文档库 最新最全的文档下载
当前位置:文档库 › 蛋白质电泳操作步骤

蛋白质电泳操作步骤

蛋白质电泳操作步骤
蛋白质电泳操作步骤

SDS-PAGE电泳操作步骤:

试剂配制:

(实验中采用均为分析纯)

(1)丙烯酰胺贮液(4℃下棕色瓶中储存,试剂尽量勿存储过久)

丙烯酰胺贮液(T=30%,C=3%)

称取29.1 g丙烯酰胺和0.9 g甲叉双丙烯酰胺,用双蒸水溶解,定容至100 ml,过滤备用。(试剂有毒,操作中注意防护)

(2)浓缩胶缓冲液(1 mol/L Tris-HCl,pH 6.8)(4℃下棕色瓶中储存,试剂尽量勿存储过久)

6.06 g Tris溶解于35 ml双蒸水中,用浓盐酸调节pH至6.8,再用双蒸水定容至50 ml。

(3)分离胶缓冲液(1.5 mol/L Tris-HCl,pH 8.8)(4℃下棕色瓶中储存,试剂尽量勿存储过久)

18.16 g Tris溶解于75 ml双蒸水中,用浓盐酸调节pH至8.8,再用双蒸水定容至100 ml。

(4)10% SDS

(5)10% 过硫酸铵(APS):使用前新鲜配制,低浓度APS一般当天用当天配制,勿过夜使用。(催化作用)

(6)尿素

(7)TEMED(N,N,N’,N’-四甲基乙二胺)

(8)电极缓冲液(1×)(棕色瓶中4℃储存,一般使用3-4次)

0.025 mol/L Tris,0.192 mol/L甘氨酸,0.1% SDS,pH 8.3

(9)电极缓冲液(2×) (棕色瓶中4℃储存,一般使用3-4次)

0.050 mol/L Tris,0.384 mol/L甘氨酸,0.1% SDS,pH 8.3

(10)样品缓冲液(pH 6.8)(4℃下棕色瓶中储存,试剂尽量勿存储过久)

1.6 ml浓缩胶缓冲液(pH 6.8)+ 4 ml 10% SDS + 0.6 g二硫苏糖醇(DTT) +

2.5 ml 87%甘油+0.1 mg溴酚蓝,用双蒸水稀释到20 ml.

(11)考玛斯亮蓝R-250染色方法:

a.固定液

20%三氯乙酸

b.脱色液

250 ml乙醇,80 ml冰醋酸,加水稀释至1000 ml。

c.染色液

称取0.29 g考玛斯亮蓝R-250溶于250 ml上述脱色液中

样品处理:

处理完样品应尽快使用,若存储,须于-20℃下。

○1.CytC酶解样

每管分别加入8 μl细胞色素C(20 mg/ml),10 ul 50 mM Tris-HCl(pH 8.0),1 μl 胰蛋白酶(细胞色素C:胰蛋白酶=50:1)。37℃水浴,2 h。立即放入-20 ℃冰箱冷冻保存备用。上样前加15μ?上样BUFFER,75℃水浴5-10min

○2.大肠杆菌蛋白

取10μ?工程菌种接入10nml LB液体培养基里,过夜培养12h,取出1ml菌液离心10000g/r,5min。弃上清,用1ml Tris-Hcl (pH 8.0 50mM)洗涤1-2次,后分别加入20μ?(pH8.0 5mM)、10μ?EDTA,-20℃保存。上样前加入2μ?5%X,再加入50μ?上样BUFFER,75℃水浴5-10min

○3.CytC

15μ?CytC加入15μ?上样BUFFER,75℃水浴5-10min

○4.低分子量肽标准

取8-10μ?Maker(2mg/ml),加入10μ?上样buffer,再加入5μ?ddH2O,75℃水浴5-10min

○5.SPI多肽的制备

Ⅰ材料及试剂(试剂均为分析纯)

纯大豆粉

木瓜蛋白酶(sigma P3250 500-2000AU/g)

正己烷

巯基乙醇

Tris-HCl缓冲液(0.03 M、pH 8.0)

0.2 M HCl

叠氮钠

考马斯亮蓝G250

标准牛血蛋白

Ⅱ制备方法

ⅰ.SPI制备:大豆分离蛋白的制备参照Iwabuchi 和Yamauchi [9]的方法, 具体步骤如下: 全脂豆粉加正己烷(1/5)室温下搅拌1 h脱脂,于3 000 g 离心5 min, 取沉淀反复脱脂两次, 于沉淀中加入15~20 倍含10 mM 巯基乙醇0.03 M、pH 8.0 的Tris-HCl 缓冲液, 室温搅拌1~2 h, 于20 ℃ 6 000 g 离心25 min,取

上清液,用0.2 M HCl 调节pH 至4.8, 置于冰箱下层冷沉过夜, 再于4 ℃9

000 g 离心20 min, 取沉淀分散于少量水中, 调节pH 至7.0, 搅拌1 h 充分溶解后于4 ℃下用含0.05 % 叠氮钠的蒸馏水透析2 d, 再用蒸馏水透析两次去叠氮钠, 冷冻干燥即得大豆分离蛋白(SPI)。(可能透析会损失掉一定量的多肽。)ⅱ.SPI蛋白含量测定:利用考马斯亮蓝蛋白含量测定法,根据牛血蛋白作出的标准蛋白曲线,测定SPI的蛋白浓度:(具体方法参见《生物化学实验原理和方法》P174)

标准蛋白曲线

1.160

0.2

0.4

0.6

0.8

11.2

1.4

00.010.020.03

0.040.050.06

蛋白浓度吸光度

测得1%(1mg/ml )的SPI 吸光度为0.779,求得即在SPI 质量分数为1%的情况下,其蛋白浓度约为3mg/ml.

ⅲ.SPI 多肽制备:本实验采用木瓜蛋白酶水解SPI ,制取SPI 多肽。标准的酶解体系为溶于0.05 mol/L, pH8.0Tris-HCl 缓冲溶液的SPI 溶液(质量分数为2%),含质量分数为0.05%的叠氮钠,先于38℃下预热5 min,分别添加蛋白酶至750 AU/mL ,然后继续于反应温度下反应,反应时间也很影响SPI 多肽的产率,木瓜蛋白酶持续低温水解16小时也可以产生较多小肽。反应混合物可定期取样并分别加入X- PAGE 样品缓冲液终止反应(1: 1, v/v)。实验上样一般采用过夜酶解透析样(2%*5%)。上样前应将酶解样与样品缓冲液混合物水浴。

操作方法:

所制均为1.0mm 小板所需体积

(1)配制分离胶(16.5%T, 3%C ):

丙烯酰胺贮液—3ml 分离胶缓冲液—1.5ml 尿素—2.16g 10%SDS —72μ?

(2)配制浓缩胶(4%T, 3%C )

丙烯酰胺贮液—0.34ml 浓缩胶缓冲液—0.24ml ddH 2O —1.4ml 10% SDS —24μ?

