文档库 最新最全的文档下载
当前位置:文档库 › 九年级数学:利用二次函数解决几何图形面积最值问题

九年级数学:利用二次函数解决几何图形面积最值问题

九年级数学:利用二次函数解决几何图形面积最值问题
九年级数学:利用二次函数解决几何图形面积最值问题

九年级数学:利用二次函数解决几何图形面积最值问题知|识|目|标

经历利用二次函数的有关性质解决实际问题的过程,会利用二次函数解决几何面积的最值问题.

目标会利用二次函数解决面积最值问题

例1 教材补充例题将一根长为100 cm的铁丝围成一个矩形框,要想使铁丝框的面积最大,应怎样围?

【归纳总结】应用二次函数解决面积最大(小)值问题的步骤

(1)分析题中的变量与常量.

(2)根据几何图形的面积公式建立函数模型.

(3)结合函数图像及性质,考虑实际问题中自变量的取值范围,求出面积的最大(小)值.

例2 教材“复习巩固”第15题针对训练如图5-5-2,在矩形ABCD中,AB =6 cm,BC=12 cm,点P从点A出发沿AB边向点B以1 cm/s的速度运动,同时,点Q从点B出发沿BC边向点C以2 cm/s的速度运动,P,Q两点在分别到达B,C 两点后就停止运动,设经过t s时,△PBQ的面积为S cm2.

(1)求S与t之间的函数表达式(不需要写出自变量的取值范围);

(2)当t取何值时,S的值最大?最大值是多少?

图5-5-2

【归纳总结】几何问题中应用二次函数时的三个注意点

(1)点在线段上的取值范围.

(2)顶点的横坐标、纵坐标必须符合实际意义.

(3)自变量和函数值的单位.

知识点建立函数模型,解决图形中的最值问题

利用二次函数解决几何图形面积最值问题的一般步骤:

(1)列:分析几何图形的特点,设出自变量x,根据题中两个变量之间的关系列出二次函数表达式;

(2)求:利用公式法或配方法求出其最大(小)值;

(3)写:结合相关问题写出结果.

如图5-5-3,利用一面墙,其他三边用80 m长的篱笆围一块矩形场地,墙长为30 m,求围成矩形场地的最大面积.

图5-5-3

解:设矩形场地的面积为S m2,所围矩形ABCD的边BC为x m.

由题意,得S=x·1

2

(80-x)=-

1

2

(x-40)2+800,

∴当x=40时,S最大=800,符合题意,

∴当所围矩形ABCD的边BC为40 m时,矩形场地的面积最大,最大面积为800 m2.

你认为上述解答有问题吗?若有问题,请说明理由,并给出正确的解答过程.

详解详析

【目标突破】

例1解:设矩形框的一边长为x cm,则与其相邻的另一边长为(50-x)cm,矩形的面积是y cm2,那么y=(50-x)x=-x2+50x=-(x-25)2+625.

∵a=-1<0,∴当x=25时,y有最大值,

则50-x=50-25=25,

即要使铁丝框的面积最大,应将其围成边长为25 cm的正方形.

[备选例题] 某校在基地参加社会实践活动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两名学生争议的情境:

请根据上面的信息,解决问题:

(1)设AB=x米(x>0),试用含x的代数式表示BC的长;

(2)请你判断谁的说法正确,为什么?

解:(1)由AB=x米,可得BC=69+3-2x=(72-2x)米.

(2)小英的说法正确.理由:

矩形面积S=x(72-2x)=-2(x-18)2+648.

∵72-2x>0,∴x<36,∴0<x<36,

∴当x=18时,S取得最大值,

此时x≠72-2x,

∴面积最大时的图形不是正方形.

例2解:(1)经过t s时,AP=t cm,故PB=(6-t)cm,BQ=2t cm,

故S=1

2

·(6-t)·2t=-t2+6t.

(2)∵S=-t2+6t=-(t-3)2+9,

∴当t=3时,S的值最大,最大值为9.

【总结反思】

[反思] 上述解答有问题,解答有关二次函数的实际问题时未考虑自变量的取值范围,墙长30 m<40 m,故x=40时矩形ABCD的面积最大是不正确的.正解:设矩形场地的面积为S m2,所围矩形ABCD的边BC长为x m.由题意,得

S=x·1

2

(80-x)=-

1

2

(x-40)2+800.

