文档库 最新最全的文档下载
当前位置:文档库 › 模糊数学基本知识

模糊数学基本知识

模糊数学基本知识
模糊数学基本知识

一.模糊数学的基础知识

1.模糊集、隶属函数及模糊集的运算。

普通集合A ,对x ?,有A x ∈或A x ?。

如果要进一步描述一个人属于年轻人的程度大小时,仅用特征函数就不够了。模糊集理论将普通集合的特征函数的值域推广到[0,1]闭区间内,取值的函数以度量这种程度的大小,这个函数(记为)(x E )称为集合E 的隶属函数。即对于每一个元素x ,有[0,1]内的一个数)(x E 与之对应。

(1)模糊子集的定义:射给定论域U ,U 到[0,1]上的任一映射:

))((],1,0[:U u u A u U A ∈?→→

都确定了U 上的一个模糊集合,简称为模糊子集。)(u A 称为元素u 属于模糊集A 的隶属度。映射所表示的函数称为隶属函数。

例如:设论域U=[0,100],U 上的老年人这个集合就是模糊集合:

??

?

??≤<-+≤=--10050,))550(1(50,0)(12u u u u A 若在集合U 上定义了一个隶属函数,则称E 为模糊集。

(2)模糊集合的表示:},.....,,{21n u u u U =,)(u A 称为元素u 属于模糊集A 的隶属度;则模糊集可以表示为:n

n u u A u u A u u A A )(....)

()(2211+++=

。 或 )}(),.....,(),({21n u A u A u A A =,))}(,()),.....,(,()),(,{(2211n n u A u u A u u A u A =, (3)模糊集合的运算:

)}(),.....,(),({21n u A u A u A A =,)}(),.....,(),({21n u B u B u B B =,

并集:

)}()(),.....,()(),()({2211n n u B u A u B u A u B u A B A ∨∨∨=?,

交集:)}()(),.....,()(),()({2211n n u B u A u B u A u B u A B A ∧∧∧=?, 补集:

)}(1),.....,(1),(1{21n c u A u A u A A ---=,

包含:B A u B u A U u ?≤∈?,则有有若)()(,, 2.模糊集的截集

已知U 上模糊子集))((],1,0[:U u u A u U A ∈?→→

对]1,0[∈λ,则称})(,{λλ≥∈=u A U u u A 为模糊集A 的λ-截集;

称})(,{λλ>∈=u A U u u A s

为模糊集A 的λ-强截集;λ称为λA 、s

A λ的置信水平或阀值。

二.模糊数学的基本定理

1.模糊截积:

已知U 上模糊子集))((],1,0[:U u u A u U A ∈?→→

对]1,0[∈λ,A λ也是U 上模糊集,其隶属函数为:)(),())((U u u A u A ∈?∧=λλ; 称为A λ为λ与A 的模糊截积。

2.分解定理1:已知模糊子集)(U F A ∈,则λλλA A ]

1,0[∈?=

推论1:对,U u ∈?}],1,0[{)(λλλA u u A ∈∈∨=

3.分解定理2:已知模糊子集)(U F A ∈,则S

A A λλλ]

1,0[∈?=

推论2:对,U u ∈?}],1,0[{)(S

A u u A λλλ∈∈∨= 三.模糊关系与模糊聚类 1.模糊关系与模糊关系的合成

(1) 模糊关系 普通集合的经典关系,

模糊关系:从U 到V 上的一个模糊关系:]1,0[:→?V U R ,),(j i v u R 表示

j i v u 与具有的关系程度,V v U u j i ∈∈,。n m ij a A ?=)((ij a 满足0≤ij a ≤1)称为U

到V 上的一个模糊关系的模糊矩阵。

(2).设A =p n ij a ?)(和B =m p ij B ?)(为两个模糊矩阵,令 ij c =)(1kj ik p

k b a ∧∨=,i =1,2,…,n ,j =1,2,…,m 。

则称矩阵C =m n ij c ?)(为模糊矩阵A 与B 的褶积,记为 C =A B ?, 其中“∨”和“∧”的含义为

},max{b a b a =∨ },min{b a b a =∧

显然,两个模糊矩阵的褶积仍为模糊矩阵 2. 模糊等价矩阵及其λ矩阵 设方阵A 为以模糊矩阵,若A 满足 A A =A

则称A 为模糊等价矩阵。

模糊等价矩阵可以反映模糊分类关系的传递性,即描述诸如“甲像乙,乙像丙,则甲像丙”这样的关系。

设A =n n ij a ?)(为一个模糊等价阵,0≤λ≤1为一个给定的数,令

?????<≥=λ

λλij ij ij a a a 若若,0,1)

( ,,...,2,1,n j i =

则称矩阵n n ij a A ?=)()

(λλ为A 的-λ截阵

例如,

A =??

??

?

?????14.06.04.014.06.04.01 为一个模糊等价阵,取0.4<6.0≤λ,则

λA =??

??

?

?????101010101 若取4.00≤≤λ,则

λA =??

??

?

?????111111111

2.模糊聚类:

模糊划分的概念最早由Ruspini 提出,利用这一概念人们提出了多种聚类方法,比较典型的有:基于相似性关系和模糊关系的方法(包括聚合法和分裂法),基于模糊等价关系的传递闭包方法、基于模糊图论最大树方法,以及基于数据集的凸分解、动态规划和难以辨识关系等方法. 然而由于上述方法不适用于大数据量情况,难以满足实时性要求高的场合,因此其实际的应用不够广泛,故在该方面的研究也就逐步减少了. 实际中受到普遍欢迎的是基于目标函数的方法,该方法设计简单、解决问题的范围广,最终还可以转化为优化问题而借助经典数学的非线性规划理论求解,并易于计算机实现. 因此,随着计算机的应用和发展,该类方法成为聚类研究的热点.

(1)模糊聚类的基本概念

模糊聚类目标函数的演化

模糊聚类方法

模糊聚类法和一般的聚类方法相似,先将数据进行标准化,计算变量间相似矩阵或样品间的距离矩阵,将其元素压缩到0与1之间形成模糊相似矩阵,进一步改造为模糊等价矩阵,最后取不同的标准λ,得到不同的-λ截阵,从而就可以得到不同的类。具体步骤如下: 第一步:数据标准化 1.数据矩阵

设论域},...,,{21n x x x U =为被分类的对象,每个对象又由m 个指标表示其性状:

},...,,{21im i i i x x x x = (n i ,...,2,1=)

于是得到原始数据矩阵为

?

?

???

???????nm n

n m m x x x x x x x x x (21)

2222111211

2.数据标准化

在实际问题中,不同的数据一般有不同的量纲。为了使有不同的量纲的量也能进行比较,通常需要对数据作适当的变换。但是,即使这样得到的数据也不一定

在区间[0,1]上。因此,这里所说的数据标准化,就是要根据模糊矩阵的要求,将数据压缩到区间[0,1]上。 通常需要作如下变换: (1)平移·标准差变换:

k

k

ik ik

S x x x '-=' (m k n i ,...,2,1;,...,2,1==) 其中∑∑==-=='n i k

ik k n i ik x x n S x n x 1

2

1)(1,1。 经过变化后,每个变量的均值为0,标准差为1,且消除了量纲的影响。但是,

这样得到的k

x '还不一定在区间[0,1]上。 (2)平移·级差变换

}{min }{max }{min 111ik n

i ik

n

i ik n

i ik

ik

x x x x x '-''-'=''≤≤≤≤≤≤- (m k ,...,2,1=)

显然有10≤''≤ik

x ,而且也消除了量纲的影响。 第二步:标定(建立模糊相似矩阵)

设论},...,,{},,...,,{2121im i i i n x x x x x x x U ==依照传统的方法确定相似系数,建立模糊相似矩阵,i x 与j x 的相似程度),(j i ij x x R r =。可根据问题的性质,选取下列公式之一计算ij r 1. 数量积法

???

