文档库 最新最全的文档下载
当前位置:文档库 › 极坐标定位系统(又称方位距离定位系统)

极坐标定位系统(又称方位距离定位系统)

极坐标定位系统(又称方位距离定位系统)
极坐标定位系统(又称方位距离定位系统)

极坐标定位系统(又称“方位距离定位系统”)(polar coordinate positioning) 又称方位一距离定位。通过测定待定点到至少一个已知点的距离和方位所进行的一种无线电定位。定位参数是方位角和距离,位置线是岸台(已知点)至船(待定点)的方向线和由岸台至船的距离形成的以岸台为圆心、以岸台至船的距离为半径的圆弧线。位置方向线与位置圆弧线相交即可确定船位。

塔康导航系统

塔康导航系统(tactical air navigation-TACAN)

军用战术空中导航系统,采用极坐标体制定位,能在一种设备、

一个频道上同时测向和测距(图1[ 塔康导航系统])。

发展:40年代后期,民航已采用伏尔导航系统测向和早期的地美依

导航系统测距,两者结合成为伏尔-地美依导航系统。塔康导航系

统的发展旨在1000兆赫频段上同时提供测向和测距两种功能,并提

高测向准确度。1948年,试验在1000兆赫频段上对天线用3瓣波形

调制以提供全向方位,并与地美依导航系统组合。1951年继续改进,

用9瓣波形替代3瓣波形,同时把通道数从50个增加到 126个。

导航性能因此得到提高而成为正式导航系统,在军事上得到广泛应用。1959年,民用地美依导航系统改用塔康通道和相同的脉冲技术。后来,又把伏尔导航系统与塔康导航系统结合起来,遂成为通用的伏尔塔克导航系统。

原理:塔康设备测距原理与地美依设备完全相同,测向功能是通过附加在地面信标天线上的特殊装置来实现的。天线结构是塔康导航系统测向的核心。传统的塔康地面信标天线是圆筒形结构,中心是固定不动的辐射元,发射全向场型(图2[塔康导航系统地面天线结构])。

围绕辐射元外围的是两层同轴旋转的圆筒,圆筒由绝缘材料制成,内圆筒镶有1个金属反射元,外圆筒镶有9个反射元。圆筒由电动机驱动,转速为每分钟900转(每秒15转),每转为360。转轴上固定有基准脉冲盘,嵌有基准脉冲触发点。内圆筒上的单个反射元对中心辐射元产生的影响,是使它的场型变成心脏形,每秒旋转15周。外圆筒上的9个反射元,对场型产生的影响是使其变成9齿形,内外圆筒一起旋转产生塔康导航系统所特有的9瓣波形场型。由于具有9瓣的调制波形,塔康导航系统抑制场地反射干扰的能力大为提高(图3[ 塔康导航系统的调制形]).

塔康导航系统输出载波受填充脉冲对或应答脉冲对调制,每周(360)出现一次相位固定的基准脉冲群。内圆筒旋转产生每秒15次的调制信号,外圆筒旋转产生每秒135次的调制信号(图4[塔康导航系统信号波形]).

塔康导航系统地面天线的15赫和135赫调制也用电扫描技术完成,可提高天线工作的可靠性。机上设备除发送询问信号、通过测距电路测距和用距离计指示外,用方位电路测方位,用方位计指示方位角(图5[ 塔康导航系统机上设备)

性能和特点:塔康导航系统测距时,飞机必须发送询问脉冲对,因而是有源系统,而且同时向同一地面信标发送询问脉冲的飞机数不超过100架。塔康导航系统的测距误差与地美依导航系统相同。塔康导航系统测向时机上设备无须发送信号,因而是无源系统,测向时机上用户数量是无限的。塔康导航系统机上设备都是测向和测距两用的。塔康导航系统测向,从15赫和135赫合成调制信号中可得到±1.0°的准确度,从单15赫调制信号中可得到小于±4.5的准确度。塔康导航系统受视线限制,地面或近地覆盖只在55公里以下,飞行高度为1500米时可达185公里,6000米以上高度可达240公里,在更高的高度上可达370公里。地面信标(标准台)输出功率一般为5千瓦。

塔康导航系统采用固态电子技术和遥测、遥控技术,使设备可靠性大大提高。现代监测台具有自动关闭超差地面台的能力。

球面距离的计算

球面距离的计算经典范例 1.位于同一纬度线上两点的球面距离 例1 已知,B两地都位于北纬,又分别位于东经和,设地球半径为,求,B的球面距离. 分析:要求两点,B的球面距离,过,B作大圆,根据弧长公式,关键要求圆心角的大小(见图1),而要求往往首先要求弦的长,即要求两点的球面距离,往往要先求这两点的直线距离. 解作出直观图(见图2),设为球心,为北纬圈的圆心,连结,,,,.由于地轴平面. ∴与为纬度,为二面角的平面角. ∴(经度差). △中,. △中,由余弦定理, . △中,由余弦定理: , ∴. ∴的球面距离约为. 2.位于同一经线上两点的球面距离 例2 求东经线上,纬度分别为北纬和的两地,B的球面距离.(设地球半径为).(见图3) 解经过两地的大圆就是已知经线. ,.