因为墙长为30 m,所以0

又因为当x<40时,S随x的增大而增大,

所以当x=30时,S取得符合实际意义的最大值,此时S=750.故围成矩形场地的最大面积为750 m2.

二次函数与几何图形结合练习

3.2 与几何图形结合3.2.1 与等腰三角形结合1、如图,直线y=3x+3交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交 x 轴于另 一点C (3,0). ⑴求抛物线的解析式 ; ⑵在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的 Q 点坐标;若不存在,请说明理由 2、如图,已知直线y=x 与交于A 、B 两点. (1)求交点A 、B 的坐标;(2)记一次函数y=x 的函数值为y 1,二次函数 的函数值为y 2.若y 1>y 2,求x 的 取值范围; (3)在该抛物线上存在几个点,使得每个点与AB 构成的三角形为等腰三角形?并求出不 少于3个满足条件的点 P 的坐标. y =x 2 y =x 2

3、如图,已知二次函数的图象经过点A (3,3)、B (4,0)和原点O 。P 为二次函数图象 上的一个动点,过点 P 作x 轴的垂线,垂足为 D (m ,0),并与直线OA 交于点C . (1)求出二次函数的解析式; (2)当点P 在直线OA 的上方时,求线段PC 的最大值; (3)当m >0时,探索是否存在点P ,使得△PCO 为等腰三角形,如果存在,求出 P 的坐 标;如果不存在,请说明理由. 3.2.2 与直角三角形结合1、二次函数的图象的一部分如图所示.已知它的顶点 M 在第二象限,且经 过点A(1,0)和点B(0,l).(1)试求,所满足的关系式;(2)设此二次函数的图象与x 轴的另一个交点为 C ,当△AMC 的面积为△ABC 面积的 倍时,求a 的值;(3)是否存在实数a ,使得△ABC 为直角三角形.若存在,请求出 a 的值;若不存在,请说 明理由. 2 y ax bx c a b 5 4

九年级数学_二次函数几种解析式的求法

二次函数的解析式求法 求二次函数的解析式这类题涉及面广,灵活性大,技巧性强,笔者结合近几年来的中考 试题,总结出几种解析式的求法,供同学们学习时参考。 一、 三点型 例1 已知一个二次函数图象经过(-1,10)、(2,7)和(1,4)三点,那么这个函 数的解析式是_______。 分析 已知二次函数图象上的三个点,可设其解析式为y=ax 2 +bx+c,将三个点的坐标代入,易得a=2,b=-3,c=5 。故所求函数解析式为y=2x 2 -3x+5. 这种方法是将坐标代入y=ax 2 +bx+c 后,把问题归结为解一个三元一次方程组,求出待定系数 a, b , c, 进而获得解析式y=ax 2 +bx+c. 二、交点型 例2 已知抛物线y=-2x 2 +8x-9的顶点为A ,若二次函数y=ax 2 +bx+c 的图像经过A 点,且与x 轴交于B (0,0)、C (3,0)两点,试求这个二次函数的解析式。 分析 要求的二次函数的图象与x 轴的两个交点坐标,可设y=ax(x-3),再求也y=-2x 2 +8x-9 的顶点A (2,-1)。将A 点的坐标代入y=ax(x-3),得到a=21 ∴y=21x(x-3),即 y=x x 23 2 12 . 三、顶点型 例 3 已知抛物线y=ax 2 +bx+c 的顶点是A(-1,4)且经过点(1,2)求其解析式。 分析 此类题型可设顶点坐标为(m,k),故解析式为y=a(x-m)2 +k.在本题中可设y=a(x+1)2 +4. 再将点(1,2)代入求得a=-21