(3)将上两步配制的分离、浓缩胶真空抽气15min ,同时配制10%过硫酸铵:

准确称量0.1g过硫酸铵固体(因其易氧化,操作尽量快,且尽量从底部取样),溶于1ml双蒸水中,即配即用,低浓度APS只限当天使用。

(4)吸取22μl过硫酸铵及5μlTEMED于分离胶中,轻轻混匀,灌胶,小心的在分离胶的表面加封一层水,封住胶面。注意分离胶与浓缩胶的比例。

(5)大约40min,待分离胶聚合形成界面后,吸掉水,加11μl过硫酸铵及4μlTEMED于浓缩胶中,轻轻混匀,灌注浓缩胶,慢慢斜插入梳子(以免产生气泡)。

胶配制完成之后可直接放置于室温下,而且切忌即配即用及4℃下冷藏,应使其充分凝固,这样可以在一定程度上提高分辨率。

(6)样品处理【此省略】

(7)上样:将处理好的样品依据其蛋白浓度加入上样buffer,水浴后离心,去适量体积加入上样孔内,切忌样品直接互相污染(上样量一般8-12μg,视样品不同而异)

(8)电泳:将电极缓冲液注入电泳槽中。恒流情况下,电压一般设为最大值(300V),在分离胶内电流一般为10mA左右,大约30min左右,样品前沿跑过分、浓界面后,电流加大为20-25mA,整体电泳时间约2 h;恒压条件下,浓缩胶内电压取60V,电流一般设最大值,样品跑至分、浓界面后电压加大到120V,整体电泳时间约2.5h。

(9)染色:利用考玛斯亮蓝R-250染色系统固定、染色和脱色:电泳完毕后,将胶置于固定液中固定1 h,然后放置于染色液中染色过夜,转置脱色液中脱色,并多次更换脱色液,直至背景清晰。

(10)观察分析电泳结果

(完整版)SDS-PAGE蛋白电泳方法

SDS-PAGE 一. 实验原理 SDS 是一种阴离子表面活性剂,在蛋白质溶液里加入 SDS 和巯基乙醇后,巯基乙醇能使蛋白质分子中的二硫键还原, SDS 能使蛋白质的氢键、疏水键打开并结合到蛋白质分子上,形成蛋白质-SDS 复合物。在一定条件下,SDS 与大多数蛋白质的结合比例为 1.4:1。由于十二烷基磺酸根带负电,使各种蛋白质的SDS-复合物都带上相同密度的负电荷,它的量大大超过了蛋白质原有的电荷量,因而掩盖了不同种类蛋白质间原有的电荷差别。SDS与蛋白质结合后,还引起了蛋白质构象的改变。蛋白质-SDS复合物的流体力学和光学性质表明,它们在水溶液中的形状,近似于雪茄烟形的长椭圆棒,不同蛋白质的 SDS 复合物的短轴长度都一样,约为 1.8nm ,而长轴则随蛋白质的 Mr 成正比的变化。基于上述原因,蛋白质-SDS 复合物在凝胶电泳中的迁移率,不再受蛋白质原有电荷和形状的影响,而只与椭圆棒的长度有关,也就是蛋白质 Mr 的函数。 二. 试剂器材 30%凝胶贮液(100mL):称取试剂Acr 29.2g和Bis 0.8g置于100mL烧杯中,向烧杯中加入约60mL双蒸水,充分搅拌溶解后加双蒸水定容至100mL,置于棕色瓶内4℃贮存,每过1-2个月应重新配制; 注意:丙稀酰胺具有很强的神经毒性,并可通过皮肤吸收,其作用有积累性,配制时应戴手套和口罩等。 分离胶缓冲液(1.5 mol/L Tris-HCl,pH 8.8,100mL):称取Tris 18.2g 溶于约80mL 双蒸水,用6mol/L的HCl 调整pH值至8.8,加双蒸水定容到100mL,4℃ 贮存;堆积胶缓冲液(0.5 M Tris-HCl,pH 6.8,100mL):称取Tris 6.0g溶于约80mL双蒸水,用1mol/L的HCl 调整pH值至6.8,加双蒸水定容到100mL,4℃ 贮存;

蛋白质双向电泳

模块五蛋白质双向电泳 1. 实验目的 掌握双向电泳能根据等电点和分子量分离蛋白质的原理,第一向等电聚焦电泳(IEF)和第二向聚丙烯酰胺凝胶电泳(SDS-PAGE)操作步骤,掌握凝胶染色方法,掌握凝胶分析软件的使用,了解对分离出的特异蛋白质的进一步分析方法,了解利用电泳技术分析生物大分子的方法。 2. 实验原理 从广义上讲,双向电泳是将样品电泳后为了不同的目的在垂直方向再进行一次电泳的方法。目前蛋白质双向电泳常用的组合第一向为等电聚焦(载体两性电解质pH梯度或固相pH梯度),根据蛋白质等电点进行分离,第二向为SDS-PAGE,根据相对分子质量分离蛋白质。这样经过两次分离后,在凝胶上显示出的蛋白点可以获得蛋白质等电点和相对分子质量信息。双向电泳技术作为分离蛋白质的经典方法,目前得到了相当广泛的应用。在植物研究中,成功建立了拟南芥、水稻、玉米等植物种类的双向电泳图谱数据库,对推动植物蛋白质组研究起到重要作用。 第一向等电聚焦:等电聚焦(isoelectrofocusing,IEF)是在凝胶柱中加入一种称为两性电解质载体(ampholyte)的物质,从而使凝胶柱在电场中形成稳定、连续和线性pH梯度。以电泳观点看,蛋白质最主要的特点是它的带电行为,它们在不同的pH值环境中带不同数量的正电荷或负电荷,只有在某一pH时,蛋白质的净电荷为零,此pH即为该蛋白质的等电点(isoeletric point,PI)。在电场中,蛋白质分子在大于其等电点的pH环境中以阴离子形式向正极移动,在小于其等电点的pH 环境中以阳离子形式向负极移动。如果在pH梯度 环境中将含有各种不同等电点的蛋白质混合样品进行电泳,不管混合蛋白质分子的原始分布如何,都将按照它们各自的等电点大小在pH梯度某一位置进行聚集,聚焦部位的蛋白质质点的净电荷为零,测定聚焦部位的pH即可知道该蛋白质的等电点。 第二向SDS聚丙烯酰胺凝胶电泳:SDS是一种阴离子表面活性剂,当向蛋白质溶液中加入足够量的SDS时,形成了蛋白质-SDS复合物,这使得蛋白质从电荷和构象上都发生了改变。SDS使蛋白质分子的二硫键还原,使各种蛋白质-SDS复合物都带上相同密度的负电荷,而且它的量大大超过了蛋白质分子原的电荷量,因而掩盖了不同种蛋白质间原有的天然的电荷差别。在构象上,蛋白质-SDS复合物形成近似“雪茄烟”形的长椭圆棒,这样的蛋白质-SDS复合物,在凝胶中的迁移就不再受蛋白质原来的电荷和形状的影响,而仅取决于相对分子质量的大小,从而使我们通过SDS聚丙烯酰胺凝胶电泳(SDS - PAGE)来测定蛋白质的相对分子质量。 单体丙烯酰胺和交联剂N,N-甲叉双丙烯酰胺,在催化剂存在的条件下,通过自由基引发的聚合交联形成聚丙烯酰胺凝胶,这提供了蛋白质泳动的三维空间凝胶网络。在SDS - PAGE电泳时相对分子质量小的蛋白质迁移速度快,相对分子质量大的蛋白质迁移速度慢,这样样品中的蛋白质可以分开形成蛋白质条带。 3. 实验设备 垂直电泳仪,水平电泳仪,低温循环水浴,脱色摇床,扫描仪,ImageMaster 2D platinum version 5.0软件。电泳仪及其配套制胶设备、脱色摇床。