3.位于不同经线,不同纬线上两点的球面距离 例3 地位于北纬,东经,B地位于北纬,东经,求,B两地之间的球面距离.(见图4) 解设为球心,,分别为北纬和北纬圈的圆心,连结,,. △中,由纬度为知, ∴, . △中,, ∴, ∴. 注意到与是异面直线,它们的公垂线为,所成的角为经度差,利用异面直线上两点间的距离公式. (为经度差) . △中, . ∴. ∴的球面距离约为. 球面距离公式的推导及应用 球面上两点之间的最短距离,就是经过这两点的大圆在这两点间的一段劣弧的长度,我们把这段弧长叫做两点的球面距离,常见问题

是求地球上两点的球面距离。对于地球上过A 、B 两点大圆的劣弧长由球心角AOB 的大小确定,一般地是先求弦长AB ,然后在等腰△AOB 中求∠AOB 。下面我们运用坐标法来推导地球上两点球面距离的一个公式。 地球球面上的点的位置由经度、纬度确定,我们引入有向角度概念与经度、纬度记法:规定东经为正,西经为负;北纬为正,南纬为负(如西经30o为经度α=-30o,南纬40o为纬度β=-40o ),这样简单自然,记球面上一点A 的球面坐标为A (经度α,纬度β),两标定点,清晰直观。 设地球半径为R ,球面上两点A 、B 的球面坐标为A (α1,β1),B (α2,β2),α1、α2∈[-π,π],β1、β2∈[- 2 π , 2 π],如图, 设过地球O 的球面上A 处的经线与赤道交于C 点,过B 的经线与赤道交于D 点。设地球半径为R ;∠AOC=β1,∠BOD=β2,∠DOC=θ=α1-α2。 另外,以O 为原点,以OC 所在直线为X 轴,地轴所在直线ON 为Z 轴建立坐标系O-XYZ (如图)。则A (Rcos β1,0,Rsin β1),B(Rcos β2cos (α1-α2),Rcos β2sin (α1-α2),Rsin β2) cos ∠AOB =cos 〈OA ,OB 〉=cos β1cos β2cos (α1-α2)+sin β1sin β2 ∠AOB=arcos[cos β1cos β2cos (α1-α2)+sin β1sin β2] 其中反余弦的单位为弧度。 于是由弧长公式,得地球上两点球面距离公式: ? AB =R 2arcos[cos β 1 cos β2cos (α1-α2)+sin β1sin β2] (I ) 上述公式推导中只需写出A ,B 两点的球面坐标,运用向量的夹角公式、弧长公式就能得出结论,简单明了,易于理解,公式特征明显.从公式的推导中我们体会到坐标法在解决立几问题的不凡表现。 由公式(I )知,求地球上两点的球面距离,不需求弦AB ,只需两点的经纬度即可。 公式对求地球上任意两点球面距离都适用,特别地,A 、B 两点的经度或纬度相同时,有: 1、β1=β2=β,则球面距离公式为: B A =R 2arcos[cos 2 β cos (α1-α2)+sin 2 β] (II ) 2、α1-α2=α,则球面距离公式为: B A =R 2arcos (cos β 1 cos β2+sin β1sin β2)=R 2arcoscos (β1-β2) (III ) 例1、 设地球半径为R ,地球上A 、B 两点都在北纬45o的纬线上,A 、B 两点的球面距离是3 πR ,A 在东经20o,求B 点的位置。 分析:α1=20o,β1=β2=45o,由公式(II )得: 3 π R= R 2arcos[cos 2 45ocos (20o-α2 )+sin 2 45o] cos 3π=2 1 cos (20o-α2 )+21 ∴cos (20o-α2)=0, 20o-α2=±90o即:α2=110o或α2=-70o 所以B 点在北纬45o,东经110o或西经70o 例2、 (2002年第六届北京高中数学知识应用竞赛试题)北京时间2002年9月27日14点,国航CA981航班从首都国际机场准时起 飞,当地时间9月27日15点30分,该航班正点平稳降落在纽约肯尼迪机场;北京时间10月1日19点14分,CA982航班在经过13个小时的飞行后,准点降落在北京首都国际机场,至此国航北京--纽约直飞首航成功完成。这是中国承运人第一次经极地经营北京--纽约直飞航线。从北京至纽约原来的航线飞经上海(北纬31 ,东经122 )东京(北纬36 ,东经140 )和旧金山(北纬37 ,西经123 )等处,

极坐标下两点间的距离公式、点到直线间的距离公式及其应用

极坐标下两点间的距离公式、点到直线间的距离公式及其应用 人教A 版选修4-4中极坐标部分内容有好多求极坐标下两点间的距离和点到直线的距离的问题,我们一般都是把点极坐标与直线的极坐标方程化为直角坐标和方程,然后利用直角坐标下的公式来解决的。那么,能不能直接利用极坐标来解决这两个问题呢?答案是肯定的。下面我们分别来说明。 一.极坐标下两点间的距离公式及其应用 1.结论一:设两点的极坐标分别是A (ρ1,θ1)、B (ρ2,θ2),则221212212cos -AB ρρρρθθ=+-() 证明:如图,设两点的极坐标分别是A (ρ1,θ1)、B (ρ2,θ2),且ρ1>0,ρ2>0在△AOB 中,由余弦定理,得222cos AB OA OB OA OB AOB =+-∠ 221212212cos -ρρρρθθ=+-() 说明:也可以把点的极坐标化为直角坐标,用直角坐标下两点间的距离公式得证。 2.应用 例1.在极坐标系中,已知A ? ????1,3π4,B ? ????2,π4两点,则|AB |=________. 解:|AB |=12+22-2×1×2co s ? ????3π4 -π4= 5. 例2.求圆心在C ? ????2,π4,半径为1的圆的极坐标方程. 解:设圆C 上任意一点的极坐标为M (ρ,θ),如图,在△OCM 中,得 |OM |2+|OC |2-2|OM |·|OC |·cos∠COM =|CM |2 ,