??≠?==∑=;,1;,11j i x x M j i r jk

m

k ik ij 其中)(max 1∑=≠?=m

k jk ik j

i x x M

显然ij r ]1,0[∈,若ij r 中出现负值,也可采用下面的方法将ij r 压缩在[0,1]上 令2

1+=

'ij ij r r ,则]1,0[∈'ij r 。

当然也可用上述的平移·级差变换。

2.夹角余弦法

ij r =

2

11

1

22

1]

[∑∑∑===?n k n

k jk ik n

k jk

ik

x x x x

若将变量i X 的n 个观测值T in i i x x x ),...,,(21与变量j X 的相应n 个观测值

T jn j j x x x ),...,,(21看成n 维空间中的两个向量,ij r 正好时这两个向量夹角的余弦。 3.相关系数法

从统计角度看,两个随机变量的相关系数是描述这两个变量关联性(线性关系)强弱的一个很有用的特征数字。因此,用任意两个变量的n 个观测值对其相关系数的估计可作为两个变量关联性的一种度量,其定义为

ij r =

2

1

1

1

221]

)()([|

)(||)(|∑∑∑=-=-?---n k n

i j ji i ik n

k j jk i ik

x x x x x x x x

其中i x (i =1,2,…,p )见(i x =∑=n

k ik x n 1

1,i =1,2,…, p ,)。

ij r (1p j i ≤≤,)其实就是X =T p X X ),...,(1的样本相关矩阵中的各元素。

4.指数相似系数法

∑=-?-=m k k

jk ik ij S x x m r 12

2

})(43exp{1, 其中∑=-=n i ik ik K x x n S 12

)(1,而),...,2,1(11

m k x n x n i ik k ==∑=

需要注意的是,相关系数法与指数相似系数法中的统计指标的内容是不同的。 5.最大最小法

∑∑==∨∧=

m

k jk ik

m

k jk ik

ij x x

x x r 11

)

()

(

6.算术平均最小法

∑∑==+∧=

m

k jk ik

m

k jk ik ij x x

x x r 11)

()

(2

7.几何平均最小法

∑==?∧=

m

k jk

ik m

k jk ik

ij x x x x

r 1

1)

(

(上述5,6,7三种方法均要求0>ij x ,否则也要做适当变换) 8.绝对值减数法

∑=--=m

k jk ik ij x x C r 1||1

适当选取C ,使得01≤≤ij r 。 9.绝对值倒数法

其中M 适当选取,使得01≤≤ij r 。

10.绝对值指数法

}||ex p{1∑=--=m

k jk ik ij x x r

11.距离法 ),(1j i ij x x Cd r -=

其中C 为适当选取的参数,它使得01≤≤ij r ,经常采用的距离有

(1)绝对距离

d (j i x x ,)=

∑--p a aj ai

x x

1

||.

(2)欧式距离:

j

i x x M j i r m i jk

ik ij ≠???????-==∑=,|

|,11

d (j i x x ,)

= ∑--p a aj ai

x x

1

2/12])([

(3)Chebishov 距离:

d (j

i x x ,)= |}{|max 1aj ai

p

a x x

-≤≤.

12.主观评分法:请有实际经验者直接对i x 与j x 的相似程度评分,作为ij r 的值。 上述方法究竟选哪一种,需要根据问题的性质及应用方便来选择。 第三步:进行模糊聚类 1.基于模糊等价矩阵聚类方法

一般来说。上述模糊矩阵)(ij r R =是一个模糊相似矩阵,不一定具有等价性,即R 不一定是模糊等价矩阵。这可以通过模糊矩阵的褶积将其转化为模糊等价阵,具体方法如下:

计算2R = R R ?,4R = 22R R ?,8R =

44R R ?,…,直到满足k k R R =2这时模糊矩

阵k R 便是一个模糊等价矩阵。记k ij R r R ==)~(~

将ij r ~

按由大到小的顺序排列,从λ=1开始,沿着ij r ~由大到小的次序依次取λ=ij r ~

,求R ~的相应的-λ截阵λR ~

,其中元素为1的表示将其对应的两个变量(或样品)归为一类,随着λ的变小,其合并的类越来越多,最终当λ=}~{min ,1ij n

j i r ≤≤时,

将全部变量(或样品)归为一个大类。按λ值画出聚类的谱系图 2.直接聚类法

所谓直接聚类法是指:在建立模糊相似矩阵之后,不去求传递闭包)(R t ,直接从相似矩阵出发,求得聚类图。其步骤如下: (1)取1λ=1(最大值),对每个i x 作相似类R i x ][:

R i x ][={j x |1=ij r },

即将满足1=ij r 的i x 与j x 放在一类,构成相似类。相似类与等价类的不同之处是,不同的相似类可能有公共元素,即可出现

R i x ][={i x ,k x },R j x ][={j x ,k x },[i x ]?[j x ]φ≠.此时只要将有公共元素的相似

类合并,即可得1λ=1水平上的等价分类。

(2)取2λ为次大值,从R 中直接找出相似程度为2λ的元素对(i x ,j x )(即

2λ=ij r ),相应的将对应于1λ=1的等价分类中i x 所在类与j x 所在类合并,将所

有这些情况合并后,即得对应2λ的等价分类。

(3)取3λ为第三大值,从R 中直接找出相似程度为3λ的元素对(i x ,j x )(即

3λ=ij r ),类似的将对应于2λ的等价分类中i x 所在类与j x 所在类合并,将所有这

些情况合并后,即得对应3λ的等价分类。 (4)依次类推,直到合并到U 成为一类为止。

直接聚类法与传递闭包法所得的结果是一致的,直接聚类法要明显简单一些,下面再介绍直接聚类法的图形化方法,即最大树法。

所谓最大树法,就是画出以被分类元素为顶点,以相似矩阵R 的元素ij r 为权重的一棵最大的树,取定]1,0[∈λ,去掉权重低于λ的枝,得到一个不连通的图,各个连通的分支便构成了在λ水平上的分类。 下面介绍求最大树的Kruskal 法

设},...,,{21n x x x U =,先画出所有顶点),,...,2,1(n i x i =从模糊相似矩阵R 中按

ij r 从大到小的顺序依次画枝,并标上权重,要求不产生圈,直到所有顶点连通为

止,这就得到一棵最大树(最大树可以不唯一)。

上述两个聚类方法各有优劣,使用传递闭包法分类,当矩阵阶数较高时,手工计算量大,但在计算机上还是容易实现的,因此,人们还是乐于使用它。当矩阵阶数不高时,直接聚类法比较直观,也便于操作,适合推广使用。

最佳阙值λ的确定

在模糊聚类分析中,对于各个不同的]1,0[∈λ,可得到不同的分类,从而形成一种动态聚类图,这对全面了解样本的分类情况是比较形象和直观的。但许多实际问题需要选择某个阙值λ的问题。现介绍下面两种方法。

1. 按照实际需要,在动态聚类图中,调整λ的值以得到适当的分类,而不需

要事先准确地估计好样本应分为几类。当然,也可由具有丰富经验的专家结合专业知识来确定阙值λ,从而得出在λ水平上的等价分类。 2. 用-F 统计量确定λ最佳值

设论域},...,,{21n x x x U =为样本空间(样本总数为n ),而每个样本i x 有m 个特征(即由试验或观察得到的m 个数据);i x =(im i i x x x ,...,,21)(n i ,...,2,1=)。于是,得到原始数据矩阵,如下表所示

其中,∑==n

i ik k x n x 1

1(m k ,...,2,1=),x 称为总体样本的中心向量。

设对应于λ值的分类数为r ,第j 类的样本数为j n ,第j 类的样本记为:

)

()(2)(1,...,,j nj

j j x x x ,第j 类的聚类中心为向量)

(j x =()(1j x ,)(2j x ,…, )(j n x ),其中)

(j k x ,

为第k 个特征向量的平均值:

)

(j k

x

=∑=j

n i j ik

j

x

n 1

)(1 (m k ,...,2,1=)

作-F 统一量

)

(||||)

)1(||||11

2

)

()(12

)

(r n x

x r x x

n F r

j n i j j i r

j j j j ----=

∑∑∑===

其中∑=-=

-m

k k j k j x x x x

1

2)()

()(||||为)

(j x

与x 的距离,||||)

()(j j i x

x -为第j 类样本

)(j i x 与中心)

(j x

的距离,称式(*)为-F 统一量。它的分子表征类与类之间的距

离,分母表征类样本间的距离。因此,F 值越大,说明分类越合理,对应-F 统一值最大的阙值λ为最佳值。

(二).模型实例分析

例: 设某地区设置有11个雨量站,其分布图见图5-1,10年来各雨量站所测得的年降雨量列入表5-1中。现因经费问题,希望撤销几个雨量站,问撤销那些雨量站,而不会太多的减少降雨信息?