蛋白质电泳实验

尿素-SDS聚丙烯酰胺凝胶电泳 1.试剂的配制 ①30%凝胶母液 丙烯酰胺和N, N’-亚甲双丙烯酰胺。以温热(利于溶解双丙烯酰胺)的去离子水配制含有29.2 %(w/v)丙烯酰胺和0.8 %(w/v)N, N’-亚甲双丙烯酰胺的贮存液,丙烯酰胺和双丙烯酰胺在贮存过程中缓慢转变为丙烯酸和双丙烯酸,这一脱氨基反应是光催化或碱催化的,故应核实溶液的pH值不超过7.0。这一溶液置棕色瓶中贮存于室温,每隔几个月须重新配制。 小心:丙烯酰胺和双丙烯酰胺具有很强的神经毒性并容易吸附于皮肤。 ②4倍SDS分离胶缓冲液(4×, pH 8.8) (200 ml) 称取SDS 0.8 g (4%),Tris 36.342 g (1.5mol/L),溶解(必要时加热),用盐酸调pH为8.8,定容至200 mL。 ③4倍SDS浓缩胶(堆积胶或积层胶)缓冲液。(4×,pH 6.8)(100 ml) 称取SDS 0.4 g (4%),Tris 6.051 g (0.5mol/L),溶解(必要时加热),用盐酸调pH为6.8,定容至100 mL。 ④TEMED(N,N,N’,N’-四甲基乙二胺)。 TEMED通过催化过硫酸铵形成自由基而加速丙烯酰胺与双丙烯酰胺的聚合。 ⑤10%过硫酸铵。 0.5 g过硫酸铵溶于5 mL去离子水中,可于4 ℃下存放数月 ⑥Tris-甘氨酸电极缓冲液(1 L) 称取3g Tris (25 mmol/L),14.4 g甘氨酸(192 mmol/L),1 g SDS(0.1 %),溶解后定容至1L,pH应该在8.3左右。也可以制成10×的储存液在室温下长期保存。 ⑦样品处理液(5×样品缓冲液)(10 mL) 称取Tris 0.07266 g Tris (60 mmol/L), SDS 0.02 g (2%, W/V), 溶于4 mL水中, 用HCl小心调节pH为6.8,再加5 mL 50%的甘油(终浓度25%, V/V),0.5 mL 2-巯基乙醇(14.4 mmol/L),溴酚蓝0.01 g (终浓度0.1%), 加去离子水至10 mL。可以在4℃下存放数周,或在-20℃下保存数月。 ⑧考马斯亮蓝R250染色液(1000 mL) 0.1% 考马斯亮蓝R250 考马斯亮蓝R-250 1.0 g (0.1%, W/V) 无水乙醇450 mL (45%, V/V) 冰醋酸100 mL (10%, V/V) 加水定容至1000 mL

血清蛋白电泳操作规程

血清蛋白电泳 一.项目名称 血清蛋白电泳(HYDRAGEL PROTEIN) 二.检验方法名称 琼脂糖凝胶区带电泳 三.方法学原理 蛋白电泳是临床实验室中一种常用的蛋白质剖析技术。它可以对血清或其他体液中的异常蛋白质进行筛选。它是以区带电泳为基础在一种合适的支持介质—琼脂糖上进行的电泳。血清蛋白质在给定的PH条件下主要根据其所带电荷数将其分离成五种片段:白蛋白,α1球蛋白,α2球蛋白,β球蛋白,γ球蛋白,每一区带含有一种或多种血清蛋白质。 四.方法学溯源 自1930年由Tiselius发现了移界电泳(moving boundary eectrophoresis),而后,这种技术的各种局限性已逐渐被区带电泳(zone elecrrophoresis)所克服,区带电泳的条件和支持介质的选择是电泳成败的关键。血清蛋白区带电泳是在临床实验室中常用的技术之一,可定性和/或半定量各条正常或异常蛋白区带。 五.仪器 (一)型号:SEBIA HYDRASYS (PN1210) (二)分析和计算参数: 1.处理量:约162个样本/小时 2.所需样本量:10ul 3.检验时间:约半小时 4.重复性:有良好的批内和批间重复性 5.电泳参数:电压0-300V(可选至3000V) 电流0-500mA 功率0-100W 六.试剂及配套品 (一)试剂 1.HYDRAGEL 7 PROTEIN(E)试剂盒 HYDRAGEL 15 PROTEIN(E)试剂盒 HYDRAGEL 30 PROTEIN(E)试剂盒 (1)商标:SEBIA (2)包装规格:70测试/150测试/300测试 (3)货号:PN4100/ PN4120/ PN4140 2.脱色液 (1)商标:SEBIA (2)包装规格:Pack for 10×100ml (3)货号:PN4540 (4) 成分:柠檬酸

蛋白质电泳

学生毕业论文 学院名称0000000 论文题目:蛋白质电泳实验探究 学生姓名:000000专业: 0000000 班级: 00000000 学号: 0000000 学校指导教师: 00000职称:000000 实习单位指导教师:陈金锋职称:讲师 起止时间: 2012-3 2012年5 月 3 日

目录 目录 (2) 内容摘要 (3) 第一章前言 (4) (一)抗氧化酶概述 (4) (1)抗氧化酶在生活与生产中的应用 (4) (2)人体代谢中的抗氧化酶作用 (4) (二)过氧化氢酶概述 (5) (1)过氧化氢酶简介 (5) (2)过氧化氢酶历史 (5) (3)过氧化氢酶来源 (5) (4)过氧化氢酶结构 (5) (5)过氧化氢酶应用 (5) (三)本实验的目地和意义 (6) 第二章实验部分 (7) (一)仪器与试剂 (7) (1)仪器 (7) (2)药品与试剂 (7) (二)实验原理 (7) (1)目地基因的载入与诱导表达 (7) (2)蛋白质电泳 (7) (三)实验方法 (8) (1)目的基因的载入与诱导表达 (8) (2)SDS-PAG电泳 (8) (四)结果与讨论 (10) 参考文献 (12) 致谢 (12)

内容摘要 过氧化氢酶存在于红细胞及某些组织内的过氧化体中,它的主要作用就是催化H2O2分解为H2O与O2,使得H2O2不至于与O2在铁螯合物作用下反应生成非常有害的-OH。抗氧化酶可以以延缓人体衰老,减缓食品因氧化作用而腐败,对人们的生活和生产有很大的利用价值。本实验以过氧化氢酶为例子,探究过氧化氢酶大量生产途径,降低生产成本,对于人们生活以及生产有重要意义。 关键词抗氧化酶过氧化氢酶大肠杆菌 SDS-PAGE 电泳吸光度