∴y=-, 4)1(21 2++x 即y=-.27 2 12+ -x x 由于题中只有一个待定的系数a ,将已知点代入即可求出,进而得到要求的解析式。 四、平移型 例 4 二次函数y=x 2 +bx+c 的图象向左平移两个单位,再向上平移3个单位得二次函 数 ,122 +-=x x y 则b 与c 分别等于 (A)2,-2;(B)-6,6;(c)-8,14;(D)-8,18. 分析 逆用平移分式,将函数y=x 2 -2x+1的顶点(1,0)先向下平移3个单位,再向右平移两个单位得原函数的图象的顶点为(3,-3)。 ∴y=x 3)3(2 2--=++x c bx =x .662 +-x ∴b=-6,c=6. 因此选(B ) 五、弦比型 例 5 已知二次函y=ax 2 +bx+c 为x=2时有最大值2,其图象在X 轴上截得的线段长为2,求这个二次函数的解析式。 分析 弦长型的问题有两种思路,一是利用对称性求出交点坐标,二是用弦比公式d= a ? 就本题而言,可由对称性求得两交点坐标为A (1,0),B (3,0)。再应用交点式或顶点式求得解析式为y=-2x 2 +8x-6. 六、识图型 例 6 如图1, 抛物线y=c x b x +++)2(212与y=d x b x +-+)2(212 其中一条的顶点为P ,

初三数学 二次函数的大题

二次函数与四边形 一.二次函数与四边形的形状 例 1.(浙江义乌市)如图,抛物线y = x2-2x-3与 x 轴交A、B两点(A点在 B 点左侧),直线l 与抛物线交于 A、C两点,其中 C 点的横坐标为 2. (1)求A、B 两点的坐标及直线AC的函数表达式; (2)P 是线段AC上的一个动点,过P点作y 轴的平行线交抛物线于 E 点,求线段PE 长度的最大值;A (3)点G 是抛物线上的动点,在x 轴上是否存在点F,使A、C、F、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由. 例 1.解:(1)令y=0,解得x =-1或x = 3 ∴A(-1,0)B(3,0); 将 C 点的横坐标x=2 代入y = x2- 2x - 3得y=-3,∴ C(2,-3)∴直线AC 的函数解析式是y=-x-1 (2)设P 点的横坐标为x(-1≤x≤2)则P、E 的坐标分别为:P(x,-x-1), E((x, x -2x -3)∵P 点在E 点的上方,PE= (-x -1)- (x - 2x - 3)= - x + x + 2 19 ∴当x= 1时,PE的最大值= 9 3)存在4 个这样的点 F,分别是F1(1,0),F2(-3,0),F3(4+ 7,0),F4(4- 7,0) 7 练习1.(河南省实验区) 23.如图,对称轴为直线x = 7的抛物线经过点 A(6,0)和B(0,4). (1)求抛物线解析式及顶点坐标; (2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA为对角线的平行四边形.求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围; ①当平行四边形OEAF 的面积为24 时,请判断平行四边形OEAF 是否为菱形? ②是否存在点E,使平行四边形OEAF 为正方形?若存在,求出点E x= A(6,0) x

二次函数与几何图形结合题及答案

1.如图,已知抛物线2 1y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标; (2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积; (3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与?PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由. 解:(1)令0y =,得2 10x -= 解得1x =± 令0x =,得1y =- ∴ A (1,0)- B (1,0) C (0,1)- ……………………3分 (2)∵O A =O B =O C =1 ∴∠BAC =∠AC O=∠BC O= 45 ∵A P ∥CB , ∴∠P AB = 45 过点P 作P E ⊥x 轴于E ,则?A P E 为等腰直角三角形 令O E =a ,则P E =1a + ∴P (,1)a a + ∵点P 在抛物线21y x =-上 ∴2 11a a +=- 解得12a =,21a =-(不合题意,舍去) ∴P E =3……………………………………………………………………………5分 ∴四边形ACB P 的面积S =12AB ?O C +12AB ?P E =11 2123422 ??+??=………………………………6分 (3). 假设存在 ∵∠P AB =∠BAC =45 ∴P A ⊥AC ∵MG ⊥x 轴于点G , ∴∠MG A =∠P AC =90 在Rt △A O C 中,O A =O C =1 ∴AC =2 在Rt △P AE 中,AE =P E =3 ∴A P= 32 ………8分 设M 点的横坐标为m ,则M 2 (,1)m m - ①点M 在y 轴左侧时,则1m <- (ⅰ) 当?A MG ∽?P CA 时,有 AG PA =MG CA ∵A G=1m --,MG=2 1m -即2322 = 解得11m =-(舍去) 23m =(舍去)………9分 G M C B y P A o x