图1

表1

应该撤销那些雨量站,涉及雨量站的分布,地形,地貌,人员,设备等众多因素。我们仅考虑尽可能地减少降雨信息问题。一个自然的想法是就10年来各雨量站所获得的降雨信息之间的相似性,对全部雨量站进行分类,撤去“同类”(所获降雨信息十分相似)的雨量站中“多余”的站。 问题求解 假设为使问题简化,特作如下假设 (1) 每个观测站具有同等规模及仪器设备; (2) 每个观测站的经费开支均等; 具有相同的被裁可能性。

分析:对上述撤销观测站的问题用基于模糊等价矩阵的模糊聚类方法进行分析,原始数据如上。 求解步骤:

1.利用相关系数法,构造模糊相似关系矩阵1111)(?αβr ,其中

ij r =

2

1

1

1

221]

)()([|

)(||)(|∑∑∑=-=-?---n k n

k j jk i ik n

k j jk i ik

x x x x x x x x

其中i x =∑=10

1

101k ik x ,i =1,2, (11)

j x =∑=n

k jk x n 1

1,j =1,2, (11)

用C 语言编程计算出模糊相似关系矩阵1111)(?αβr ,具体程序如下 #include #include

double r[11][11];

double x[11];

void main()

{ int i,j,k; double fenzi=0,fenmu1=0,fenmu2=0,fenmu=0;

int year[10][11]={276,324,159,413, 292 ,258,311,303,175,243,320,

251 ,287,349,344,310,454,285,451,402,307,470,

192 ,433,290,563,479,502,221,220,320,411,232,

246 ,232,243,281,267,310,273,315,285,327,352,

291,311,502,388 ,330,410,352,267,603,290,292,

466 ,158,224,178,164,203,502,320,240,278,350,

258,327,432 ,401,361,381,301,413,402,199,421,

453,365,357 ,452,384,420,482,228,360,316,252,

158 ,271,410,308,283,410,201,179,430,342,185,

324,406,235,520 ,442,520,358,343,251,282,371};

for(i=0;i<11;i++)

{ for(k=0;k<10;k++)

{ x[i]=x[i]+year[k][i];}

x[i]=x[i]/10;

}

for(i=0;i<11;i++)

{for(j=0;j<11;j++)

{ for(k=0;k<10;k++)

{ fenzi=fenzi+fabs((year[k][i]-x[i])*(year[k][j]-x[j]));

fenmu1=fenmu1+(year[k][i]-x[i])*(year[k][i]-x[i]);

fenmu2=fenmu2+(year[k][j]-x[j])*(year[k][j]-x[j]); fenmu=sqrt(fenmu1)*sqrt(fenmu2);

r[i][j]=fenzi/fenmu;

}

fenmu=fenmu1=fenmu2=fenzi=0; }}

for(i=0;i<11;i++) { for(j=0;j<11;j++)

{printf("%6.3f",r[i][j]);}

printf("\n");} getchar(); }

得到模糊相似矩阵R

1.000 0.839 0.528 0.844 0.828 0.702 0.995 0.671 0.431 0.573 0.712 0.839 1.000 0.542 0.996 0.989 0.899 0.855 0.510 0.475 0.617 0.572 0.528 0.542 1.000 0.562 0.585 0.697 0.571 0.551 0.962 0.642 0.568 0.844 0.996 0.562 1.000 0.992 0.908 0.861 0.542 0.499 0.639 0.607 0.828 0.989 0.585 0.992 1.000 0.922 0.843 0.526 0.512 0.686 0.584 0.702 0.899 0.697 0.908 0.922 1.000 0.726 0.455 0.667 0.596 0.511 0.995 0.855 0.571 0.861 0.843 0.726 1.000 0.676 0.489 0.587 0.719 0.671 0.510 0.551 0.542 0.526 0.455 0.676 1.000 0.467 0.678 0.994 0.431 0.475 0.962 0.499 0.512 0.667 0.489 0.467 1.000 0.487 0.485 0.573 0.617 0.642 0.639 0.686 0.596 0.587 0.678 0.487 1.000 0.688 0.712 0.572 0.568 0.607 0.584 0.511 0.719 0.994 0.485 0.688 1.000

对这个模糊相似矩阵用平方法作传递闭包运算,求44

2:R R R ?→?

即t (R )=4R =*R

注:R 是对称矩阵,故只写出它的下三角矩阵

?

????

?

??????????

??

??

???

???

???

??

???=1688.0697.0688.0719.0719

.0719

.0719

.0697

.0719

.0719

.01

697.0688.0688.0688.0688.0688.0688.0688.0688.01

676.0697.0697.0697.0697.0962.0697.0697.01719.0719.0719.0719.0697.0719.0719.01

861.0861.0861.0697.0861.0994.01922.0922.0697.0995.0861

.01992.0697.0996.0861.01697.0996.0861.01697.0697.01861.0000.1*R

取λ=0.996,则

996.0R =?

????

?

??????

?????????????????????

?111111*********

故第二行(列),第四行(列)完全一致,故42,x x 同属一类,所以此时可以将观测站分为9类{42,x x ,5x },{1x },{3x },{6x },{7x },{8x },{9x },{10x },{11x } 这表明,若只裁减一个观测站,可以裁42,x x 中的一个。若要裁掉更多的观测站,则要降低置信水平λ,对不同的λ作同样分析,得到

λ=0.995时,可分为8类,即{42,x x ,5x ,6x },{1x },{3x },{7x },{8x },{9x },{10x },{11x }

λ=0.994时,可分为7类{42,x x ,5x ,6x },{1x ,7x },{3x } ,{8x },{9x },

{10x },{11x }

λ=0.962时,

可分为6类{42,x x ,5x ,6x },{1x ,7x },{3x ,9x } ,{8x }, {10x },{11x } λ =0.719时,可分为5类{42,x x ,5x ,6x },{1x ,7x },{3x ,9x } ,{8x ,

11x },{10x }

再具体分析图5-1,我们可以看到6x 虽然和42,x x ,5x 分为一类,但6x 和42,x x ,

5x 观测点相距较远,撤去6x 是不太合适的,保留6x 而撤去42,x x ,5x 就更不合适

了。因此还是将其分为6类,即{42,x x ,5x },{6x },{1x ,7x },{3x ,9x } ,{8x ,

11x },{10x },依据每类最少保留一个站的原则,最多可撤去5个站。实际应该撤

去哪几个站就应该依据其他条件来确定了。

由本例可以看出,当需要比较聚类的数据较多时,一般采用模糊聚类法进行分析,

在分析过程中,复杂的数据运算都可以在计算机上实现,从而减少繁琐的手工操作

模糊数学基础

第六章模糊数学基础6.1概述 6.1.1传统数学与模糊数学 6.1.2不相容原理 6.2 模糊集合与隶属度函数 6.2.1 模糊集合及其运算 6.2.2 隶属度函数 6.3 模糊逻辑与模糊推理 6.3.1模糊逻辑 6.3.2模糊语言 6.3.3 模糊推理

第六章 模糊数学基础 6.1 概述 6.1.1 传统数学与模糊数学 6.1.2 不相容原理 1965年,美国自动化控制专家扎德(L. A. Zadeh )教授首先提出用隶属度函数 (membership function)来描述模糊概念,创立了模糊集合论,为模糊数学奠定了基础。 不相容原理:“随着系统复杂性的增加,我们对其特性作出精确而有意义的描述的能力会随之降低,直到达到一个阈值,一旦超过它,精确和有意义二者将会相互排斥”。这就是说,事物越复杂,人们对它的认识也就越模糊,也就越需要模糊数学。不相容原理深刻的阐明了模糊数学产生和发展的必然性,也为三十多年来模糊数学的发展历史所证实。 6.2 模糊集合与隶属度函数 6.2.1 模糊集合及其运算 一、模糊集合(Fuzzy Sets )的定义 传统集合中的元素是有精确特性的对象,称之为普通集合。例如,“8到12之间的实数”是一个精确集合C ,C ={实数r |8≤r ≤12},用特征函数μC (r )表示其成员,如图6.1(a)所示。 ??? ? ?≤≤=其它 , , 012 81)(r r C μ 在模糊论域上的元素符合程度不是绝对的0或1,而是介于0和1之间的一个实数。例如,“接近10的实数”是一个模糊集合F ={r |接近10的实数},用“隶属度(Membership)” μF (r )作为特征函数来描述元素属于集合的程度。 1 812 1 107.2911 0.750.275 12.8 r r μC (r ) μF (r ) (a) (b) 图6.1 普通集合与模糊集合的对比

