。 ★Poisson 分布成立的条件: ①平稳性:X 的取值与观察单位的位置无关,只与观察单位的大小有关;②独立增量性:在某个观察单位上X 的取值与前面各观察单位上X 的取值无关;③普通性:在充分小的观察单位上X 的取值最多为1。 Poisson 分布,X~P(μ),X 的均数μX =μ,X的方差σ2 =μ,X的标准差σX ★Poisson分布的性质 1、总体均数λ与总体方差相等是泊松分布的重要特点。 2、当n增大,而∏很小,且n∏=λ总体均数时,二项分布近似泊松分布。 3、当总体均数增大时,泊松分布渐近正态分布,一般而言,总体均数》20时,泊松分布资料做为正态分布处理。 4、泊松分布具有可加性。 ★泊松分布的图形 当总体均数越小,分布就越偏态,当总体均数越大,泊松分布就越趋近正态分布。当总体均数小于等于1时,随X取值的变大,P(X)值反而变小;当总体均数大于1时,P(X)值先增大而后变小,若总体均数取整数时,则P(X)在X=总体均数,和X=总体均数—1取得最大值。 ★二项分布和泊松分布的特性 1.可加性 二项分布和Poisson 分布都具有可加性。 如果X1,X2,?Xk 相互独立,且它们分别服从以ni,p(i=1,2, ?,k)为参数的二项分 布,则X=X1+X2+?+Xk 服从以n,p(n=n1+n2+?+nk)为参数的二项分布。如果X1,X2,?,Xk相互独立,且它们分别服从以μi(i=1,2, ?,k)为参数的Poisson 分布,则X=X1+X2+?+Xk服从以μ(μ=μ1+μ2+?+μk)为参数的Poisson 分布。 2.近似分布

泊松过程与泊松分布的基本知识

泊松过程与泊松分布的基本知识泊松过程是随机过程的一个经典模型,是一种累积随机事件的发生次数的独立增量过程。也就是说,每次事件的发生是相互独立的。那么泊松分布和泊松过程又什么关系呢?可以说泊松分布是描述稀有事件的统计规律,即可以描述一段时间内发生某个次数的概率。而泊松过程呢,就适合刻画“稀有事件流”的概率特性。 比较:泊松分布 泊松过程的主要公式: 其实没多少不一样对不对?不一样的是泊松过程是一个可以查看在时间t内发生次数的概率,这个t是可变的。泊松分布则是给定了时间。 泊松过程的关键在于,它的到达间隔序列Tn,即每两次发生的时间是服从的独立同指数分布的。如果每次发生的间隔时间不服从指数分布,那么这个随机过程就会更一般化,我们成为是更新过程,这也是随机过程的推广。 泊松过程分为齐次泊松过程和非齐次泊松过程,齐次的意思很简单,就是说过程并不依赖于初始时刻,强度函数是一个常数,从上面的公式也看得出来。而非齐次则是变成了,这意味着什么呢?这以为着随着与时间的改变,强度是会改变的,改变服从强度函数,说了这

么久,强度究竟是个什么概念?强度的意思就是泊松过程的该事件发生的频率,或者说快慢,泊松分布中我们知道期望就是,实际含义就是,在一段时间内,发生的次数平均水平是次。 复合泊松过程:泊松过程我们已经知道,用描述一段时间累积发生的次数,但是如果每次发生带来的后果都是不一样的,我们怎么描述这个过程呢?比如,火车站到达的乘客是服从泊松过程的,但是每个乘客携带有不同重量的行李,我们如何刻画在[0,t]时间内行李总重量呢,这个过程就是复合泊松过程。复合泊松过程的均值函数和方差函数一般可以用全期望和全方差公式进行计算,因为简单泊松过程的期望很容易求。 更新过程: 上文已经说到,更新过程作为泊松过程的推广,更具有一般性,那么在讨论更新过程时,我们更多地讨来更新函数,更新函数是更新过程的均值函数m(t)=E[N(t)],怎么理解呢,就是说需要用t时刻的累积计数的期望特性来表达更新过程。有一条定理: 这个定理是可以证明的,Fn(t)是分布函数,就是说:在t时刻,更新函数值就是在这个时刻,n取遍所有值的分布之和。 那么是否可以这样理解,更新过程和泊松过程的区别就是更新间隔序列不同,那么如果已知了更新间隔序列的概率密度函数,就可以求解该过程的更新函数了,详细的推导就不写了。扔结论出来:对间隔序列概率密度函数做拉氏变换得到Lf(s),然后求 Lm(s)=Lf(s)/s(1-Lf(s)),再对Lm(s)进行逆变换,就得到了m(t),这就是更新函数。