SDS-PAGE电泳实验步骤

垂直板聚丙烯酰胺凝胶电泳分离蛋白质 一、实验目的 学习SDS-聚丙烯酰胺凝胶电泳法(SDS—PAGE)测定蛋白质的分子量的原理和基本操作技术。 二、实验原理 蛋白质是两性电解质,在一定的pH条件下解离而带电荷。当溶液的pH大于蛋白质的等电点(pI)时,蛋白质本身带负电,在电场中将向正极移动;当溶液的pH小于蛋白质的等电点时,蛋白质带正电,在电场中将向负极移动;蛋白质在特定电场中移动的速度取决于其本身所带的净电荷的多少、蛋白质颗粒的大小和分子形状、电场强度等。 聚丙烯酰胺凝胶是由一定量的丙烯酰胺和双丙烯酰胺聚合而成的三维网状孔结构。本实验采用不连续凝胶系统,调整双丙烯酰胺用量的多少,可制成不同孔径的两层凝胶;这样,当含有不同分子量的蛋白质溶液通过这两层凝胶时,受阻滞的程度不同而表现出不同的迁移率。由于上层胶的孔径较大,不同大小的蛋白质分子在通过大孔胶时,受到的阻滞基本相同,因此以相同的速率移动;当进入小孔胶时,分子量大的蛋白质移动速度减慢,因而在两层凝胶的界面处,样品被压缩成很窄的区带。这就是常说的浓缩效应和分子筛效应。同时,在制备上层胶(浓缩胶)和下层胶(分离胶)时,采用两种缓冲体系;上层胶pH=6.7—6.8,下层胶pH=8.9;Tris —HCI缓冲液中的Tris用于维持溶液的电中性及pH,是缓冲配对离子;CI-是前导离子。在pH6.8时,缓冲液中的Gly-为尾随离子,而在pH=8.9时,Gly的解离度增加;这样浓缩胶和分离胶之间pH的不连续性,控制了慢离子的解离度,进而达到控制其有效迁移率之目的。不同蛋白质具有不同的等电点,在进入分离胶后,各种蛋白质由于所带的静电荷不同,而有不同的迁移率。由于在聚丙烯酰胺凝胶电泳中存在的浓缩效应,分子筛效应及电荷效应,使不同的蛋白质在同一电场中达到有效的分离。 如果在聚丙烯酰胺凝胶中加入一定浓度的十二烷基硫酸钠(SDS),由于SDS带有大量的负电荷,且这种阴离子表面活性剂能使蛋白质变性,特别是在强还原剂如巯基乙醇存在下,蛋白质分子内的二硫键被还原,肽链完全伸展,使蛋白质分子与SDS充分结合,形成带负电性的蛋白质—SDS复合物;此时,蛋白质分子上所带的负电荷量远远超过蛋白质分子原有的电荷量,掩盖了不同蛋白质间所带电荷上的差异。蛋白质分子量愈小,在电场中移动得愈快;反之,愈慢。蛋白质的分子量与电泳迁移率之间的关系是: M r =K(10-b·m) logM r =LogK—b·R m , 式中M r ——蛋白质的分子量; logK——截距; b——斜率; R m ——相对迁移率。 实验证明,蛋白质分子量在15,000—200,000的范围内,电泳迁移率与分子量

SDS-PAGE电泳操作规范

聚丙烯酰氨凝胶电泳 一简介 作用原理:聚丙烯酰胺凝胶为网状结构,具有分子筛效应。它有两种形式:非变性聚丙烯酰胺凝胶电泳(Native-PAGE)及SDS-聚丙烯酰胺凝胶(SDS-PAGE);非变性聚丙烯酰胺凝胶,在电泳的过程中,蛋白质能够保持完整状态,并依据蛋白质的分子量大小、蛋白质的形状及其所附带的电荷量而逐渐呈梯度分开。而SDS-PAGE仅根据蛋白质亚基分子量的不同就可以分开蛋白质。该技术最初由shapiro 于1967年建立,他们发现在样品介质和丙烯酰胺凝胶中加入离子去污剂和强还原剂(SDS即十二烷基磺酸钠)后,蛋白质亚基的电泳迁移率主要取决于亚基分子量的大小(可以忽略电荷因素)。 二作用 SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。而强还原剂如巯基乙醇,二硫苏糖醇(DTT)能使半胱氨酸残基间的二硫键断裂。在样品和凝胶中加入还原剂和SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。SDS-PAGE一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。浓缩胶的作用是有堆积作用,凝胶浓度较小,孔径较大,把较稀的样品加在浓缩胶上,经过大孔径凝胶的迁移作用而被浓缩至一个狭窄的区带。当样品液和浓缩胶选

TRIS/HCl缓冲液,电极液选TRIS/甘氨酸。电泳开始后,HCl解离成氯离子,甘氨酸解离出少量的甘氨酸根离子。蛋白质带负电荷,因此一起向正极移动,其中氯离子最快,甘氨酸根离子最慢,蛋白居中。电泳开始时氯离子泳动率最大,超过蛋白,因此在后面形成低电导区,而电场强度与低电导区成反比,因而产生较高的电场强度,使蛋白和甘氨酸根离子迅速移动,形成以稳定的界面,使蛋白聚集在移动界面附近,浓缩成一中间层。此鉴定方法中,蛋白质的迁移率主要取决于它的相对分子质量,而与所带电荷和分子形状无关。 三电泳过程 蛋白质在聚丙烯酰胺凝胶中电泳时,它的迁移率取决于它所带净电荷以及分子的大小和形状等因素。如果加入一种试剂使电荷因素消除,那电泳迁移率就取决于分子的大小,就可以用电泳技术测定蛋白质的分子量。1967年,Shapiro等发现阴离子去污剂十二烷基硫酸钠(SDS)具有这种作用。当向蛋白质溶液中加入足够量SDS和巯基乙醇,可使蛋白质分子中的二硫键还原。由于十二烷基硫酸根带负电,使各种蛋白质—SDS复合物都带上相同密度的负电荷,它的量大大超过了蛋白质分子原的电荷量,因而掩盖了不同种蛋白质间原有的电荷差别,SDS与蛋白质结合后,还可引起构象改变,蛋白质—SDS复合物形成近似“雪茄烟”形的长椭圆棒,不同蛋白质的SDS复合物的短轴长度都一样,约为18A(1A=10的负十次方米),这样的蛋白质—SDS复合物,在凝胶中的迁移率,不再受蛋白质原的电荷和形状的影响,而取决于分子量的大小由于蛋白质-SDS复合物在单位长度上