模糊数学简介及入门

模糊数学简介 模糊数学是数学中的一门新兴学科,其前途未可限量。1965年,《模糊集合》的论文发表了。作者是著名控制论专家、美国加利福尼亚州立大学的扎德(L.A.Zadeh)教授。康托的集合论已成为现代数学的基础,如今有人要修改集合的概念,当然是一件破天荒的事。扎德的模糊集的概念奠定了模糊性理论的基础。这一理论由于在处理复杂系统特别是有人干预的系统方面的简捷与有力,某种程度上弥补了经典数学与统计数学的不足,迅速受到广泛的重视。近40年来,这个领域从理论到应用,从软技术到硬技术都取得了丰硕成果,对相关领域和技术特别是一些高新技术的发展产生了日益显著的影响。有一个古老的希腊悖论,是这样说的:“一粒种子肯定不叫一堆,两粒也不是,三粒也不是……另一方面,所有的人都同意,一亿粒种子肯定叫一堆。那么,适当的界限在哪里?我们能不能说,123585粒种子不叫一堆而123586粒就构成一堆?”确实,“一粒”和“一堆”是有区别的两个概念。但是,它们的区别是逐渐的,而不是突变的,两者之间并不存在明确的界限。换句话说,“一堆”这个概念带有某种程度的模糊性。类似的概念,如“年老”、“高个子”、“年轻人”、“很大”、“聪明”、“漂亮的人”、“价廉物美”等等,不胜枚举。经典集合论中,在确定一个元素是否属于某集合时,只能有两种回答:“是”或者“不是”。我们可以用两个值0或1加以描述,属于集合的元素用1表示,不属于集合的元素用0表示。然而上面提到的“年老”、“高个子”、“年轻人”、“很大”、“聪明”、“漂亮的人”、“价廉物美”等情况要复杂得多。假如规定身高1.8米算属于高个子范围,那么,1.79米的算不算?照经典集合论的观点看:不算。但这似乎很有些悖于情理。如果用一个圆,以圆内和圆周上的点表示集A,而且圆外的点表示不属于A。A的边界显然是圆周。这是经典集合的图示。现在,设想将高个子的集合用图表示,则它的边界将是模糊的,即可变的。因为一个元素(例如身高1.75米的人)虽然不是100%的高个子,却还算比较高,在某种程度上属于高个子集合。这时一个元素是否属于集合,不能光用0和1两个数字表示,而可以取0和1之间的任何实数。例如对1.75米的身高,可以说具有70%属于高个子集合的程度。这样做似乎罗嗦,但却比较合乎实际。精确和模糊,是一对矛盾。根据不同情况有时要求精确,有时要求模糊。比如打仗,指挥员下达命令:“拂晓发起总攻。”这就乱套了。这时,一定要求精确:“×月×日清晨六时正发起总攻。”我们在一些旧电影中还能看到各个阵地的指挥员在接受命令前对对表的镜头,生怕出个半分十秒的误差。但是,物极必反。如果事事要求精确,人们就简直无法顺利的交流思想——两人见面,问:“你好吗?”可是,什么叫“好”,又有谁能给“好”下个精确的定义?有些现象本质上就是模糊的,如果硬要使之精确,自然难以符合实际。例如,考核学生成绩,规定满60分为合格。但是,59分和60分之间究竟有多大差异,仅据1分之差来区别及格和不及格,其根据是不充分的。不仅普遍存在着边界模糊的集合,就是人类的思维,也带有模糊的特色。有些现象是精确的,但是,适当的模糊化可能使问题得到简化,灵活性大为提高。例如,在地里摘玉米,若要找一个最大的,那很麻烦,而且近乎迂腐。我们必须把玉米地里所有的玉米都测量一下,再加以比较才能确定。它的工作量跟玉米地面积成正比。土地面积越大,工作越困难。然而,只要稍为改变一下问题的提法:不要求找最大的玉米,而是找比较大的,即按通常的说法,到地里摘个大玉米。这时,问题从精确变成了模糊,但同时也从不必要的复杂变成意外的简单,挑不多的几个就可以满足要求。工作量甚至跟土地无关。因此,过分的精确实际成了迂腐,适当的模糊反而灵活。显然,玉米的大小,取决于它的长度、体积和重量。大小虽是模糊概念,但长度、体积、重量等在理论上都可以是精确的。然而,人们在实际判断玉米大小时,通常并不需

模糊数学基本知识

一.模糊数学的基础知识 1.模糊集、隶属函数及模糊集的运算。 普通集合A,对,有或。 如果要进一步描述一个人属于年轻人的程度大小时,仅用特征函数就不够了。模糊集理论将普通集合的特征函数的值域推广到[0,1]闭区间内,取值的函数以度量这种程度的大小,这个函数(记为)称为集合的隶属函数。即对于每一个元素,有[0,1]内的一个数与之对应。 (1)模糊子集的定义:射给定论域U,U到[0,1]上的任一映射: 都确定了U上的一个模糊集合,简称为模糊子集。称为元素属于模糊集的隶属度。映射所表示的函数称为隶属函数。 例如:设论域U=[0,100],U上的老年人这个集合就是模糊集合: 若在集合U上定义了一个隶属函数,则称为模糊集。 (2)模糊集合的表示:,称为元素属于模糊集的隶 属度;则模糊集可以表示为:。 或,, (3)模糊集合的运算: ,, 并集: , 交集: , 补集:, 包含:, 2.模糊集的截集

已知U上模糊子集 对,则称为模糊集的-截集; 称为模糊集的-强截集;称为、的置信水平或阀值。 二.模糊数学的基本定理 1.模糊截积: 已知U上模糊子集 对,也是U上模糊集,其隶属函数为: ; 称为为与的模糊截积。 2.分解定理1:已知模糊子集,则 推论1:对 3.分解定理2:已知模糊子集,则 推论2:对 三.模糊关系与模糊聚类 1.模糊关系与模糊关系的合成 (1)模糊关系 普通集合的经典关系, 模糊关系:从U到V 上的一个模糊关系:,表示具有的关系程度,。(满足01)称为U 到V 上的一个模糊关系的模糊矩阵。 (2).设=和=为两个模糊矩阵,令

=,=1,2,…,,=1,2,…,。 则称矩阵=为模糊矩阵与的褶积,记为 =, 其中“”和“”的含义为 显然,两个模糊矩阵的褶积仍为模糊矩阵 2. 模糊等价矩阵及其矩阵 设方阵为以模糊矩阵,若满足 = 则称为模糊等价矩阵。 模糊等价矩阵可以反映模糊分类关系的传递性,即描述诸如“甲像乙,乙像丙,则甲像丙”这样的关系。 设=为一个模糊等价阵,01为一个给定的数,令 则称矩阵为的截阵 例如, = 为一个模糊等价阵,取0.4<,则 = 若取,则 =

模糊数学学习心得

《模糊数学》学习心得 姓名:李书纲 学号:200805050303 专业:信息与计算科学 老师;黄晓昆 地点:文鼎楼502

《模糊数学》学习心得 在大四的上学期,我们数学学院给我们开了黄晓昆老师的《模糊数学》这门课,这是继《近世代数基础》后黄老师给我们上的第二门比较抽象的课程。“模糊数学”这个词一听上去就很抽象,翻开课本是感觉更“模糊”。但在学习了半个学期后,对这门课程有了一定的了解,并学到了一部分知识,也积累了一点自己的学习心得体会。 先说说什么是“模糊数学”。模糊数学是相对于精确数学而言的,在较长时间里,精确数学及随机数学在描述自然界多种事物的运动规律中,获得显著效果。但在日常生活中,经常遇到许多模糊事物,没有分明的数量界限,要使用一些模糊的词句来形容、描述。比如,比较年轻、高个、大胖子、好、漂亮、善、热、远……。在人们的工作经验中,往往也有许多模糊的东西。例如,要确定一炉钢水是否已经炼好,除了要知道钢水的温度、成分比例和冶炼时间等精确信息外,还需要参考钢水颜色、沸腾情况等模糊信息。因此,为了研究这些与模糊概念相关的东西,“模糊数学”就产生了。 1965年,美国控制论专家、数学家查德发表了论文《模糊集合》,标志着模糊数学这门学科的诞生。模糊数学的研究内容主要有:第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。查德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复