即ρ2-22ρcos ? ????θ-π4+1=0. 当O ,C ,M 三点共线时,点M 的极坐标? ????2±1,π4也适合上式, 所以圆的极坐标方程为 ρ2-22ρcos ? ?? ??θ-π4+1=0. 二.极坐标下点到直线的距离公式及其应用 1.结论二:在极坐标系中,设()11,p ρθ ,直线l 方程为22sin()a ρθ?=+ 则点P 到直线l 的距离为112sin()-d a ρθθ=- 证明:将()11,p ρθ化成直角坐标为1111(cos ,sin )ρθρθ 由直线l 方程222(sin cos cos sin )a ρθ?θ?+= 即2222sin cos cos sin a ρθ?ρθ?+= 化成直角坐标系由点到直线的距离公式,可得sin cos 0x y a ??+-= 111122cos sin sin cos cos sin a d ρθ?ρθ???+-=+ 11sin()a ρθ?=+- 2.应用: 例1.已知直线的极坐标方程为2sin()4ρθ+=π 7(2,)4A π到这条直线的距离。 解:1172,,2442a θ?ρ====ππ 722sin( )442d ∴=+ππ 22sin 22=π 22 =

任意点极坐标法测设曲线

任意点极坐标法测设曲线 随着测距仪、全站仪的普及应用,任意点击坐标法测设曲线,已在生产者中得到了广泛应用。用这种方法的优点是:设站灵活,不受地形条件限制,主点和曲线点可同时测设。但应注意,由于测点彼此独立,应采用一定的方法检核,起点为误差不应大于5cm。 一、任意点极坐标法测设曲线的原理 如图1-1所示,M、N为已知的平面控制点,A 、B、C为待定曲线点,设M、N、A、B、C点在相同坐标系下的坐标均已知,则根据坐标反算可得坐标方位角:αM,N、αM,A、αM,B、αM、C。水平距离D M,A、D M,B、D M,C。测设时,置镜于M点,后视N点定向,定向后视读数配置为αM,N;旋转仪器当平盘读数为αM,A时,于视线方向上测设D M,A,得A 点;用同样方法可测出B、C等点。

1-1任意点极坐标法测设曲线原理 由此可见,任意点极坐标法测设曲线的关键问题是:统一坐标系下控制点、曲线点的坐标计算;测设数据计算。 一、 坐标计算 坐标系的建立主要取决于控制点的情况。如果控制点是为测设曲线而布设的,则坐标系一般采用ZH-xy 坐标系;如果控制点是既有控制点(如初测导线点),则控制点所在的坐标系就是统一坐标系,即既有坐标系统。 1. ZH-xy 测量坐标系下曲线点坐标计算 如图1-2所示,以始端缓和曲线ZH 为原点,以ZH 切线为X 轴,且指向交点方向为正向,建立测量中的平面直角坐标系ZH-xy ,则在此坐标系下,ZH-HY 段曲线点的坐标为: 错误!未找到引用源。 式1-1 错误!未找到引用源。 式中,l A 为A 点到缓和曲线起点的曲线长;l o 为缓和曲线长;R 为圆J α

高中数学极坐标与参数方程大题(详解)

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. +=1 , , 的距离为 则 取得最小值,最小值为 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 的极坐标方程为: cos=

∴ y+1=0 ( d= 的距离的最大值. 3.已知曲线C1:(t为参数),C2:(θ为参数). (1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值. :(化为普通方程得:+ t=代入到曲线 sin =,),﹣

4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为 ,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C 上不同于A,B的任意一点. (Ⅰ)求圆心的极坐标; (Ⅱ)求△PAB面积的最大值. 的极坐标方程为,把 ,利用三角形的面积计算公式即可得出. 的极坐标方程为,化为= 把 ∴圆心极坐标为; (t , = 距离的最大值为 5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.

上海(沪教版)数学高二下学期同步辅导讲义教师版:第十讲球的体积及球面距离

沪教版数学高二下春季班第十讲 课题 球的体积及球面距离 单元 第十五章 学科 数学 年级 十一 学习 目标 1.理解球的有关概念,掌握球的性质及有关公式; 2.理解球面距离的概念,会计算常见的球面距离; 3.解决常见的与球有关的计算问题. 重点 1.球面距离的计算方法; 2.球的表面积与体积的计算问题; 3.掌握常见的球内接与外切问题的解决方法 难点 掌握常见的球内接与外切问题的解决方法 1、球的定义: 半圆绕着它的直径所在直线旋转一周,所形成的空间几何体叫做球,记作球O 。半圆绕着它的直径旋转所得到的图形不叫球,叫球面,球面所围成的几何体叫做球.大家要注意球面和球是不同的两个概念.点O 到球面上任意点的距离都相等,把点O 称为球心,原半圆的半径和直径分别成为球的半径和球的直径。球面被过球心的平面所截得的圆,叫做球的大圆;被不经过球心的平面所截得的圆,叫做球的小圆. 教学安排 版块 时长 1 知识梳理 30 2 例题解析 60 3 巩固训练 20 4 师生总结 10 5 课后练习 30 球的体积及球面距离 知识梳理

2、球的性质: 球心和截面圆心的连线垂直于截面;设球心到截面的距离为d ,截面圆的半径为r ,球的半径为R ,则:r=2 2 d R - 3、球的表面积、体积公式:表面积:24R S π=;球的体积公式:33 4 R V π=. 4、球的体积公式 高中数学教材对球的体积公式3 43 V r π= 球(r 为球的半径)作了要求,但只是简单地说“利用祖暅原理和圆柱、圆锥的体积公式”可得出此公式,未作具体推导. 鉴于部分学有余力的学生想了解其推导过程,现提供几种用高中数学知识就可推导的方法.