蛋白质SDS-PAGE电泳注意事项.doc

匀浆: 1.匀浆缓冲液含有多种蛋白酶抑制剂,降低蛋白酶活性,以防蛋白降解。 2.SDS在匀浆以后再加入,以防起沫。 3.所有操作尽量在冰上进行。 4.94℃水浴(或沸水浴)处理的作用是为了是蛋白变性,以防降解(水浴锅事 先要打开升温)。 5.PMSF是有毒试剂,处理时注意。 6.操作过程尽量带上手套,以防人手表面的蛋白和脂肪的污染。 7.热水浴后,离心是用的可以控温的离心机,使用前15分钟打开使温度降到 4℃,即可。 8.离心后分装,可以用枪头先把表面的一层吸走,换取新的枪头在分装。 9.SDS,DDT,PMSF是用时临时加入缓冲业的,根据母液的浓度计算所需的量。制胶: 10.APS和TEMED是促凝的,根据温度加入的量是可以变动,一般不超过30%。 11.玻璃板一定要洗干净,否则制胶是会有气泡。 12.丙烯酰胺是有毒的,操作时注意安全。(凝胶以后,聚丙烯酰胺毒性降低。) 13.1.5mm的玻璃板有黑色条带封低,1mm的玻璃板用白色条带封底。(封紧以防 漏胶) 14.凝胶的时间要严格控制好,一般在20-30min。 15.样品处理时,沸水浴使蛋白充分变性以防在电泳时产热蛋白质降解。一般要 5-10分钟。而且要注意把样品的管口封好,以防沸水浴时冲开(出错了)。 16.点样时,如果孔比较多,尽量点在中央。(点在边上时,跑出的带是斜的) 17.点样前要排尽胶底部的气泡,防止干扰电泳。 18.开始电泳时,电压调到80V,当跑过浓缩胶时电压调到100V。 19.电泳结束后,取胶时,小心把玻璃板翘起(防止再次落下) 20.脱色时,尽量多次进行换水。 21.上样量不宜太高,蛋白含量每个孔控制在10μg-50μg,,一般<15μl. 22.做胶时,凝胶时间控制在25min。梳子不能歪来歪去。 23.上样时,Mark最好标在中间,边上的孔尽量不要上样。

小分子蛋白电泳技术分享

Tricine SDS-PAGE实用方案 Tricine-SDS-PAGE是用于分离分子量在1-10kD的肽类用的。 一、试剂配配制: 1.Low Bis acrylamide(49.5% T, 3% C) Acylamide 48.0g Bis 1.5g Water make up to 100ml 2. High Bis acrylamide (49.5% T, 6% C) Acrylamide 46.5g Bis 3.0g Water make up to100ml 3. Gel Buffer (3M Tris/cl, PH8.45, 0.3% SDS) SDS 0.3g Tris 36.4g Water make up to 100ml PH to 8.45 with HCL 注: 3M Tris 配制时不容易溶解,因此配制时我配制了2M Tris,配方如下: Tris 36.4g SDS 0.3g Water make up to 150ml 4. Anode (Lower) buffer 阳极缓冲液(0.2M Tris/cl, PH8.9) Tris 12.11g Water make up to 500ml PH to 8.9 with HCL 5. Cathode (Upper) buffer 阴极缓冲液(0.1M Tris/cl, 0.1M Tricine, 0.1% SDS, PH 8.25) Tris 6.06g Tricine 8.96g SDS 0.5g Water make up to 500ml

注:不用调PH值 6. 4×Tricine SDS Sample buffer 4×上样缓冲液 (Final concentration: 0.05M Tris/cl, 4% SDS, 12% glycerol, 200mM DTT, 0.01% Commasie G 250) 8×Tris.cl/SDS PH 6.8 2ml Glycerol 4.8ml SDS 1.6g Commasie Blue G 250 4mg Water make up to 10ml 注:8×Tris.cl/SDS PH 6.8配方 Tris 6.05g SDS 0.4g Water make up to 100ml PH to 6.8 with HCL 二、胶的配制 1. 16.5% T 6% C separating gel 30ml 49.5% T 6% C 10ml Gel buffer 15ml Glycerol 3.2ml Water 1.8ml 2. 10% T 3% C spacer gel 30ml 49.5% T 3% C 6.1ml Gel buffer 15ml Water 8.9ml 3. 4% T 3% C stacking gel 12.5ml 49.5% T 3% C 1ml Gel buffer 4.65ml Water 6.85ml 注: 用Bio-Rad系统, 0.75mm的胶,separating gel 配3ml, 加2.5ml; Spacer gel 配1ml,加0.7ml; Stacking gel 配1.25ml. 灌胶前临时加10%AP(过硫酸铵)和TEMED. 胶配制的通用配方:

SDS-PAGE电泳实验步骤

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 垂直板聚丙烯酰胺凝胶电泳分离蛋白质 一、实验目的 学习SDS-聚丙烯酰胺凝胶电泳法(SDS—PAGE)测定蛋白质的分子量的原理和基本操作技术。 二、实验原理 蛋白质是两性电解质,在一定的pH条件下解离而带电荷。当溶液的pH大于蛋白质的等电点(pI)时,蛋白质本身带负电,在电场中将向正极移动;当溶液的pH小于蛋白质的等电点时,蛋白质带正电,在电场中将向负极移动;蛋白质在特定电场中移动的速度取决于其本身所带的净电荷的多少、蛋白质颗粒的大小和分子形状、电场强度等。 聚丙烯酰胺凝胶是由一定量的丙烯酰胺和双丙烯酰胺聚合而成的三维网状孔结构。本实验采用不连续凝胶系统,调整双丙烯酰胺用量的多少,可制成不同孔径的两层凝胶;这样,当含有不同分子量的蛋白质溶液通过这两层凝胶时,受阻滞的程度不同而表现出不同的迁移率。由于上层胶的孔径较大,不同大小的蛋白质分子在通过大孔胶时,受到的阻滞基本相同,因此以相同的速率移动;当进入小孔胶时,分子量大的蛋白质移动速度减慢,因而在两层凝胶的界面处,样品被压缩成很窄的区带。这就是常说的浓缩效应和分子筛效应。同时,在制备上层胶(浓缩胶)和下层胶(分离胶)时,采用两种缓冲体系;上层胶pH=6.7—6.8,下层胶pH=8.9;Tris—HCI缓冲液中的Tris用于维持溶液的电中性及pH,是缓冲配对离子;CI-是前导离子。在pH6.8时,缓冲液中的Gly-为尾随离子,而在pH=8.9时,Gly的解离度增加;这样浓缩胶和分离胶之间pH 的不连续性,控制了慢离子的解离度,进而达到控制其有效迁移率之目的。不同蛋白质具有不同的等电点,在进入分离胶后,各种蛋白质由于所带的静电荷不同,而有不同的迁移率。由于在聚丙烯酰胺凝胶电泳中存在的浓缩效应,分子筛效应及电荷效应,使不同的蛋白质在同一电场中达到有效的分离。 如果在聚丙烯酰胺凝胶中加入一定浓度的十二烷基硫酸钠(SDS),由于SDS带有大量的负电荷,且这种阴离子表面活性剂能使蛋白质变性,特别是在强还原剂如巯基乙醇存在下,蛋白质分子内的二硫键被还原,肽链完全伸展,使蛋白质分子与SDS充分结合,形成带负电性的蛋白质—SDS复合物;此时,