模糊控制的基本原理

模糊控制的基本原理 模糊控制是以模糊集合理论、模糊语言及模糊逻辑为基础的控制,它是 模糊数学在控制系统中的应用,是一种非线性智能控制。 模糊控制是利用人的知识对控制对象进行控制的一种方法,通常用“if条件,then结果”的形式来表现,所以又通俗地称为语言控制。一般用于无法以 严密的数学表示的控制对象模型,即可利用人(熟练专家)的经验和知识来很好 地控制。因此,利用人的智力,模糊地进行系统控制的方法就是模糊控制。模 糊控制的基本原理如图所示: 模糊控制系统原理框图 它的核心部分为模糊控制器。模糊控制器的控制规律由计算机的程序实现,实现一步模糊控制算法的过程是:微机采样获取被控制量的精确值,然后将此量与给定值比较得到误差信号E;一般选误差信号E作为模糊控制器的一个输入量,把E的精确量进行模糊量化变成模糊量,误差E的模糊量可用相应的模糊语言表示;从而得到误差E的模糊语言集合的一个子集e(e实际上是一个模糊向量); 再由e和模糊控制规则R(模糊关系)根据推理的合成规则进行模糊决策,得到模糊控制量u为: 式中u为一个模糊量;为了对被控对象施加精确的控制,还需要将模糊量u 进行非模糊化处理转换为精确量:得到精确数字量后,经数模转换变为精确的模拟量送给执行机构,对被控对象进行一步控制;然后,进行第二次采样,完成第二步控制……。这样循环下去,就实现了被控对象的模糊控制。 模糊控制(Fuzzy Control)是以模糊集合理论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制。模糊控制同常规的控制方案相比,主要特点有: (1)模糊控制只要求掌握现场操作人员或有关专家的经验、知识或操作数据,不需要建立过程的数学模型,所以适用于不易获得精确数学模型的被控过程,或结构参数不很清楚等场合。 (2)模糊控制是一种语言变量控制器,其控制规则只用语言变量的形式定性的表达,不用传递函数与状态方程,只要对人们的经验加以总结,进而从中提炼出规则,直接给出语言变量,再应用推理方法进行观察与控制。 (3)系统的鲁棒性强,尤其适用于时变、非线性、时延系统的控制。 (4)从不同的观点出发,可以设计不同的目标函数,其语言控制规则分别是独立的,但是整个系统的设计可得到总体的协调控制。 它是处理推理系统和控制系统中不精确和不确定性问题的一种有效方法,同时也构成了智能控制的重要组成部分。 模糊控制器的组成框图主要分为三部分:精确量的模糊化,规则库模糊推理,

模糊数学方法在财务报表分析中的应用

财务分析是企图了解一个企业经营业绩和财务状况的真实面目,从晦涩的会计程序中将会计数据背后的经济涵义挖掘出来,为投资者和债权人提供决策基础。由于会计系统只是有选择地反映经济活动,而且它对一项经济活动的确认会有一段时间的滞后,再加上会计准则自身的不完善性,以及管理者有选择会计方法的自由,使得财务报告不可避免地会有许多不恰当的地方。虽然审计可以在一定程度上改善这一状况,但审计师并不能绝对保证财务报表的真实性和恰当性,他们的工作只是为报表的使用者作出正确的决策提供一个合理的基础,所以即使是经过审计,并获得无保留意见审计报告的财务报表,也不能完全避免这种不恰当性。这使得财务分析变得尤为重要。 一、财务分析的主要方法 一般来说,财务分析的方法主要有以下四种: 1.比较分析:是为了说明财务信息之间的数量关系与数量差异,为进一步的分析指明方向。这种比较可以是将实际与计划相比,可以是本期与上期相比,也可以是与同行业的其他企业相比; 2.趋势分析:是为了揭示财务状况和经营成果的变化及其原因、性质,帮助预测未来。用于进行趋势分析的数据既可以是绝对值,也可以是比率或百分比数据; 3.因素分析:是为了分析几个相关因素对某一财务指标的影响程度,一般要借助于差异分析的方法;

4.比率分析:是通过对财务比率的分析,了解企业的财务状况和经营成果,往往要借助于比较分析和趋势分析方法。 上述各方法有一定程度的重合。在实际工作当中,比率分析方法应用最广。二、财务比率分析 财务比率最主要的好处就是可以消除规模的影响,用来比较不同企业的收益与风险,从而帮助投资者和债权人作出理智的决策。它可以评价某项投资在各年之间收益的变化,也可以在某一时点比较某一行业的不同企业。由于不同的决策者信息需求不同,所以使用的分析技术也不同。 1.财务比率的分类 一般来说,用三个方面的比率来衡量风险和收益的关系: 1)偿债能力:反映企业偿还到期债务的能力; 2)营运能力:反映企业利用资金的效率; 3)盈利能力:反映企业获取利润的能力。 上述这三个方面是相互关联的。例如,盈利能力会影响短期和长期的流动性,而资产运营的效率又会影响盈利能力。因此,财务分析需要综合应用上述比率。 2.主要财务比率的计算与理解:

管理学基本知识

管理学基本知识 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

管理科学 管理科学是研究管理理论、方法和管理实践活动的一般规律的科学。管理科学的初创阶段,始于19世纪末至20世纪初。首先,由美国工程师费雷德里克·泰罗创造出"标准劳动方法"和劳动定额,被称为"泰罗制",并于1911年发表了他的代表作《科学管理原理》,泰罗被誉为"科学管理之父"。与"科学管理理论"同期问世的还有法约尔的"管理过程理论"和韦伯的"行政组织理论。"这三种理论统称为"古典管理理论。" 管理的概念:一个组织有计划、组织、领导、控制、对资源进行合理配置和使用以实现目标的过程,就叫管理。 管理科学的第二个里程碑是""。它产生于本世纪20年代,创始人是美国哈佛大学教授乔治·奥尔顿·梅奥和茨·罗特利斯伯格等。后来,行为科学在其发展过程中,又形成一些新的理论分支。现代管理理论是以"系统理论"、""、"管理科学理论"等学派为代表,其特点是以、、为其理论基础,模型和手段来研究解决各种管理问题。 管理学的分类 管理学是一门多分枝的学科体系.按照不同的研究对象,管理学细分为很多分枝学科。按照教育部学科分类目录,管理学下设管理科学与工程(可授管理学、工学学位), 工商管理(会计学,企业管理,财务管理、市场营销、人力资源管理,旅游管理,技术经济及管理), 农林经济管理(农业经济管理,林业经济管理)

公共管理(行政管理,社会医学与卫生事业管理,教育经济与管理,社会保障,土地资源管理(图书馆、情报与档案管理,图书馆学,情报学,档案学)。 我国着名学者提出了中国管理科学“三个基础,三个层次和三个领域”的学科结构理论。即 三个基础 三个基础是数学、经济学和心理学.数学是管理科学中数量分析方法的基础,最常使用的是统计学(包括数理统计、回归分析、非参数统计等)、组合数学(主要研究存在性、计数、优化等问题)、数学规划(包括线性规划、非线性规划、整数规划、动态规划、目标规划等)、随机过程、离散数学及模糊数学等。 经济学是管理科学中各类决策的出发点和依归,最常使用的是理论经济学(主要包括微观经济学和宏观经济学)、应用经济学(例如工业经济学、劳动经济学、区域经济学、国际经济学等)及计量经济学等。 心理学是研究人的心理活动和行为表现的科学,它是管理科学中研究人际关系、调动人的积极性的依据。最常使用的是工业心理学、社会心理学及认知心理学等。 三个层次 三个层次是基础管理、职能管理和战略管理。 基础管理是管理中带有共性的基础理论和基本技术,主要包括管理数学、管理经济学、管理心理学、管理会计学、管理组织学、管理决策学、管理史学,等等。职能管理是将管理基础与特定的管理职能相结合,例如计划管理、财务管理、人事管理、生产管理、营销管理、科技管理、国际贸易管理,公共行政管理,等等。

学生素质评价模糊数学模型的构建与应用

学生素质评价模糊数学模型的构建与应用 在高等教育中,高等职业教育是一个非常重要的组成部分,下 面是搜集的一篇探究构建学生素质评价模型基本原则的论文范文,欢迎阅读查看。 对高职高专学生进行素质评价,目的在于使学生的评价内容走 向多元化,实现过程发展性和终结性评价的有机结合。因此,需要一种行之有效的评价工具,促使学生发挥个性、潜能以及创造性,从而使其具备持续发展的自信和能力。 一、模糊数学与数学模型 模糊数学是处理和研究模糊性现象的方法和理论。由于模糊性 概念发展了模糊集的具体描述方式,人们可运用概念进行评价、推理、控制、判断和决策,也可通过模糊数学进行描述。比如,模糊综合评判、模糊控制、模糊聚类分析、模糊决策等,这一系列方法最终构成一种模糊性理论,在气象、石油、环境、农业、化工、控制、教育、医学、地质、经济管理、语言等诸多领域已取得研究成果。 数学模型是实际问题与数学理论相结合发展起来的一门新学科。它将实际问题归为数学问题,并利用数学方法、概念和理论,进行深入研究,从定量或定性角度对实际问题进行分析,同时为解决实际问题提供可靠指导和精确数据。可见,数学模型是利用数学方法和语言解决现实问题的过程,是培养学生创造力的有效途径。 二、综合素质评价