二次函数动点面积最值问题

二次函数最大面积 例1如图所示,等边△ ABC中,BC=10cm,点R, P?分别从B,A同时岀发,以1cm/s的速度沿线段BA,AC 移动,当移动时间 练习 1如图,在矩形ABCD中,AB=6cm , BC=12cm,点P从点A岀发沿AB边向点B以1cm/s的速度移动,同时点Q从点B岀发沿BC边向C以2cm/s的速度移动,如果P,Q同时岀发,分别到达B、C两点就停止移动。 _ ___________________________________________ 2 (1 )设运动开始后第t秒,五边形APQCD的面积是Scm ,写岀S与t函数关系式,并指岀 t的取值范围。 (2) t为何值时,S最小?并求岀这个最小值。 A开始沿 Q B B边向点B以 A 2 如图,在△ ABC 中,/ B=9 0°, AB=22CM,BC=20CM ,点P 从点 2cm/S的速度移动,点Q从点B开始沿着BC边向点C以1cm/S的速度移动,P,Q分别从A,B 同时岀发。 2 求四边形APQC的面积y ( cm )与PQ移动时间x (s)的函数关系式, 以及自变 量x的取值范围。 C 3如图正方形ABCD的边长为4cm,点P是BC边上不与B,C重合的任意一点点P作PQ丄AP交DC于点Q,设BP的长为x cm,CQ的长为y cm。 (1)求点P在BC上的运动的过程中y的最大值。 1 (2 )当y= cm时,求x的值。 4 4如图所示,边长为 在线段 记CD (1) 过A D P B B 1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,动点点E, 连接O BC上移动(不与B,C重合),连接OD,过点D作DE丄OD, 的长为 t o 1 当t=丄时,求线段DE 3 如果梯形CDEB的面积为所在直线的函数表达式 S,那么S是否 以及此时 (2) 存在最大值?若存在,请求出最大值,t的值; 若不存在,请说明理由。 2 2 (3)当OD DE的算术平方根取最小值时, (4)求点E的坐标。 二次函数最大面积交AB D B E 能力提高 例题如图所示,在梯形ABCD中,AD// BC,AB=AD=DC=2CM,BC=4C在等腰△ PQR中,/ QPR=120 ,底边QR=6CM点B,C,Q,R在同一直线 1cm/s的速度沿直线I向左匀速移动, (1) (2) t秒时梯形 I上,且C,Q两点重合,如果等腰△ PQR以 2 ABCD与等腰△ PQF重合部分的面积记为Scm 当t=4时,求S的值。 当4< t < 10时,求S与t的函数关系式, A 并求岀S的最大值。 D 1 / 2

二次函数与几何图形综合题(可编辑修改word版)

二次函数与几何图形综合题 类型 1 二次函数与相似三角形的存在性问题 1.(2015·昆明西山区一模)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2) 三点. (1)求这条抛物线的解析式; (2)P 为线段BC 上的一个动点,过P 作PE 垂直于x 轴与抛物线交于点E,设P 点横坐标为m,PE 长度为y,请写出y 与m 的函数关系式,并求出PE 的最大值; (3)D 为抛物线上一动点,是否存在点D 使以A、B、D 为顶点的三角形与△COB 相似?若存在,试求出点D 的坐标;若不存在,请说明理由.

2.(2013·曲靖)如图,在平面直角坐标系xOy 中,直线y=x+4 与坐标轴分别交于A,B 两点,过A,B 两点的抛物线为y=-x2+bx+c.点D 为线段AB 上一动点,过点D 作CD⊥x 轴于点C,交抛物线于点E. (1)求抛物线的解析式; (2)当DE=4 时,求四边形CAEB 的面积; (3)连接BE,是否存在点D,使得△DBE 和△DAC 相似?若存在,求出D 点坐标;若不存在,说明理由. 3.(2015·襄阳)边长为 2 的正方形OABC 在平面直角坐标系中的位置如图所示,点D 是边OA 的中点,连接CD,点E 在第一象限,且DE⊥DC,DE=DC.以直线AB 为对称轴的抛物线过C,E 两点.