SDS-PAGE电泳测定蛋白质相对分子量

SDS-PAGE电泳测定蛋白质相对分子量 一、实验目的: 1、了解SDS-PAGE垂直板型电泳法的基本原理及操作技术。 2、学习并掌握SDS-PAGE法测定蛋白质相对分子量的技术。 二、实验原理: SDS-PAGE电泳法,即十二烷基硫酸钠—聚丙烯酰胺凝胶电泳法,。1.在蛋白质混合样品中各蛋白质组分的迁移率主要取决于分子大小和形状以及所带电荷多少。 2.在聚丙烯酰胺凝胶系统中,加入一定量的十二烷基硫酸钠(SDS),SDS 是一种阴离子表面活性剂,加入到电泳系统中能使蛋白质的氢键和疏水键打开,并结合到蛋白质分子上,使各种蛋白质—SDS复合物都带上相同密度的负电荷,其数量远远超过了蛋白质分子原有的电荷量,从而掩盖了不同种类蛋白质间原有的电荷差别。此时,蛋白质分子的电泳迁移率主要取决于它的分子量大小,而其它因素对电泳迁移率的影响几乎可以忽略不计。 三、仪器、原料和试剂 1、仪器:垂直板型电泳槽;直流稳压电源;50或100μl微量注射器、玻璃板、水浴锅,染色槽;烧杯;吸量管;常头滴管等。 2、原料:低分子量标准蛋白质按照每种蛋白0.5~1mg·ml-1样品溶解液配制。可配制成单一蛋白质标准液,也可配成混合蛋白质标准液。 3、试剂: (1)分离胶缓冲液(Tris-HCl缓冲液PH8.9):取1mol/L盐酸48mL,Tris 36.3g,用无离子水溶解后定容至100mL。 (2)浓缩胶缓冲液(Tris-HCl缓冲液PH6.7):取1mol/L盐酸48mL, Tris 5.98g,用无离子水溶解后定容至100mL。 (3)30%分离胶贮液:配制方法与连续体系相同,称丙烯酰胺(Acr)30g 及N,N’-甲叉双丙烯酰胺(Bis)0.8g,溶于重蒸水中,最后定容至100ml,过滤后置棕色试剂瓶中,4℃保存。 (4)10%浓缩胶贮液:称Acr 10g及Bis 0.5g,溶于重蒸水中,最后定容至100mL,过滤后置棕色试剂瓶中,4℃贮存。 (5)10%SDS溶液:SDS在低温易析出结晶,用前微热,使其完全溶解。(6)1%TEMED; (7)10%过硫酸铵(AP):现用现配。

SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)实验原理和操作步骤

SDS- 聚丙烯酰胺凝胶电泳(SDS-PAGE) 实验 原理和操作步骤 实验原理: SDS-PAGE 是对蛋白质进行量化,比较及特性鉴定的一种经济、 快速、而且可重复的方法。该法是依据混合蛋白的分子量不同来 进行分离的。 SDS 是一种去垢剂,可与蛋白质的疏水部分相结合,破坏其折 叠结构,并使其广泛存在于一个广泛均一的溶液中。 SDS 蛋白质复 合物的长度与其分子量成正比。在样品介质和凝胶中加入强还原剂 和去污剂后,电荷因素可被忽略。蛋白亚基的迁移率取决于亚基分 子量。 试剂和器材: 试剂: 1. 5x样品缓冲液(10ml):0.6ml1mol/L的Tris-HCl(pH6.8),5ml 50%甘油,2ml 10%的SDS,0.5ml巯基 乙醇, 1ml 1% 溴酚蓝, 0.9ml 蒸馏水。可在 4℃保存数周,或在 -20 ℃保存数月。 2.凝胶贮液:在通风橱中,称取丙烯酰胺 30g ,甲叉双丙烯酰胺 0.8g ,加重蒸水溶解后,定容到 100ml 。过滤后置棕色瓶中, 4℃ 保存,一般可放置 1个月。 3. pH8.9 分离胶缓冲液:Tris 36.3g,加1mol/L HCl 48ml,

加重蒸水 80ml 使其溶解,调 pH8.9 ,定容至 100ml , 4℃保存。 4. pH6.7 浓缩胶缓冲液: Tris 5.98g ,加 1mol/L HCl 48ml ,加重蒸水 80ml 使其溶解,调 pH 6.7 ,定容至 100ml , 4℃保存。 5.TEMED (四乙基乙二胺)原液 6.10% 过硫酸铵(用重蒸水新鲜配制) 7.pH8.3 Tris- 甘氨酸电极缓冲液:称取 Tris 6.0g ,甘氨酸 28.8g , 加蒸馏水约 900ml ,调 pH8.3 后,用蒸馏水定容至 1000ml 。置4℃保存,临用前稀释 10 倍。 8.考马斯亮蓝G250 染色液:称100mg 考马斯亮蓝G250 ,溶于200ml 蒸馏水中,慢慢加入7.5ml 70% 的过氯酸,最后补足水到250ml ,搅拌 1小时,小孔滤纸过滤。 器材:电泳仪,电泳槽,水浴锅,摇床。 实验操作

双向电泳技术在生物医学中的应用现状和应用前景

双向电泳技术在生物医学中的应用现状和应用前景 1 双向电泳技术 1.1双向电泳技术概述 双向电泳(two-dimensional gel electrophoresis, 2-DE)是蛋白分离的黄金标准,由此可以分析生物样品的显著差别,产生的结果用于诊断疾病、发现新的药物靶标和分析潜在的环境和药物的毒性。双向电泳分离技术利用复杂蛋白混合物中单个组分的电泳迁移,第一向通过电荷的不同分离,另一向通过质量的不同分离。双向电泳协同质谱技术是正在出现的蛋白组学领域的中心技术。 双向电泳是一种分析从细胞、组织或其他生物样本中提取的蛋白质混合物的有力手段,是目前唯一能将数千种蛋白质同时分离与展示的分离技术,其高分辨率、高重复性和兼具微量制备的性能是其他分离方法所无与伦比的。双向电泳技术、计算机图像分析与大规模数据处理技术以及质谱技术被称为蛋白质组研究的三大基本支撑技术。可见双向电泳在蛋白质组学研究中的重要性。就像Fey和Larsen在他们的综述中提到:“尽管人们都想有新技术取代它,可是如果希望对细胞活动有全面的认识,其他技术无法在分辨率和灵敏度上与双向电泳相媲美”。 1.2 双向电泳技术的原理 双向电泳技术是蛋白质组学研究的核心技术之一。它利用了各种蛋白质等电点和分子量的不同来分离复杂蛋白质组分,具有较高的分辨率和灵敏度,目前已成为复杂蛋白质组分检测和分析的最好的生化技术。IPG - DALT系统双向电泳技术原理简明:首先利用等电聚焦( isoelectric focusing ,IEF) 将蛋白质沿pH 梯度分离至各自等电点(isoelectric point ,pI),通过电荷分离蛋白质;然后沿垂直的方向以十二烷基磺酸钠-聚丙烯酰胺凝胶电泳( sodium dodecyl sulphate polyacryla -mide gel electrophoresis ,SDS-PAGE),通过分子量分离蛋白质。所得蛋白双维排列图中每个点代表样本中一个或数个蛋白质,而蛋白质的等电点、分子量和在样本中的含量也可显现出来。蛋白双向电泳的分辨率和灵敏度很高,一般可分离