“综合素质评价”指在每个学期期末或每个学年期末,全国各地的学校组织的一次对全体在校学生综合素质和能力评价的测评任务。综合素质评价一般分为六个维度(不同的地区或学校结构略有差异),分别是“道德品质”“公民素养”“学习能力”“交流合作与实践创新”“运动与健康”“审美”“表现能力”.六个维度又分别被分为若干个项目。等级分别为A(优秀),B(良好),C(一般),D(较差)。或者是百分制,100-80(优秀)、79-60(良好)、59-30(一般)、29-0(较差)。 对学生进行综合素质评价是新时期高职高专教学评价的主要内容,因而需要制定一种有效的素质评价模型。基于模糊数学的高职高专学生素质评价模型具有标准的数据支撑,说服力较强,适宜运用于学生综合素质评价。 三、构建学生素质评价模型的基本原则 (一)一个目标 在高等教育中,高等职业教育是一个非常重要的组成部分。实现现代化建设与高职高专学生的能力和素质有直接关系。从我国的发展要求以及发达国家的发展经验看,无论是发展和解放生产力、建设小康社会,还是创建和谐社会、加快城市化建设,高等职业所培养的应用型人才不可或缺。因此,职业技术教育应坚持以就业为导向,以服务为宗旨,以培养学生综合素质、职业道德以及动手能力为重点,突出实用性。 (二)三个维度

教案_模糊数学概述

模糊数学概述 任何事物都具有质和量两个侧面。在分析和解决问题时,我们既可以考察对象的性质、属性等质的方面,也可以对对象的数量关系与空间位置进行分析。数学就是研究现实世界中量的关系和空间形式的学科。 现实世界中,客观现象在质的表现上具有确定性和不确定性,而不确定性又分为随机性和模糊性。这种属性反映在量的方面,自然导致研究量的数学学科要按照如下三种划分来分别刻画客观现象: ????????模糊数学研究的领域—模糊性的量随机数学研究的领域 —随机性的量不确定性的量精确数学研究的领域—确定性的量量 因而,与精确数学和随机数学一样,模糊数学创立并发展为一门独立的数学学科,也是科学技术发展和社会实践需求的历史必然。 模糊数学是从量上来研究和处理模糊现象的一个数学分支,它以“模糊集合论”为基础。模糊数学提供了一种处理不肯定性和不精确性问题的新方法,是描述模糊信息的有力工具,其应用范围已遍及自然科学和社会科学的几乎所有的领域。 由于模糊性数学发展的主流在于它的应用,因此人们也常称之为“模糊系统理论”、“模糊集与系统理论”或“模糊理论”。 1.模糊数学的产生 现代数学是建立在集合论基础之上的。集合论的重要意义就在于它能将数学的抽象能力延伸到人类认识过程的深处:用集合来描述概念,用集合的关系和运算表达判断和推理,从而将一切现实的理论系统都纳入集合描述的数学框架中。毫无疑问,以经典集合论为基础的精确数学和随机数学在描述自然界多种客观现象的内在规律中,获得了显著的效果。 但是,和随机现象一样,在自然界和人们的日常生活中普遍存在着大量的模糊现象,如多云,阴天,小雨,大雨,贫困,温饱等。由于经典集合论只能把自己的表现力限制在那些有明确外延的现象和概念上,它要求元素对集合的隶属关系必须是明确的,决不能模棱两可,因而对于那些经典集合无法反映的外延不分明的概念,以前人们都是尽量回避它们。 然而,随着现代科技的发展,我们所面对的系统日益复杂,模糊性总是伴随着复杂性出现;此外人文、社会学科及其它“软科学”的数学化、定量化趋向,也把模糊性的数学处理问题推向中心地位;更重要的是,计算机科学、控制理论、系统科学的迅速发展,要求电脑要像人脑那样具备模糊逻辑思维和形象思维的功能。凡此种种,迫使人们再也无法回避模糊性,必须寻求途径去描述和处理客观现象中非清晰、非绝

《模糊数学及其应用》教学大纲

《模糊数学及其应用》课程教学大纲 课程编号:09206 课程类别:学位课 学时:68 学分:3 适用学科(专业):全院各专业 授课单位:理学院 一、课程的性质、目的与任务: 模糊数学及其应用工科院校控制理论与控制工程、应用数学、机械设计及其自动化、计算机技术、管理等学科的硕士研究生必修的技术基础课之一。通过本课程的学习,使学生对模糊数学的原理和思想方法有一个完整的认识。掌握应用模糊数学的原理分析和解题的基本技巧。了解模糊数学方法在各个领域的应用,特别是模糊信息技术与模糊控制。为理工科研究生在一定的数学基础上,应用模糊数学知识解决问题打下基础。 二、基本要求: 本课以课堂讲授为主,结合多媒体。适当补充一些模糊数学在实际中应用的实例,做到精讲多练,理论联系实际。在各章中均可安排一些内容引导学生自学,通过布置作业和讨论题,提高学生自己解决问题与分析问题的能力。同时,也可适当让学生自己来寻找一些实际问题,应用学过的知识来进行分析、综合、评判,以期达到更好的巩固、应用的目的。 (一) 模糊数学的基本理论和基本原理 1、模糊集合是处理模糊事物的新的数学概念,是模糊数学的基础。理解模糊集的定义、表示方法、模糊集的运算。了解模糊算子的定义及各种模糊算子,了解模糊集的模糊度定义。 2、理解模糊集截集的定义及性质,掌握模糊数学的基本原理:分解定理(联系普通集与模糊集的桥梁)、扩张原理、多元扩张原理。了解凸模糊集、区间数、模糊数及模糊数的运算。 (二) 模糊数学方法及其在各领域中的应用 1、理解模糊关系的概念及性质,深入理解在有限域的情况下,模糊关系可以用矩阵表示。理解模糊关系合成的定义及性质。理解掌握贴近度概念及最大隶属原则和择近原则。掌握模糊映射、模糊变换。 2、对于模糊数学方法的应用。重点掌握模糊模式识别、模糊聚类分析、模糊综合评判、模糊故障诊断,以及了解它们在不同领域的应用举例。 (三)模糊信息技术与模糊控制 掌握模糊语言,模糊推理模型及算法、重点掌握模糊控制的原理及简单应用,了解模糊辨识、模糊T-S模型、模糊自适应控制。 课程主要内容

MATLAB在模糊数学教学中应用示例

摘要:作者探讨了在模糊数学教学中运用matlab软件来辅助课程教学的方法,并以示例积极推进可视化教学,提高了教学质量,其结果表明教学效果明显. 关键词: matlab 模糊数学教学效果 自1965年扎德(l.a.zadeh)提出“模糊集合”的概念,模糊数学便作为一门新的数学学科诞生了.近五十年来,它的发展非常迅速,应用十分广泛.其理论和应用涉及社会科学、自然科学和思维科学诸多领域.在上世纪九十年代,国外应用模糊数学原理研制和推出了首批模糊家用电器,而现在,模糊洗衣机、模糊吸尘器、模糊电饭煲、模糊空调机等已进入了国外千家万户,部分产品进入我国国内,由此可见,其应用前景是举世瞩目的.所以,学生学好模糊数学十分重要.另外,模糊数学在培养学生辩证唯物主义的认识论、方法论,教学素养和应用能力等方面也有着良好的教育功能.由于模糊数学本身是系统化的,涉及的知识深广,使不少学生感到理论太复杂,太抽象,对所学内容难把握,易产生畏难情绪,仅仅通过板书讲授方式难以达到理想的教学效果.因而,加强实践教学是必不可少的一个重要环节.随着高校教学手段的改革,多媒体辅助教学法越来越受师生的欢迎,据统计,60%以上的高校都愿接受,其中数学软件matlab是评价最高的有效的数值和工程计算的软件.针对本科生课程的特点,结合matlab语言所独具的优势,本文着重介绍matlab在模糊数学中的实际应用示例,从而积极推进和改善可视化教学,强化教学效果.下面给出详细示例. 一、利用matlab建立隶属度函数的辅助教学 隶属度是模糊集的基本概念,也是模糊控制的应用基础,由此,正确构造隶属度函数是用好模糊控制的关键之一,而此概念对学生而言是一个抽象的概念,在授课过程中,将基本概念及原理给学生讲透的同时,充分利用计算机的表现能力会将抽象的东西具体化、形象化. 例1.设某污染河水中酚的含量t=0.0012mg/l,给定酚的水质分级标准为: 试建立各级水的隶属度函数. 二、利用matlab来计算λ―截矩阵的辅助教学 在模糊数学中模糊聚类分析法是将事物根据一定的特征,并按某种特定要求或规律分类的一种方法,在分类过程中不是仅仅考虑事物之间有无关系,而是考虑事物之间的深浅程度,λ―截矩阵在该分析法中是一个很重要的概念.其定义和计算如下: 三、利用matlab求解模糊线性规划 普通线性规划其约束条件和目标函数都是确定的,但在一些实际问题中,约束条件可能带有弹性,必须借助模糊集的方法来处理.模糊线性规划是将约束条件和目标函数模糊化,引入隶属函数,从而导出一个新的纯属规划问题,它的最优解称为原问题的模糊最优解.求解模糊线性规划需要分别求出三个普通的线性规则,从而加上伸缩率后的普通线性规划进而添加新变量入和新的约束条件,求解模糊线性规划的具体方法如下: 结果:最优解为z=33.2,此时z=14.93. 以上示例仅是模糊数学中常见的一些问题求解,从中可以观察出,matlab在解决这些问题时简洁、灵活的特点,增强了学生对复杂问题了解时的直观性,缓解了教学课时偏少及当前实验室跟不上教学需求的困境;也让学生在课程学习的同时,轻松地学会一些编程问题,加深、加强了编程能力,使学生更能产生学习matlab及模糊数学的欲望,积极推进模糊数学的教学,使之更高效、更具利用价值. 参考文献: [1]张驰.试论模糊数学的教育功能[j].数学教育学报,1997,6,(4):90-93. [2]周维.高校“模糊数学”选修课教法初探[j].淮南工业学院学报(社会科学版),