极坐标几何意义解题资料

几何意义解题 1、(距离最值) 1.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线 12cos :3sin x C y αα=-+??=+?(α为参数) ,28cos :x C y θ θ =???=??(θ为参数). (1)将12,C C 的方程化为普通方程,并说明它们分别表示什么曲线; (2)若1C 上的点P 对应的参数为2 π α= ,Q 为2C 上的动点,求PQ 中点M 到直线l : cos 3πρθ?? - = ?? ? 的距离的最大值. 2.已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,曲线13cos :2sin x C y α α =??=?(α为参数). (1)求曲线1C 的普通方程; (2)若点M 在曲线1C 上运动,试求出M 到曲线C 的距离的最小值. 3.在直角坐标系xOy 中,圆O 的参数方程为cos 2sin 2 x r y r θθ? =-+?? ? ?=+?? ,(θ为参数,0r >).以O 为极点,x 轴正半轴为极轴,并取相同的单位长度建立极坐标系,直线l 的极坐标方程 为 sin 42 πρθ?? + = ? ? ?.写出圆心的极坐标,并求当r 为何值时,圆O 上的点到直线l 的最大距离为3.

4.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系。已知曲线C 1的极坐 l (Ⅰ)写出曲线C 1与直线l 的直角坐标方程; (Ⅱ)设Q 为曲线C 1上一动点,求Q 点到直线l 距离的最小值。 5.已知曲线1C 1C 经过坐标变换2x x y '=??? ' =??得到曲线2C ,直线l 的参数方程为2()x t y t R ?=?∈?? ?=??为参数, (Ⅰ)求直线l 的普通方程和曲线1C 的直角坐标方程; (Ⅱ)若P 为曲线2C 上的点,求点P 到直线l 的距离的最大值。 6.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,已知圆C 的极坐标方程为)4 cos(2π θρ+ =a )0(>a 。 OA 为圆C 的直径,求点A 的极坐标; (Ⅱ)直线l 的参数方程是???==t y t x 42(t 为参数),直线l 被圆C 截得的弦长为d ,若2≥d ,求a 的 取值范围。

地球经纬度与球面距离

地球的经纬度与球面距离 [教学科目]数学(《立体几何》) [教学课题]地球的经纬度与球面距离 [教学目标] 1.通过教学使学生掌握地球的经纬度和球面距离的概念,并能够熟练计算同纬度或同经度的球面上任意两点的球面距离,理解既不纬度也不同经度的球面上任意两点球面距离的计算方法; 2.通过教学培养学生的空间想象能力和计算能力。 [教学重点]球面上任意两点的球面距离的计算方法。 [教学难点]对球面距离概念的理解与球面上任意两点的球面距离的计算。 [教学方法]启发式、讨论式。 [教学工具]常规教学工具。 [教学时间]一课时(45分钟)。 [教学班级]北京四中99级数学B4班 [任课教师]北京四中李建华 [教学过程] 一、课题引入 师:上节课我们研究了球的截面性质,这节课我们继续研究球的问题,研究球面上任意两点的球面距离及其计算。 二、新课 1.地球的经纬度 师:让我们首先回忆一下地球的经纬度的概念。 [学生回答。] 师:通过经纬度我们就能够确定地球球面上的任意一点。可以看到北京的经纬度大约是(N40°,E116°)、南京(N32°,E118°)、石家庄(N38°,E114°)、银川(N38°,E106°)、南昌(N28°,E116°)。 2.球面距离的概念 师:那么,球面上任意两点间的最短距离是什么?可以凭借直观感受来回答这个问题。 [学生回答,然后给出球面距离的定义。] 师:所谓球面上A、B两点的球面距离,就是指经过经过这两点的大圆的劣弧的长。实际上,这是球面上两点之间的最短距离,为什么最短呢? [学生回答。] 师:我们可以证明过这两点的小圆劣弧Array的长总是大于这两点的球面距离的,但一般 情形的证明却并不容易,我们暂时作为一个问 题留待将来讨论。 3.球面距离的计算 师:下面我们来研究球面距离的计算。 先从简单情形开始。 (1)同经度两点的球面距离的计算 例1.计算北京(N40°,E116°)、南昌 (N28°,E116°)之间的球面距离。 [参考答案:如果设地球半径为R=6378.137km,北京与南昌相差12°,∴ 北京与南昌之间的球面距离为

极坐标参数方程中的距离问题教案

极坐标参数方程中的距离问题 三维目标: 一、知识与技能:1、掌握几种方程之间互化的基本技能; 2、能根据题意选择适当的方程、方法解题。 二、过程与方法:1、通过分析近三年高考题引导学生归纳题型; 2、通过例题及变式引导学生归纳小结解题方法; 3、掌握转化与划归思想方法。 三、态度情感价值观:通过观察、探索、发现的创造性过程,培养创新意识。 重点:1、几种方程的转化; 2、掌握不同题型的解题方法。 难点:根据题意判断正确的题型,选择正确的解题方法。 教学过程: 一、高考真题分析 1、【2016高考新课标1】在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a t y a t =??=+?(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中, 曲线C 2:ρ=4cos θ. (I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程; (II )直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a . 2、【2016高考新课标2】在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=. (Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos sin x t y t αα =??=?(t 为参数), l 与C 交于,A B 两点, ||10AB =,求l 的斜率. 3、【2015高考新课标1】在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()4R πθρ= ∈,设2C 与3C 的交点为M ,N ,求 2C MN V 的面积.