正态分布及其经典习题和答案

专题:正态分布 【知识网络】 1、取有限值的离散型随机变量均值、方差的概念; 2、能计算简单离散型随机变量的均值、方差,并能解决一些实际问题; 3、通过实际问题,借助直观(如实际问题的直观图),认识正态分布、曲线的特点及曲线所表示的意义。 【典型例题】 例1:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为 ( ) A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1 答案:B 。解析:()4.2==np X E ,()44.1)1(=-=p np X V 。 (2)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定(与标准差的大小有关) 答案:B 。解析:由正态曲线的特点知。 (3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( ) A 32 B 16 C 8 D 20 答案:B 。解析:数学成绩是X —N(80,102), 8080 9080(8090)(01)0.3413,480.34131610 10P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ???。 (4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________ 。 答案:8.5。解析:设两数之积为X , ∴E(X)=8.5. (5)如图,两个正态分布曲线图: 1为)(1 ,1x σμ?,2为)(22x σμ?, 则1μ 2μ,1σ 2σ答案:<,>。解析:由正态密度曲线图象的特征知。 例2:甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率. 答案:解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下: 甲答对试题数ξ的数学期望 E ξ=5 9 61321210313010=?+?+?+? . (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则

浅析二项分布与泊松分布之间的关系

学年论文 题目:浅析二项分布与泊松分布之间的关系 学生: 学号: 院(系):理学院 专业:信息与计算科学 指导教师:安晓钢 2013 年11月25日

浅析二项分布与泊松分布之间的关系 信息121班; 指导教师:安晓钢 (陕西科技大学理学院 陕西 西安 710021) 摘 要:泊松分布刻画了稀有事件在一段时间内发生次数这一随机变量的分布,如电话交换台单位时间内接到的呼唤次数等。二项分布是n 个独立的是/非试验中成功的次数的离散概率分布。它们有着密切的关系。泊松分布是二项分布的特例。某现象的发生率很小,而样本例数n 很大时,则二项分布接近于泊松分布,即:如果试验次数n 很大,二项分布的概率p 很小,且乘积np =λ比较适中,则事件出现的次数的概率可以用泊松分布来逼近。事实上,二项分布可以看作泊松分布在离散时间上的对应物,是二项分布的特例。通过分析二项分布和泊松分布之间的关系,使学生对概率分布理论的理解更为深刻,能够将学到的理论知识应用在实际生活中,从而提高自己的综合素质。 关 键 词:二项分布, 泊松分布, 近似 The Application of Asignment Poblem ABSTRACT: Poisson distribution is used to depict the distribution of rare events that a random variable frequency over a period of time, such as a telephone exchange in unit time received the call number. The two distribution is n independent / discrete probability distributions of number of successful non trials. They have a close relationship. Poisson distribution is two distribution case. The incidence of the phenomenon is very small, and the number of sample n is large, then the two distribution is close to the Poisson distribution, i.e.: if the test number n is large, the two probability distribution P is small, and the product of lambda = N P is moderate, the probability of the event can be used to force the Poisson distribution near. In fact, the two distribution can be seen as the counterpart of Poisson distribution in discrete time, are the two distribution case. Through the analysis of the relationship between two binomial distribution and Poisson distribution, enables the student to the theory of probability distribution for more profound understanding will be able to learn the application of theoretical knowledge in real life, so as to improve their comprehensive quality. KEY WORDS : Two distribution, Poisson distribution, Approximate

二项分布经典例题练习题

二项分 布 1.n 次独立重复试验 一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中()0P A p =>。我们将这样的试验称为n 次独立重复试验,也称为伯努利试验。 (1)独立重复试验满足的条件第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。 (2)n 次独立重复试验中事件A 恰好发生k 次的概率()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k ==k k n k n C p q -,其中0 1.1,0,1,2,,,p p q k n <<+==L 则称X 服从参数为,n p 的二项分布,记作(,)X B n p :。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 2.一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到 红灯的事件是相互独立的,并且概率都是31 . (1)设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列; (2)设η为这名学生在首次停车前经过的路口数,求η的分布列;