模糊数学

东北大学 数学公共基础课教学大纲 课程名称:模糊数学 开课单位:理学院数学系 制订时间:2003 .7 修订时间:2004.7

《模糊数学》课程教学大纲

二、教学内容及基本要求 1.绪论 了解现实中的模糊性普遍存在性以及与传统数学的关系.模糊数学的基本概念、发展历史和特点. 理解模糊数学发展带动人工智能、控制理论等相关研究领域研究. 自学:集合基础知识. 2. 模糊集基本概念 了解模糊集理论的概念、要素和内容. 理解和掌握模糊子集及其运算、模糊集的基本定理等. 列举模糊集在信息科学、管理科学领域中的应用,描述形式、优点. 3. 模糊关系及模糊图 理解模糊关系及其运算、模糊关系性质. 了解模糊图论基础和模糊图的应用. 掌握模糊矩阵和关系图,λ截矩阵等概念. 重点为λ截矩阵和模糊关系合成. 在信息科学、管理科学中的应用分析. 4. 模糊性及其度量 了解模糊集合的模糊度等基本概念. 理解贴近度概念、模型。 重点要掌握海明距离、加权海明距离以及距离的其它形式. 5. 模糊模型识别 了解模糊模型识别的基本概念. 掌握模糊识别的最大隶属度原则. 重点为最大隶属度原则和择近原则运用. 6. 模糊综合评判 了解模糊综合评判决策方法. 掌握经典的综合评判决策方法. 模糊映射与模糊变换、模糊综合评判决策的数学模型.

三、教学安排及方式 总学时 24 学时,讲课 24 学时,实验学时。 四、课程教学的有关说明 本课程内外学时比例: 1:1 ;平均周学时: 2 ; 可对下述有关情况做出说明: 1、本课程自学内容及学时 自学:集合基础知识 2学时 2、课内习题课的安排及学时 3、利用现代化教学手段内容及演进 采用多媒体教学与传统教学相结合。 4、对学生能力培养的要求 学生通过该课程学习,了解模糊数学的基本概念、原理和基本方法,了解国际、国内模糊数学理论及应用的新进展,模糊数学与基础数学的关系。学会运用模糊思想和方法处理问题,掌握模糊数学应用特点以及专业知识的结合。

模糊数学教学大纲

《模糊数学》教学大纲 院系名称数学与应用数学系 制定人董媛媛 制定时间 2008年7月6日

《模糊数学》教学大纲 一、总则 1、课程代码: 2、课程名称:中文名称:模糊数学 英文名称:Fuzzy Mathematics 3、开课对象:数学与应用数学专业的本科生 4、课程性质:专业任选课 模糊数学诞生于1965年,40余年来,它的思想已广泛渗透到数学的许多分支,在科技、工程等领域显示出了强大的生命力,并在人文科学(经济、管理、社会等)领域里,也已获得了相当多的应用。本课程是数学系专业选修课,为数学系本科数学与应用数学专业四年级学生所选修。 5、教学目的和要求: 通过本门课程的学习: (1)了解和掌握模糊集合,模糊关系,模糊矩阵,模糊聚类与模糊变换等基本概念和基本理论;掌握模糊聚类分析,模糊模型识别,模糊决策的实际应用所运用的模糊数学方法;初步了解模糊规划及模糊控制理论,并运用上述有关理论和方法进行进一步的科学研究与实际应用; (2)掌握模糊数学有关方面的理论知识和处理模糊现象的基本思维方法; (3)培养学生的抽象概括问题、自我学习接受知识的能力及科学研究能力;同时培养学生综合运用所学知识分析并通过相关数学模型的建立与运用进而解决生活中实际问题的能力。(4)提高学生的素质,为部分考研学生的后继学习以及将来从事科学研究等工作奠定必要的数学基础。 6、教学内容: 本课程主要研究了利用用模糊数学的知识来解决实际问题的理论及其方法。主要内容有:模糊集合的基本概念、模糊聚类分析、模糊模型识别、模糊决策、模糊线性规划、模糊控制。 7、教学重点与难点: 重点:通过本课程的学习,掌握模糊数学的基本思想,基础理论,从而进一步了解模糊理论的基本应用,能够运用模糊理论解决生活中的实际问题。 难点:模糊数学的基本理论及如何正确运用这些理论知识来解决实际问题。 8、先修课程:

模糊数学论文06251(荟萃知识)

基于模糊数学的网络安全风险评估 模型 学院电信学院 专业计算机软件与理论 学号 姓名 日期2010年12月10日

基于模糊数学的网络安全风险评估模型 兰州交通大学电子与信息工程学院,兰州(730070) 摘要:针对计算机网络频繁遭受到攻击的情况,在分析网络安全的基础上,本论文将模糊数学的方法运用于网络安全风险评估中,综述了计算机网络安全以及网络信息安全评估标准和评价现状,探索了用模糊数学综合评价方法进行网络安全风险评估的应用途径。初步的实验结果表明,应用模糊数学分析网络的安全风险评估中,可以得到一种较为实际和准确的描述。 关键词:网络安全模糊综合评价风险评估模糊数学 Abstract:There are frequent attacks on computer network now. This paper proposes a new network security risk analysis method in which fuzzy mathematics is applied ,Overview of the computer network security, and network information security evaluation criteria and the evaluation of the current situation, explore a comprehensive evaluation method using fuzzy mathematics for network security risk assessment of the application. The preliminary experiment shows that this method can attain a more accurate description in analyzing network security status. Keywords: Network Security , Fuzzy Comprehensive Assessment ,Risk Assessment, Fuzzy Mathematics

模糊数学在医学图像处理中的应用

《专业前沿科技讲座》课程论文 题目:模糊数学在医学图像处理中的应用 学生姓名:李慧 学号: 201307011116 专业年级:2013级信息与计算科学专业 指导教师:李震 年月日

模糊数学在医学图像处理中的应用 姓名:李慧 班级:2013级信息与计算科学学号:201307011116 摘要:用计算机来处理医学CT图片已成为计算机研究的一个重要方向,模糊图像处理技术是计算机图像处理中的重要方式和途径。图像本质上具有模糊性,因此探究模糊信息处理技术在医学图像处理中的应用有其必然性。据此提出一种基于模糊评判的方法来处理医学图像问题。 关键词:模糊数学;应用;模糊评判; 1.基于模糊数学的医学图像处理与分析方法 医学图像是医学诊断和疾病治疗的重要依据,在临床上具有非常重要的应用价值。医学图像本质上是模糊的,这是由于图像在获取过程中人体解剖结构的复杂性、组织器官形状的不规则性以及不同个体间的差异性、成像中磁场的不均匀性、部分容积效应以及噪声的影响等造成内在的不确定性。所以将模糊理论引入医学图像处理与分析领域,可以使医学图像处理和分析达到更好的效果。 1.1模糊逻辑分析方法 与传统数学不同,模糊数学将二值逻辑(非0即1)进行模糊推广,建立了模糊逻辑,使计算机的逻辑计算逐步接近人的思维方式,大大提高了对模糊问题的处理能力。模糊逻辑分析方法主要基于模糊集理论、模糊 IF-THEN 规则、模糊连通性理论等,应用于图像增强、分割、分析与评价等各个方面。 1.1.1经典的Pal 和King 模糊图像增强算法 Pal 和King 算法主要用于图像增强及边缘检测,简称Pal 算法。80 年代中期Pal 和King 从图像所具有的不确定性是由模糊性引起的观点出发,首次将模糊集理论与图像处理结合起来,提出经典的Pal 和King 图像增强算法,开创了模糊理论应用领域的新纪元。Pal 算法的基本思想是建立一个隶属函数,使图像由灰度域转换到模糊域,然后选取对应的增强函数对图像进行处理,最后将模糊增强后的图像再映射到