地球上两点之间的球面距离

地球上两点之间的球面距离的教学设计与思考 卫福山(上海市松江二中) 一、教学内容分析 球面距离是上海教育出版社数学(高三)第15章简单几何体第6节内容,《上海市中小学课程标准》对球的要求是:类比关于圆的研究,对球及有关截面的性质深入探讨;知道球的表面积和体积的计算公式,并会用于进行有关的度量计算;知道球面距离和经度、纬度等概念,进一步认识数学和实际的联系.在本节中,引导学生理解球面距离的概念(这不同于一般的直线距离),原因在于球面不能展开成平面.然后具体探究了如何求同纬度不同经度、同经度不同纬度、不同经度不同纬度的地球上两点之间的距离的求法,特别强调将其中的线面关系转化为多面体(主要是特殊的棱锥)来分析,并综合使用扇形、弧长、解三角形等数学知识.在探究球面距离的计算中培养了学生空间想象能力和探究性学习的能力. 二、教学目标设计 1、知道球面距离的定义,知道地球的经度与纬度的概念,会求地球上同经度或同纬度的两点间的球 面距离. 2、在解决问题的过程中,领会计算地球上两点间的球面距离的方法. 3、在实际问题中,探索新知识,成功解决问题,完成愉悦体验. 三、教学重难点 教学重点:掌握计算地球上两点间的球面距离的方法. 教学难点:如何求地球上同纬度的两点间的球面距离. 四、教学内容安排 (一)、知识准备 1、联系右图及中学地理中的有关知识认识地球——半径 为6371千米的球.(理想模型) 2、经度、纬度等相关知识 地轴:连结北南极的球的直径,称为地轴. 经线:经过北南极的半大圆,称为经线. 本初子午线:它是地球上的零度经线,分别向东和向西计 量经度,称为东经和西经,从0度到180度. 经度:经线所在半平面与零度经线所在半平面所成的二面 角的度数.参见右图. 赤道:过球心且垂直于地轴的大圆,称为赤道.赤道的圆心 就是球心. 纬线:平行于赤道的小圆,称为纬线.位于赤道以北的称为 北纬,位于赤道之南的称为南纬. 纬度:球面上某点所在球半径与赤道平面所成的角.从0度 到90度.参见上图. 3、球面距离 在球面上两点之间的最短距离就是经过这两点的大圆在这两点间的劣弧的长度——这个弧长叫两点的球面距离. 问题:为何最短距离是经过两点的大圆的劣弧? 解释如下:如图所示,A、B是球面上两点,圆O'是经过A、B的任一小圆(纬αθ

第四节 距离定位.

第四节 距离定位 1353. 为提高利用垂直角求物标距离的精度,观测时应选择__________。 ①在视界范围内的物标;②垂直角较大的物标;③岸距小的物标。 A .①+② B .①+③ C .①+②+③ D .②+③ 1354. 用测定物标垂直角求水平距离时,应选择__________物标才能提高精度。 A .高度较高而孤立、平坦的物标 B .高度较高且孤立、陡峭的物标 C .高度较低且平坦的物标 D .以上三者均可 1355. 使用六分仪测定已知高度H (米)的物标的垂直角α,求距离(海里)公式是__________。 A .1852/αtg H D ?= B .()αtg H D ?÷=1852 C .1852/sin α?=H D D .1852/cos α?=H D 1356. 用六分仪观测已知高度H (米)的物标垂直角α',求船与物标的水平距离D (海里)的公式为__________。 A .αtg H D ?= B .αctg H D ?= C .α/856.1H D = D .α/865.1H D = 1357. 在英版海图上,用六分仪观测物标的垂直角求距离时,计算所用物标高度应是__________。 A .海图上标注的物标高程 B .海图高程经潮高改正后的高度 C .海图高程加上一个固定的数值 D .海图高程减去测者眼高 1358. 当用物标垂直角求距离时,使用的航海仪器是__________。 A .分罗经 B .雷达 C .六分仪 D .方位仪 1359. 当用六分仪测定某物标的垂直角求距离时,采用中版海图高程资料所求得的物标距离与采用英版海图的高程资料所求得的距离(不考虑潮汐)相比__________。 A .一样 B .前者大 C .前者小 D .大小视海区而定,但都存在误差 1360. 一般情况下,在用六分仪测物标垂直角求距离时,如果高程采用中版海图资料(不考虑潮汐),所求距离值与实际值相比__________。 A .一样 B .前者大 C .前者小 D .大小视海区而定,但存在误差 1361. 一般情况下,在用六分仪测物标垂直角求距离时,如果高程采用英版海图资料(不考

球面上两点间距离的求法

球面上两点间距离的求法 球面距离的定义:球上两点和球的球心三点可构成一个平面,称之为大圆,正视这个大圆(从正面看),这两个点之间的弧线长即为球面两点间距离。球面距离不是指险段的长度而是指的是弧长。 地球表面某点的位置是用纬度和经度来确定的,我们只要知道球面两点的经纬度,就能求出该两点的球面距离。下面简单的谈谈求法: 一. 同经度两点间的球面距离 例1. 在地球本初子午线上有两点A 、B 。它们的纬度差为90°,若地球半径为R ,求A 、B 两点间的球面距离。 解:如图1所示,设O 为地球球心,由题意可得, 故。 所以:A 、B 两点间的球面距离为 2 R 。 图1 二. 同纬度两点间的球面距离

例2. 在地球北纬度圈上有两点A、B,它们的经度差为度,若地球半径为R,求A、B两点间的球面距离。 解:设度的纬线圈的圆心为,半径为r,则。依题意。取AB的中点C,则。 在 图2 图3 三. 不同纬度、不同经度两点间的球面距离