SDS-PAGE电泳的基础原理和试验步骤

SDS-PAGE电泳的基础原理和实验步骤 概述 十二烷基硫酸钠聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate polyacrylamide gel electrophoresis,简称SDS-PAGE)是聚丙烯酰胺凝胶电泳中最常用的一种蛋白表达分析技术。此项技术的原理,是根据检体中蛋白质分子量大小的不同,使其在电泳胶中分离。在大肠杆菌表达纯化外源蛋白的实验中,SDS-PAGE更是必不可少的操作,其通常用于检测蛋白的表达情况(表达量,表达分布),以及分析目的蛋白的纯度等。 SDS-PAGE作用机理 蛋白中含有很多的氨基(+)和羧基(-),不同的蛋白在不同的pH值下表现出不同的电荷,为了使蛋白在电泳中的迁移率只与分子量有关,我们在上样前,通常会进行一些处理(上样缓冲液)。即在样品中加入含有SDS和β-巯基乙醇的上缓冲液。SDS即十二烷基磺酸钠(CH3-(CH2)10-CH2OSO3-Na+),是一种阴离子表面活性剂,它可以断开分子内和分子间的氢键,破坏蛋白质分子的二级和三级结构;β-巯基乙醇是强还原剂,它可以断开半胱氨酸残基之间的二硫键。电泳样品加入样品处理液后,经过高温处理,其目的是将SDS与蛋白质充分结合,以使蛋白质完全变性和解聚,并形成棒状结构同时使整个蛋白带上负电荷;另外样品处理液中通常还加入溴酚蓝染料,用于监控整个电泳过程;另外样品处理液中还加入适量的蔗糖或甘油以增大溶液密度,使加样时样品溶液可以快速沉入样品凹槽底部。当样品上样并接通两极间电流后(电泳槽的上方为负极,下方为正极),在凝胶中形成移动界面并带动凝胶中所含SDS负电荷的多肽复合物向正极推进。样品首先通过高度多孔性的浓缩胶,使样品中所含SDS多肽复合物在分离胶表面聚集成一条很薄的区带(或称积层)。 电泳启动时,蛋白样品处于pH6.8的上层,pH8.8的分离胶层在下层,上槽为负极,下槽为正极。出现了pH 不连续和胶孔径大小不连续:启动时Clˉ解离度大,Proˉ解离度居中,甘aaCOOˉ解离度小,迁移顺序为(pH6.8)Clˉ>Proˉ>—COOˉ。在Clˉ与Proˉ之间和Proˉ与—COOˉ之间都将出现低离子区,同时也出现高电势,高电势迫使Proˉ向Clˉ迁移,—COOˉ向Proˉ迁移。如:一个Clˉ领路,—COOˉ推动,蛋白在中间,这样就起到浓缩的作用了。在浓缩胶运动中,由于胶联度小,孔径大,Proˉ受阻小,因此不同的蛋白质就浓缩到分离胶之上成层,起浓缩效应,使全部蛋白质处于同一起跑线上。当蛋白质进入分离胶时,此时Proˉ,Clˉ,甘aa离子在pH8.8的溶液中,Clˉ完全电离而很快到达正极,甘aa电离度加大很快跃过蛋白质,而到达正极,只有蛋白质分子在分离

SDS-PAGE电泳实验步骤

垂直板聚丙烯酰胺凝胶电泳分离蛋白质 一.实验目的 学习SDS-聚丙烯跌胺凝胶电泳法(SDS—PAGE)测定蛋白质的分子量的原理和基本操作技术。 二、实验原理 蛋白质是两性电解质,在一定的pH条件下解离而带电荷。当溶液的pH大于蛋白质的等电点(pl)时,蛋白质本身带负电,在电场中将向正极移动;当溶液的pH小于蛋白质的等电点吋,蛋白质带正电,在电场中将向负极移动;蛋白质在特定电场中移动的速度取决于其本身所带的净电荷的多少.蛋白质颗粒的大小和分子形状、电场强度等。 聚丙烯酰胺礙胶是由一定量的丙烯酰胺和双丙烯酰胺聚合而成的三维网状孔结构。本实验釆用不连续凝胶系统,调整双丙烯酰胺用量的多少,可制成不同孔径的两层凝胶;这样,当含有不同分子量的蛋白质溶液通过这两层凝胶时,受阻滞的程度不同而表現出不同的迁移率。由于上层胶的孔径较大,不同大小的蛋白质分子在通过大孔胶时,受到的阻滞基本相同,因此以相同的速率移动;当进入小孔胶时,分子董大的蛋白质移动速度减慢,因而在两层凝胶的界面处,样品被压缩成很窄的区带。这就是常说的浓缩效应和分子筛效应。同时,在制备上层胶(浓缩胶)和下层胶(分离胶)时,釆用两种缓冲体系;上层胶pH二一,下层胶pH=; Tris—HCI缓冲液中的Tris 用于维持溶液的电中性及pH,是缓冲配对离子:Cl-是前导离子。在时,缓冲液中的Gly为尾随离子,而在卩日=吋,Gly的解离度增加:这样浓缩胶和分离胶之间pH的不连续性,控制了慢离子的解离度,进而达到控制其有效迁移率之目的。不同蛋白质具有不同的等电点,在进入分离胶后,各种蛋白质由于所带的静电荷不同,而有不同的迁移率。由于在聚丙烯酰胺凝胶电泳中存在的浓缩效应,分子拜效应及电荷效应,使不同的蛋白质在同一电场中达到有效的分离。 A B 如果在聚丙烯酰胺;疑胶中加入一定浓度的十二烷基硫酸钠(SDS),由于SDS带有大董的负电荷,且这种阴离子表面活性剂能使蛋白质变性,特别是在强还原剂如疏基乙醇存在下,蛋白质分子內的二硫键被还原,肽链完全伸展,使蛋白质分子与SDS充分结合,形成带负电性的蛋白质一SDS复合物:此时,蛋白质分子上所带的负电荷董远远超过蛋白质分子原有的电荷量,掩盖了不同蛋白质间所带电荷上的差异。蛋白质分子量愈小,在电场中移动得愈快;反之,愈慢。蛋白质的分子董与电泳迁移率之间的关系是: M产K(10") logM r=LogK—b ? R n, 式中M, 一一蛋白质的分子量; logK——截距: b 斜率: R.——相对迁移率。 实验证明,蛋白质分子量在15,000—200,000的范国内,电泳迁移率与分子量的对数之间呈线性关系。蛋白质的相对迁移率心=蛋白质样品的迁移距离/染料(涣酚蓝)迁移距离。这样,在同一电场中进行电泳,把标准蛋白质的相对迁移率与相应的蛋白质分子董对数作图,由未知蛋白的相对迁移率可从标准曲线上求出它的分子量。 SDS-聚丙烯脱胺凝胶电泳(SDS-PAGE)法测定蛋白质的分子量具有简便、快速、t 复性好的优点,是目祈一般实验室常用的测定蛋白质分子量的方法。 三、试剂及主要器材