数学建模案例分析---模糊数学方法建模1模糊综合评判及其应用

第八章 模糊数学方法建模 1965年,美国自动控制学家首先提出了用“模糊集合”描述模糊事物的数学模型。它的理论和方法从上个世纪七十年代开始受到重视并得到迅速发展,特别是愈来愈广泛地应用于解决生产实际问题。模糊数学的理论和方法解决了许多经典数学和统计数学难以解决的问题,这里,我们通过几个例子介绍模糊综合评判、模糊模式识别、模糊聚类、模糊控制等最常用方法的应用。而相应的理论和算法这里不作详细介绍,请参阅有关的书籍。 §1 模糊综合评判及其应用 一、模糊综合评判 在我们的日常生活和工作中,无论是产品质量的评级,科技成果的鉴定,还是干部、学生的评优等等,都属于评判的范畴。如果考虑的因素只有一个,评判就很简单,只要给对象一个评价分数,按分数的高低,就可将评判的对象排出优劣的次序。但是一个事物往往具有多种属性,评价事物必须同时考虑各种因素,这就是综合评判问题。所谓综合评判,就是对受到多种因素制约的事物或对象,作出一个总的评价。 综合评判最简单的方法有两种方式: 一种是总分法,设评判对象有m 个因素,我们对每一个因素给出一个评分i s ,计算出评判对象取得的分数总和 ∑== m i i s S 1 按S 的大小给评判对象排出名次。例如体育比赛中五项全能的评判,就是采用这种方法。 另一种是采用加权的方法,根据不同因素的重要程度,赋以一定的权重,令i a 表示对第i 个因素的权重,并规定 ∑==m i i a 1 1,于是用 ∑== m i i i s a S 1 按S 的大小给评判对象排出名次。 以上两种方法所得结果都用一个总分值表示,在处理简单问题时容易做到,而多数情况下评判是难以用一个简单的数值表示的,这时就应该采用模糊综合评判。 由于在很多问题上,我们对事物的评价常常带有模糊性,因此,应用模糊数学的方法进行综合评判将会取得更好的实际效果。 模糊综合评判的数学模型可分为一级模型和多级模型两类,这里仅介绍一级模型。 应用一级模型进行综合评判,一般可归纳为以下几个步骤: (1)建立评判对象的因素集},,,{21n u u u U =。因素就是对象的各种属性或性能,在不同场合,

模糊数学的心得体会

期中作业 模糊数学的心得体会学号:0147 姓名:杨建雄 专业:数学与应用数学班级:08级A班 经过几个星期对模糊数学的学习和老师的讲解我了解到了它产生于二十世纪六十年代, 它是现代数学的一个分支,1965年,美国控制论专家、数学家查德发表了论文《模糊集合》,标志着模糊数学这门学科的诞生 模糊数学是建立在集合论的基础上。集合论的重要意义就是从侧面看,在于它把数学的抽象能力延伸到人类认识过程的深处。一组对象确定一组属性,人们可以通过说明属性来说明概念也可以通过指明对象来说明它。符合概念的那些对象的全体叫做这个概念的集合。从这个意义上讲,集合可以表现概念,而集合论中的关系和运算又可以表现判断和推理,一切现实的理论系统都可能纳入集合描述的数学框架。但是经典集合论只能把自己的表现力限制在有明确集合的概念和事物上,它明确地限定:每个集合都必须由明确的元素构成,元素对集合的隶属关系必须是明确的,决不能模棱两可。

在很长一段时间里,精确数学及随机数学在描述自然界多种事物的运动规律中,获得显著效果。但是,在客观世界中还普遍存在着大量的模糊现象。随着科技的不断进步,日益复杂,模糊性总是伴随着复杂性出现。随着电子计算机、控制论、系统科学的迅速发展,要使计算机能像人脑那样对复杂事物具有识别能力,就必须研究和处理模糊性。我们研究人类系统的行为,或者处理可与人类系统行为相比拟的复杂系统,如航天系统、人脑系统、社会系统等,参数和变量甚多,各种因素相互交错,系统很复杂,它的模糊性也很明显。 在日常生活中,我们经常遇到许多模糊事物,没有分明的数量界限,要使用一些模糊的词语来形容、描述。比如,比较年轻、高个、大胖子、好、漂亮、善、热、远……等。在人们的工作经验中,也有许多模糊的东西。因此,除了很早就有涉及误差的计算数学之外,还需要模糊数学。人与计算机相比,一般来说,人脑具有处理模糊信息的能力,善于判断和处理模糊现象。但计算机对模糊现象识别能力较差,为了提高计算机识别模糊现象的能力,就需要把人们常用的模糊语言设计成机器能接受的指令和程序,以便机器能像人脑那样简洁灵活的做出相应的判断,从而提高自动识别和控制模糊现象的效率。这样,就需要寻找一种描述和加工模糊信息的数学工具,这就推动数学家深入研究模糊数学。所以,模糊数学的产生是有其科学技术与数学发展的必然性。 模糊数学的研究内容主要是研究模糊数学的理论,以及它和精确数学、随机数学之间的关系。察德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。可能对于我们来说,这样一个新的名词还是陌生的,也与我们的实际教学理论差之甚远,不过如果把这个概念进行解剖,实际上,还是我们在教学中常接触的理论,只是它存于无形之中。在

模糊神经网络讲义

模糊神经网络(备课笔记) 预备知识 复杂的东西是难以精确化的,这使得人们所需要的精确性和问题的复杂性间形成了尖锐的矛盾。 正如模糊数学的创始人L.A.Zadeh(查德)教授(美国加利福尼亚大学)所说:“当系统的复杂性增加时,我们使它精确化的能力将减小。直到达到一个阈值,一旦超越它,复杂性和精确性将相互排斥。”这就是著名的“互克性原理”。 该原理告诉我们,复杂性越高,有意义的精确化能力就越低;而复杂性意味着因素众多,以致人们往往不可能同时考察所有因素,只能把研究对象适当简化或抽象成模型,即抓住其中的主要部分而忽略掉次要部分。当在一个被压缩了的低维因素空间考虑问题时,即使本来是明确的概念,也会变得模糊起来。或者某些抽象简化模型本身就带有概念的不清晰,如“光滑铰链”这个力学模型,什么叫“光滑”、什么叫“粗糙”就没有一个明确的定义,客观上两者之间没有绝对分明的界限;主观上,决策者对此类非程序化决策做出判断时,主要是根据他的经验、能力和直观感觉等模糊概念进行决策的。 或者判断一个人的好坏,本来有很多因素,比如人品、性格、相貌等,现在简化改成一个综合评价:好、坏、一般等,都是根据个人爱好或者个人经验等模糊概念进行判断的。 在科学发展的今天,尤其在工程研究和设计领域中,这些模糊性问题就无法回避了,要求对数据进行定量分析,那如何对其进行定量分析呢? 1965年,Zadeh教授发表一篇论文“模糊集合”(Fuzzy sets),所谓模糊集合就是指边界不清的集合。提出用“隶属函数”(menbership function)这一概念来描述现象差异中的中间过渡,突破了德国人Cantor创立的古典集合论中属于或不属于的绝对关系,标志着模糊数学的诞生。Zadeh认为应该重新把模糊性和精确性统一在一起,因为在现实生活中复杂事物要绝对精确是不可能的,实际上只是把所谓的不准确程度降低到了无关重要的程度。他这篇论文第一次引人注目地提出了模糊性问题,给出了模糊概念的定量表示法,标志着模糊数学的诞生。模糊数学是使模糊现象定量化的应用数学分支学科。由于它突破了传统数学绝不允许模棱两可的约束,使那些与数学毫不相关的学科都可能用定量化和数学化加以描述和处理,从而显示其强大的生命力。 在模糊评价中,最基本和使用最多的是隶属度和隶属函数。隶属度表示元素u属于模糊集合U的程度;也就是对模糊集合的判断是用元素对此集合的从属程度大小来表达的。 模糊系统 模糊逻辑控制系统,简称模糊控制系统或模糊系统,是一种基于模糊数学理论的新型控制方法。 模糊控制由于模仿人对复杂事物的抽象思维方式,利用模糊信息处理对被控对象执行控制。所以,它不需要知道系统的精确数学模型。对不确定的非线性的系统来说是一种有效的控制途径。但是,模糊控制对信息的简单模糊化导致系统的控制精度下降。为了提高精度,往往要在模糊化时增加模糊量的个数,或者,增大控制规则集。这样会使控制规则搜索范围的扩大、搜索时间增加、降低了决策的速度,则影响了动态过程的品质。因此,隶属函数和控制规则的优化是提高品质的关键,在本质上,是对模糊控制中的知识进行正确性校正。

相关文档