例3. 设地球上两点A、B,其中A位于北纬30°,B位于南纬60°,且A、B两点的经度差为90°,求A、B两点的球面距离。 解:如图4所示,设,分别为地球球心、北纬30°纬线圈的圆心和南纬60°纬线圈的圆心。 图4 连结。 则。 由异面直线上两点间的距离公式得

下面给出球面距离的计算公式(仅供参考): 设一个球面的半径为,球面上有两点、. 其中,为点的经度数,、为点的纬度数,过、两点的大圆劣弧所对的圆心角为,则有 (弧度) A、B间的球面距离为:

证明:如图3,⊙与⊙分别为过A、B的纬度圈,过A、C的大圆,过、D的大圆分别为A、B的经度圈,而经度圈与纬度圈所在的平面互相垂直,作面,垂足 位于上,连结、. 则 在中,由余弦定理,得: 故 又 比较上述两式,化简整理得: 过两点的大圆劣弧所对的圆心角为 从而可证得关于与的两个式子.

极坐标与参数方程题型及解题方法

Ⅰ复习提问 1、 极坐标系和直角坐标系有什么区别?学校老师课堂如何讲解极坐标参数方程的? 2、 如何把极坐标系转化为直角坐标系? 答:将极坐标的极点O 作为直角坐标系的原点,将极坐标的极轴作为直角坐标系x 轴的正半轴。如果点P 在直角坐标系下的坐标为(x ,y ),在极坐标系下的坐标为),(θρ, 则有下列关系成立: ρθρ θy sin x cos = = 3、 参数方程{ cos sin x r y r θθ ==表示什么曲线? 4、 圆(x-a)2+(y-b)2=r2的参数方程是什么? 5、 极坐标系的定义是什么? 答:取一个定点O ,称为极点,作一水平射线Ox ,称为极轴,在Ox 上规定单位长度,这样就组成了一个极坐标系设OP=ρ,又∠xOP=θ. ρ和θ的值确定了,则P 点的位置就 确定了。ρ叫做P 点的极半径,θ叫做P 点的极角,),(θρ叫做P 点的极坐标(规定ρ写在前,θ写在后)。显然,每一对实数),(θρ决定平面上一个点的位置 6、参数方程的意义是什么?

Ⅱ 题型与方法归纳 1、 题型与考点(1) { 极坐标与普通方程的互相转化极坐标与直角坐标的互相转化 (2) { 参数方程与普通方程互化 参数方程与直角坐标方程互化 (3) { 利用参数方程求值域参数方程的几何意义 2、解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程 (),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向 线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程2222 t t t t x t y --?=-? ?=+??(为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,()() 2 2 2222224t t t t x y ---=--+=-, 即有22 4y x -=,又注意到 202222t t t y ->+≥=≥,,即,可见与以上参数方程等价的普通方程为 2242y x y -=≥().显然它表示焦点在y 轴上,以原点为中心的双曲线的上支,选B

方位定位与水平夹角定位

方位定位与水平夹角定位 1引言 船舶沿岸航行,必须定时通过击标确定船位。船位确定的方法很多,有方位定位、距离定位、水平夹角定位、移线定位及综合定位等。在目前情况下,船舶往往采用雷达陆标定位,其优点是不言而喻的,既可单物标方位距离定位,又可双物标或三物标甚至多物标方位或距离定位,另外雷达定位还是全天候的,不受能见度条件的限制。然而,一旦雷达故障,我们也应学会用其他手段准确测定陆标船位,比如,方位镜定位就是非常有效的手段,六分仪水平夹角定位也是有效的定位手段之一。由于方位定位的精度既涉及到测者的水平又与罗经的误差直接有关。因此方位定位往往误差较大;又由于水平夹角定位观测时间较长,海图作业比较困难,因此船舶很少采用。本文想就方位定位和水平夹角定位的优缺点进行比较,将两者有机结合,以便在一定条件下船舶能够在相对方便时得到更为准确的船位。 2方位定位和水平夹角定位方法 2.1方位定位方法:利用罗经观测物标方位得到物标的罗方位,经罗经差换算成真方位后在海图上画方位位置线,其位置线的交点即定位船位。具体作法:将船测岸真方位加或减180度变成岸测船真方位,然

后从物标画船位位置线。 2.2水平角定位方法:同一时刻观测三或四个物标构成的水平夹角,可以得到圆弧船位线,两条船位线的交点即观测时刻的船位。具体作法:几何画法,设水平夹角为α,用直线连结两物标,在物标处作90度—α(α〉90度时向相反方向画)交物标连线的垂直平分线于O点,然后以O为圆心、O到物标的距离为半径画圆弧,即船位位置线. 3方位定位与水平夹角定位分析 3.1方位定位产生船位误差(二方位定位)或船位误差三角形(三方位定位)有这么几个方面的原因: (A)观测方位时的观测误差; (B)海图作业时的绘画误差; (C)不能准确地在同一时刻观测引起的误差; (D)海图物标位置不准引起的误差; (E)罗经不准引起的误差。这其中,观测误差对同一时刻同一观测者