(3)求这名学生在途中至少遇到一次红灯的概率. 3.甲乙两人各进行3次射击,甲每次击中目标的概率为 21,乙每次击中目标的概率为3 2. (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且规定:取出一个白球的 2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出3球所得分数之和. (Ⅰ)求X 的分布列; (Ⅱ)求X 的数学期望E (X ). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜 或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为1 3 ,乙每次投篮投中的概 率为1 2 ,且各次投篮互不影响. (Ⅰ)求甲获胜的概率; (Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望

第二章随机变量与分布函数习题

第二章:随机变量与分布函数习题 一、“离散型随机变量与分布函数”习题: 1. 射手对靶子进行射击,用X 表示击中的环数,已知击中一环的概率为0.2,击中两环的概率为0.8;求:(1)X 的分布列及分布函数;(2)()()10,1≤<≥X P X P . 2. 射手对靶子进行射击,一次射击的命中率为0.8,现在连续射击三枪,用X 表示三枪中命中的次数,求:(1)X 的分布列及分布函数;(2)A “至少命中两枪”的概率. 3. 设随机变量X 的分布函数为 ()()???? ???≥<≤<≤--<=≤=31 318.0114.010 x x x x x X P x F 求:X 的分布列. 4. 设随机变量X 的分布函数为 ()??? ? ????? >≤≤<=2120sin 00ππx x x A x x F 求:(1)A =? (2)??? ??<6πx P . 5. 设随机变量X 的分布列为??? ? ??--22121101q q ; 求: (1)q=? (2)X 的分布函数. 6. 某设备由三个独立工作的元件构成,该设备在一次试验中每个元件发生故障的概率为 0.1,求该设备在一次试验在中发生故障的元件数的分布列. 7. 将一颗骰子投掷两次,以X 表示两次所得点数之和、Y 表示两次中所得的小的点数;分别求X 与Y 的分布列. 8. 设随机变量X ~()p B ,2, 随机变量Y ~()p B ,3; 已知()9 5 1=≥X P , 求:()1≥Y P . 二、“连续型随机变量与分布函数”习题: 1. 设()()??? ??<>≥=-00 0,0212 x a x e a x x f a x ; ()?????<<=其他0 0cos 21 2 πx x x f ; ()????? <<-=其他0 22cos 3ππx x x f ; (1) 以上()()()x f x f x f 321,,是否是某随机变量X 的分布密度函数?

一个复合随机变量的方差

一个复合随机变量的方差 王福昌 (防灾科技学院 河北三河 065201) 【摘要】:对于比较复杂的复合随机变量的方差,一般没有简单公式去求解。这里结合具体例子进行了详细剖析。 【关键词】复合随机变量;方差 随机变量的数字特征在对积极变量的研究中占有重要的地位[1]。在教学过程中,我们发现学生在对简单的随机变量求方差时还能应付,对于稍微复杂的随机变量,不知如何下手。本文通过求一个复合随机变量的方差,指出遇到这种情形时应注意的一些问题. 如果一个随机变量X,它服从的分布与一个参数Y 有关,而Y 也是一个随机变量,它服从一个确定的分布,这时我们称随机变量X 为一个服从复合分布的复合随机变量。在应用问题中,常常遇到服从复合分布的随机变量[2]。下面给出一个例子。 设随机变量X ,以概率0.2服从均值为5的泊松分布,以概率0.8服从均值为1的泊松分布,求X 的方差。 解:由泊松分布性质可得,服从参数λ泊松分布的期望与方差相等,且都等于其参数λ。 设)5(~1πX ,)1(~2πX ,由题设和条件概率公式、全概率公式 ,设全集 } {}{21X X X X S =?==,对于 ,,21=k ()()()} {8.0}{2.0}{}{}{}{} ,{} ,{}{}{}{}{}{2122112121k X P k X P X X k X P X X P X X k X P X X P k X X X P k X X X P X X X X k X P S k X P k X P =+=====+=====+===?=?==?===条件概率可加性 所以 8 .118.052.0} {8.0}{2.0} {)(0 20 10 =?+?==?+=?===∑∑∑∞ =∞=∞ =k k k k X kP k X kP k X kP X E 由方差定义 )()()(22X E X E X D -=,所 以 ) ()()(122 11X E X E X D -=,) ()()(222 22X E X E X D -=,所 以 30 55)()()(21212 1=+=+=X E X D X E , 211)()()(22222 2=+=+=X E X D X E , 6 .728.0302.0) (8.0)(2.0} {8.0}{2.0} {)(2 2210 220 12022 =?+?=?+?==?+=?===∑∑∑∞ =∞=∞ =X E X E k X P k k X P k k X P k X E k k k 所以 36.48.16.7)()()(222=-=-=X E X E X D . 通过这个例子可以看出概率解题方法的灵活多样性。一个有效的策略是吃透概念,从定义和基本公式出发,利用一直的基本性质和技巧往往可使复杂方差的计算变得简捷. 看起来复杂的问题,往往可通过最根本的基本定义和方法解决。 【参考文献】 [1] 邓健,生志荣. 一个随机变量的分布列及数学期望的计算[J].数学学习与研究,2010,(1):93,95. [2]张尚志. 复合随机变量高阶矩的一个积分表达式[J].江西大学学报(自然科学版),1980,4(1):135-137.