双向电泳

双向电泳的应用及研究进展 摘要:双向电泳是蛋白质组学研究中最常用的技术,具有简便、快速、高分辨率和重复性等优点。本文重点介绍了双向电泳的基本原理及其应用。同时对当前双向电泳技术面临的挑战和发展前景进行了讨论。 关键词: 双向电泳,应用,前景 1.1双向电泳技术概述 双向电泳(two-dimensional gel electrophoresis, 2-DE)是蛋白分离的黄金标准,由此可以分析生物样品的显著差别, 产生的结果用于诊断疾病、发现新的药物靶标和分析潜在的环境和药物的毒性。双向电泳分离技术利用复杂蛋白混合物中单个组分的电泳迁移,第一向通过电荷的不同分离,另一向通过质量的不同分离。双向电泳协同质谱技术是正在出现的蛋白组学领域的中心技术。双向电泳是一种分析从细胞、组织或其他生物样本中提取的蛋白质混合物的有力手段,是目前唯一能将数千种蛋白质同时分离与展示的分离技术,其高分辨率、高重复性和兼具微量制备的性能是其他分离方法所无与伦比的。双向电泳技术、计算机图像分析与大规模数据处理技术以及质谱技术被称为蛋白质组研究的三大基本支撑技术。可见双向电泳在蛋白质组学研究中的重要性。就像Fey和Larsen在他们的综述中提到:“尽管人们都想有新技术取代它,可是如果希望对细胞活动有全面的认识,其他技术无法在分辨率和灵敏度上与双向电泳相媲美”。 1.2双向电泳基本原理 1975年,意大利生化学家O’Farrell发明了双向电泳技术[1],双向电泳是指利用蛋白质的带电性和分子量大小的差异,通过两次凝胶电泳达到分离蛋白质群的技术。双向电泳技术依据两个不同的物理化学原理分离蛋白质。第一向电泳依据蛋白质的等电点不同,通过等电聚焦将带不同净电荷的蛋白质进行分离。在此基础上进行第二向的SDS聚丙烯酰胺凝胶电泳,它依据蛋白质分子量的不同将之分离。双向电泳所得结果的斑点序列都对应着样品中的单一蛋白。因此,上千种蛋白质均能被分离开来,并且各种蛋白质的等电点,分子量和含量的信息都能得到。 2双向电泳的应用 双向电泳的分辨率较高,自第一次应用该技术以来,其分辨率已从15 个蛋白质点发展到10 000多个蛋白质点。一般的双向电泳也能分辨 1 000~3000 个蛋白质点。因此,近年来,双向电泳被广泛应用于农业、医学等研究领域。 2.1 在动物科学中的应用 在动物科学研究方面,双向电泳被广泛应用于小鼠血清蛋白、卵巢蛋白、兔晶状体蛋白质、昆虫离体细胞膜蛋白、户尘螨蛋白、家蚕雌性附腺及其Ng突变体蛋白质、大腹园蛛毒素蛋白质、家蚕蛋白质、牛精液蛋白、猪巨噬细胞蛋白等方面的研究。如钟小兰等[2]利用双向电泳技术分析肝郁症模型大鼠血清蛋白质组的差异表达。王治东等[3]采用蛋白质组学的双向电泳和蛋白质氨基酸序列分析技术研究了8Gy γ射线照射后24 h 小鼠血清蛋白质的变化。马翔等[4]通过双向电泳和质谱技术分析性成熟小鼠卵巢蛋白质组,并对其中的一种蛋白质进行免疫组化研究。刘奕志等[5]通过双向电泳和质谱鉴定有效分离和分析兔晶状体蛋白质组的特性,为白内障的防治带来新的前景。柳亦松等[6]以大腹园蛛粗毒为材料利用双向电泳技术获得蛋白质组双向电泳图谱,检测到500 个左右的蛋白质点,并对其中部分蛋白质点进行了质谱分析。靳远祥等[7]采用双向凝胶电泳和计算机辅助分析方法,分别对家蚕(Bombyx mori)限性黄茧品种雌蚕(黄茧)和雄蚕(白茧)的中部丝腺组织细胞蛋白质进行分离和比较分析。 2.2 在植物中的应用 在植物科学研究方面,双向电泳被广泛应用于水稻蛋白质、小麦蛋白质、茶树蛋白质、杉树蛋白质等方面的研究。如易克等[8]利用双向电泳技术对水稻种子胚乳蛋白进行了分析,获得了较好的电泳图谱,为探讨水稻灌浆期间与籽粒充实相关蛋白表达的变化,建立了一套适于水稻种子胚乳蛋白双向电泳分析技术。Picard 等利用双向电泳分析了亲缘关系较近的硬粒小麦不同株系的遗传多样性。林金科等[9]利用双向电泳技术分析了茶树蛋白质组,探索出一种可获得重复性好,清晰度高的蛋白质双向电泳图谱技术,并发现

垂直式蛋白质电泳的操作步骤

实验试剂和器材 1.材料:低分子量标准蛋白试剂盒: 低分子量标准蛋白:兔磷酸化酶B MW=97,400 牛血清白蛋白MW=66,200 兔肌动蛋白MW=43,000 牛碳酸酐酶 MW=31,000 胰蛋白酶抑制剂MW=20,100 鸡蛋清溶菌酶MW=14,400 开封后溶于200μl蒸馏水,置-20℃保存,使用前室温融化,沸水浴中加热3-5分钟后上样。样品1:称3mg样品1,加2 ml蒸馏水溶解。 2.实验试剂 (1) 30%丙烯酰胺(Acr):称Acr30g,甲叉双丙烯酰胺(Bis)0.8g,加蒸馏水至100ml,过滤后置棕色瓶中,4℃贮存可用1-2月。 (2)10%SDS(十二烷基磺酸钠) (3)1.5mol/L pH8.8 Tris-HCl缓冲液:称取Tris18.2g,加入50ml水,用1mol/L盐酸调pH8.8,最后用蒸馏水定容至100ml。 (4)1.0mol/LpH6.8Tris-HCl缓冲液:称取Tris12.1g,加入50ml水,用1mol/L 盐酸调pH6.8,最后用蒸馏水定容至100ml。 (5)0.05mol/LpH8.0Tris-HCl缓冲液:称取Tris0.6g,加入50ml水,用1mol/L盐酸调pH8.0,最后用蒸馏水定容至100ml。 (7)10%过硫酸铵(AP) (8)TEMED(四甲基乙二胺) (9)样品溶解液:SDS(100mg)+巯基乙醇(0.1ml)+ 溴酚蓝(2mg)+甘油(2g)+0.05mol/L pH8.0Tris-HCl(2ml),最后定容至10ml。 (10)固定液:取50%甲醇454ml,冰乙酸46ml混匀。 (11)染色液:称取考马斯亮蓝R250 0.125g,加上述固定液250ml,过滤后备用。(12)脱色液:冰乙酸75ml,甲醇50ml,加蒸馏水定容至1000ml。 (13)电极缓冲液(内含0.1%SDS,0.05mol/LTris- 0.384mol/L甘氨酸缓冲液pH8.3):称Tris6.0g,甘氨酸28.8g,加入SDS1g,加蒸馏水使其溶解后定容至1000ml。 实验过程 1.将玻璃板用蒸馏水洗净晾干, 准备2个干净的锥形瓶. 2.把玻璃板在灌胶支架上固定好.※固定玻璃板时,两边用力一定要均匀,防止夹坏玻璃板. 3.按比例配好分离胶,用移液管快速加入,大约5厘米左右,之后加少许蒸馏水,静置40分钟.※凝胶配制过程要迅速, 催化剂TEMED要在注胶前再加入,否则凝结无法注胶.注胶过程最好一次性完成,避免产生气泡. ※水封的目的是为了使分离胶上延平直,并排除气泡※凝胶聚合好的标志是胶与水层之间形成清晰的界面. 4.倒出水并用滤纸把剩余的水分吸干,按比例配好浓缩胶,连续平稳加入浓缩胶至离边缘 5mm处,迅速插入样梳,静置40分钟. ※样梳需一次平稳插入,梳口处不得有气泡,梳底需水平.

相关文档