陆标定位陆标的识别与方位距离的测定陆标的识别

2.5陆标定位 2.5.1陆标的识别与方位、距离的测定 2.5.1.1陆标的识别方法 1102.初到陌生海岸,识别沿岸物标的基本方法是: A.利用对景图 B.利用等高线 C.利用已知船位识别 D.以上都是 1103.利用船位识别物标的方法还可以: A.将海图上没有标绘但有导航价值的物标注在海图上 B.将正在航行的他船的位置标注在海图上 C.将正在锚泊的他船的位置标注在海图上 D.A+C 1104.在陆标定位时,下列识别陆标的方法是否正确? A.根据未知物标和已知物标间的相对位置关系识别 B.根据准确船位和末知物标间的相对位置关系识别 C.A.B都正确 D.A.B都不正确 1105.下列哪些是航海上常用的陆标识别的方法?I、利用对景图;II、利用等高线;III、船位;IV、利用已知物标 A.I、III、IV B.I、II、III C.II、III、IV D.I、II、III、IV 1106.利用船位识别物标的关键是: A.船舶的航行不受风流影响 B.所用初始船位正确无误 C.船舶应航行在沿岸 D.船舶应朝向物标航行 1107.利用等高线识别物标时,草绘间断线 A.既不能说明高程也不反映出形,无参考价值 B.既说明高程也反映出形,应加以利用 C.不说明高程也不反映山形,应加以利用 D.视当时航行情况决定是否利用 1108.利用对景图识别物标的对景图可在获得。 A.航用海图 B.航路指南 C.航路设计图 D.A+B 1109.利用对景图辨认山形时: A.从所标的方位和距离上看去,实际山形与对景图很相似 B.从不同距离上看去,实际山形与对景图基本不变,但山的大小有变化 C.从不同方位看去,实际山形与对景图可能变化很大 D.以上都对

【对应高数】极坐标与极坐标中的积分计算

极坐标与极坐标中的积分计算 一、何谓极坐标? 你大概也看过一些冷战电影,熟悉这样的情节:美国的潜艇在深海中潜行,而就在50英尺外,有艘苏联潜艇,所以在场的每一个人都得非常安静不可,深怕一不小心杯对方发觉,朝自己射鱼雷。这时屏幕上就出现了一位海军少尉,坐在雷达显示器前面,而显示器上有一条绿色亮光线,像时钟指针般不断扫描。然后,镜头扫到了潜艇上的军官,每一个人能都汗流浃背,因为潜艇里拥挤得像沙丁鱼罐头,根本没有空间让船员把止汗除臭剂带上船。 接着,艇长压低了声音说:“安静,任何人都不许出声”,而描述这些细节的同时,雷达显示器上的两线仍是一直转个不不停,而且每转到差不多同一位置,就会出现一个大亮点,指出敌人潜艇的方向跟位置,而且媚扫过那一点,雷达显示器就会“哔”地发出一声怪叫,就想三更半夜的闹钟响。这时候你坐在电视机前,不由得奇怪,那些俄国人怎么听不见这个哔声?难道耳朵里塞了耳塞?还是他们把美国人潜艇发出的哔声,跟他们自己的搞混了?当然都不是,那哔声响亮到可以把死人吵醒,所以艇长叫大家不得出声,根本是在欺骗没有上过潜艇的老百姓! 于是,你坐在自己的家庭电影院里,对着电视告诉艇长:“你根本不用压低声音说话,雷达显示器不可能传递声音。”而且即使你在这边敞开喉咙大唱:“天佑美国”。俄国人也稚嫩恶搞在那边说;“同志,你听到了什么声音?”或是“同志,我从他妈的雷达显示器上啥也听不到!” 当然,这类电影的场景,至少有80%发生在北极冰帽下面。原因是美苏两国的潜艇最容易在那儿碰头。难怪雷达显示器上所用的坐标,可叫做“极”坐标。 稍后,显示器前的少尉也说悄悄话的样子,大声向艇长说(不然就会被显示器的哔声压得根本听不见):“报告艇长,对方似乎是一搜C 级核动力突击艇,上面看来载有37个男人,12个女人,和一只放养鸡,它的位置离我们50英尺,现在正在接近中。” 然后这位雷达官加上一句;“它在37度方向。”意思是说,对方在50英尺外,方向跟x 轴之间的夹角为37°。若是用极坐标来表示,我们该说点的坐标是()(),50,37?r θ= 当然,我们跟海军不同。我们使用弧度,这是因为所有的数学家都同意,弧度计算起来比较方便。如果你只是为找到鱼雷的位置,用“度”也还算方便,不是一旦涉及到积分、微分运算,你就必须用弧度了。 为了用极坐标来表示平面上的一点,我们得先说出该店跟原点之间的距离,此距离称为r,然后是它与圆点的连线,跟正x 轴之间存在反时针方向的夹角θ.如此一来,我们就把一点表示成()(),,.r x y θ而不是 如图1所示

测量极坐标法

二、极坐标法 极坐标法是根据一个角度和一段距离测设点的平面位置。当建筑场地开阔,量距方便,且无方格控制网时,可根据导线控制点,应用极坐标法测设点的平面位置。如图9-7所示,A 、B 、C 为地面已有控制点(导线点),其坐标(A A y x 、)、(B B y x 、)、(C C y x 、)均为已知。P 为某建筑物欲测设点,其坐标(P P y x 、)值可从设计图上获得或为设计值。根据A 、B 、P 三点的坐标,用坐标反算方法求出夹角β和距离AP D ,计算公式如下: 坐标方位角 A B A B AB AB x x y y --=-1tan αα (9-11) A p A P AP AP x x y y --=-1tan αα (9-12) 两方位角之差即为夹角β: AP AB ααβ-= (9-13) 两点间的距离AP D 为: ()()22A P A P AP y y x x D -+-= (9-14) 【例题9-5】已知A、B为控制点,其坐标值为=A x 858.750m 、A y =613.140m ;B x =825.432m 、B y =667.381m ;P 点为放样点,其设计坐标为P x =430.300m 、P y =425.000m 。计算在A 点设站,放样P 点的数据。 A B A B AB AB x x y y --=-1tan αα==---750.858432.825140.613381.667tan 1AB α121°33′38″ A p A P AP AP x x y y --=-1tan αα==---750.858300.430140.613000.425tan 1AP α203°42′26″