正态分布附其经典习题及答案

25.3正态分布 【知识网络】 1、取有限值的离散型随机变量均值、方差的概念; 2、能计算简单离散型随机变量的均值、方差,并能解决一些实际问题; 3、通过实际问题,借助直观(如实际问题的直观图),认识正态分布、曲线的特点及曲线所表示的意义。 【典型例题】 例1:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为 ( ) A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1 答案:B 。解析:()4.2==np X E ,()44.1)1(=-=p np X V 。 (2)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定(与标准差的大小有关) 答案:B 。解析:由正态曲线的特点知。 (3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是() A 32 B 16 C 8 D 20 答案:B 。解析:数学成绩是X —N(80,102 ), 8080 9080(8090)(01)0.3413,480.3413161010P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ???。 (4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________。 ∴ (5)如图,两个正态分布曲线图: 1为)(1 ,1x σμ?,2为)(22x σμ?, 则1μ2μ,1σ2σ(填大于,小于) 答案:<,>。解析:由正态密度曲线图象的特征知。 例2 :甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率. 答案:解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下: 甲答对试题数ξ的数学期望 E ξ=5 9 61321210313010=?+?+?+? . (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则

二项分布经典例题复习总结练练习习题.doc

二项分布 1.n次独立重复试验 一般地,由 n 次试验构成,且每次试验相互独立完成,每次试验 的结果仅有两种对立的状态,即 A 与 A ,每次试验中P( A) p0 。我们将这样的试验称为n 次独立重复试验,也称为伯努利试验。 (1)独立重复试验满足的条件第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都 只有两种结果。 ( 2 )n次独立重复试验中事件A恰好发生k次的概率P( X k) C n k p k (1p) n k。 2.二项分布 若随机变量X的分布列为P( X k ) C n k p k q n k,其中0 p 1.p q 1,k 0,1,2,L ,n, 则称 X 服从参数为 n, p 的二项分布,记作 X : B(n, p) 。 1.一盒零件中有9 个正品和 3 个次品,每次取一个零件,如果取出 的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3. 甲乙两人各进行 3 次射击,甲每次击中目标的概率为1 ,乙每次击 中目标的概率为2 . 2 3

(1)记甲击中目标的此时为,求的分布列及数学期望; (2)求乙至多击中目标 2 次的概率; (3)求甲恰好比乙多击中目标 2 次的概率 . 【巩固练习】 1.(2012 年高考(浙江理))已知箱中装有 4 个白球和 5 个黑球 , 且 规定 : 取出一个白球的 2 分, 取出一个黑球的 1 分 . 现从该箱中任取( 无放回 , 且每球取到的机会均等 )3 个球 , 记随机变量X为取出 3 球所得分数之和 . ( Ⅰ) 求X的分布列 ; ( Ⅱ) 求X的数学期望E( X). 2.(2012 年高考(重庆理))( 本小题满分 13 分 ,( Ⅰ) 小问 5 分,( Ⅱ) 小问 8 分.) 甲、乙两人轮流投篮 , 每人每次投一球 ,. 约定甲先投且先投中者获胜, 一直到有人获胜或每人都已投球 3 次时投篮结束 . 设甲每次投 篮投中的概率为影响 . 1 3 ,乙每次投篮投中的概率为 1 2 ,且各次投篮互不 ( Ⅰ) 求甲获胜的概率 ;

相关文档
相关文档 最新文档