地球的经纬度与球面距离

地球的经纬度与球面距离 一、课题引入 师:上节课我们研究了球的截面性质,这节课我们继续研究球的问题,研究球面上任意两点的球面距离及其计算。 二、新课 1.地球的经纬度 师:让我们首先回忆一下地球的经纬度的概念。 [学生回答。] 师:通过经纬度我们就能够确定地球球面上的任意一点。可以看到北京的经纬度大约是(N40°,E116°)、南京(N32°,E118°)、石家庄(N38°,E114°)、银川(N38°,E106°)、南昌(N28°,E116°)。 2.球面距离的概念 师:那么,球面上任意两点间的最短距离是什么?可以凭借直观感受来回答这个问题。 [学生回答,然后给出球面距离的定义。] 师:所谓球面上A 、B 两点的球面距离,就是指经过经过这两点的大圆的劣弧的长。实际上,这是球面上两点之间的最短距离,为什么最短呢? [学生回答。] 师:我们可以证明过这两点的小圆劣弧 的长总是大于这两点的球面距离的,但一般 情形的证明却并不容易,我们暂时作为一个问题留待将来讨论。 3.球面距离的计算 师:下面我们来研究球面距离的计算。先从简单情形开始。 (1)同经度两点的球面距离的计算 例1.计算北京(N40°,E116°)、南昌(N28°,E116°)之间的球面距离。 [参考答案:如果设地球半径为R=6378.137km ,北京与南昌相差12°,∴北京与南昌之间的球面距离为 15 1137.637818012R ?=?=425.209(km)。 由此,得出同经度两点间的球面距离的一般公式: ||434.35180 ||R 经度差经度差?≈?。] (2)同纬度两点的球面距离的计算 例2.计算石家庄(N38°,E114°)、银川(N38°,E106°)之间的球面距离。 [参考答案:要计算A 、B 两点间的球面距离关键是确定∠AOB 的大小,为此,只有通过解△AOB 得到。 首先,OO' = OA.sin38°≈6378.137×0.616≈3926.773。

极坐标和参数方程题型及解题方法

一、复习提问 1、 极坐标系和直角坐标系有什么区别?学校老师课堂如何讲解极坐标参数方程的? 2、 如何把极坐标系转化为直角坐标系? 答:将极坐标的极点O 作为直角坐标系的原点,将极坐标的极轴作为直角坐标系x 轴的正半轴。如果点P 在直角坐标系下的坐标为),(y x ,在极坐标系下的坐标为),(θρ,则有下列关系成立:ρ θx = cos ,ρ θy = sin , 3、 参数方程?? ?==θ θ sin cos r y r x 表示什么曲线? 4、 圆2 2 2 )()(r b y a x =-+- 的参数方程是什么? 5、 极坐标系的定义是什么? 答:取一个定点O ,称为极点,作一水平射线Ox ,称为极轴,在Ox 上规定单位长度,这样就组成了一个极坐标系设ρ=OP OP ,又θ=∠xOP . ρ和θ的值确定了,则P 点的位置就确定了。ρ叫做P 点的极半径,θ叫做P 点的极角,),(θρ叫做P 点的极坐标(规定ρ写在前,θ写在后)。显然,每一对实数),(θρ决定平面上一个点的位置. 6、参数方程的意义是什么? 二、题型与方法归纳 1、 题型与考点(1) { 极坐标与普通方程的互相转化 极坐标与直角坐标的互相转化 (2) { 参数方程与普通方程互化 参数方程与直角坐标方程互化

(3) { 利用参数方程求值域参数方程的几何意义 2、解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程 (),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向 线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程?????+=-=--t t t t y x 2 22 2(t 为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可 消去含t 的项,4)22()22(2222-=+--=---t t t t y x ,即有42 2=+y x ,又注意到 02>t ,222222=?≥+--t t t t ,即2≥y ,可见与以上参数方程等价的普通方程为)2(422≥=-y y ,显然它表示焦点在y 轴上,以原点为中心的双曲线的上支,选B. 练习1、与普通方程2 10x y +-=等价的参数方程是( )(t 为能数) 解析:所谓与方程2 10x y +-=等价,是指若把参数方程化为普通方程后不但形式一致而且,x y 的变化范围也对应相同,按照这一标准逐一验证即可破解. 对于A 化为普通方程为[][]2 101101x y x y +-=∈-∈,,,,; 对于B 化为普通方程为2 10(1]x y x R y +-=∈∈-∞,,,; 对于C 化为普通方程为2 10[0)(1]x y x y +-=∈+∞∈-∞,, ,,; 对于D 化为普通方程为[][]2101101x y x y +-=∈-∈,,,,. 而已知方程为2 10(1]x y x R y +-=∈∈-∞,,,,显然与之等价的为B . 练习2、设P 是椭圆2 2 2312x y +=上的一个动点,则2x y +的最大值是 ,最小值为 . 分析:注意到变量),(y x 的几何意义,故研究二元函数2x y +的最值时,可转化为几何问题.若设2x y t +=,则方程2x y t +=表示一组直线,(对于t 取不同的值,方程表示不同的直线),显然),(y x 既满足2 2 2312x y +=,又满足2x y t +=,故点),(y x 是方程组 222312 2x y x y t ?+=? +=?的公共解,依题意得直线与椭圆总有公共点,从而转化为研究消无后的一???==t y t x A 2cos sin ???-==t y t x B 2tan 1tan ???=-=t y t x C 1???==t y t x D 2sin cos

相关文档
相关文档 最新文档