(1)求抛物线的解析式; (2)点P 从点C 出发,沿射线CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点P 作PF⊥CD 于点F.当t 为何值时,以点P,F,D 为顶点的三角形与△COD 相似? (3)点M 为直线AB 上一动点,点N 为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由. 类型 2 二次函数与平行四边形的存在性问题 1.(2014·曲靖)如图,抛物线y=ax2+bx+c 与坐标轴分别交于A(-3,0),B(1,0),C(0,3)三点,D

九年级数学二次函数中考题集

1.图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B 为中心逆时针旋转点N,使M、N两点重合成一点C, 构成△ABC,设AB=x. (1)求x的取值范围; (2)若△ABC为直角三角形,求x的值; (3)探究:△ABC的最大面积? 2.如图,抛物线y=1 3 x2+bx+c经过A(-3,0),B(0,-3)两点,此抛物线的对称轴为 直线l,顶点为C,且l与直线AB交于点D. (1)求此抛物线的解析式; (2)直接写出此抛物线的对称轴和顶点坐标; (3)连接BC,求证:BC=CD. 2.已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0),C(0,-2) (1)求这条抛物线的函数表达式; (2)已知在对称轴上存在一点P,使得△PBC的周长最小.请 求出点P的坐标; (3)若点D是线段OC上的一个动点(不与点O、点C重

合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由. 4.如图所示,菱形ABCD的边长为6厘米,∠B=60度.从初始时刻开始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿A→C→B的方向运动,点Q以2厘米/秒的速度沿A→B→C→D的方向运动,当点Q运动到D点时,P、Q两点同时停止运动,设P、Q运动的时间为x秒时,△APQ与△ABC重叠部分的面积为y平方厘米(这 里规定:点和线段是面积为O的三角形),解答下列问题: (1)点P、Q从出发到相遇所用时间是_________秒; (2)点P、Q从开始运动到停止的过程中,当△APQ是等边三角形 时x的值 是________秒; (3)求y与x之间的函数关系式. 5.正方形ABCD在如图所示的平面直角坐标系中,A在x轴正半轴上,D在y轴的负半轴上,AB交y轴正半轴于E,BC交x轴负半轴于F,OE=1,OD=4,抛物线y=ax2+bx-4过A、D、F三点. (1)求抛物线的解析式; (2)Q是抛物线上D、F间的一点,过Q点作平行于x轴的直线 交边AD于M,交BC所在直线于N,若S四边形AFQM=3 2 S△FQN,则 判断四边形AFQM的形状; (3)在射线DB上是否存在动点P,在射线CB上是否存在动点H,使得AP⊥PH且AP=PH?若存在,请给予严格证明;若不存

(完整版)二次函数与几何图形综合题.doc

二次函数与几何图形综合题 类型 1二次函数与相似三角形的存在性问题 1. (2015 ·明西山区一模昆)如图,已知抛物线y= ax2+bx+ c(a≠0)经过 A(- 1, 0), B(4, 0), C(0 ,2) 三点. (1)求这条抛物线的解析式; (2)P 为线段 BC 上的一个动点,过P 作 PE 垂直于 x 轴与抛物线交于点 E,设 P 点横坐标为 m, PE 长度为 y,请写出 y 与 m 的函数关系式,并求出PE 的最大值; (3)D 为抛物线上一动点,是否存在点 D 使以 A、B、D 为顶点的三角形与△ COB 相似?若存在,试求出点 D 的坐标;若不存在,请说明理由.

2. (2013 ·靖曲 )如图,在平面直角坐标系xOy 中,直线y= x+ 4 与坐标轴分别交于A, B 两点,过A,B 两点的抛物线为y=- x2+ bx+ c.点 D 为线段 AB 上一动点,过点 D 作 CD⊥ x 轴于点 C,交抛物线于点 E. (1)求抛物线的解析式; (2)当 DE= 4 时,求四边形CAEB 的面积; (3)连接 BE,是否存在点 D ,使得△ DBE 和△ DAC 相似?若存在,求出 D 点坐标;若不存在,说明理由.

3.(2015 襄·阳 )边长为 2 的正方形O ABC 在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接 CD ,点 E 在第一象限,且DE⊥ DC , DE =DC.以直线 AB 为对称轴的抛物线过C, E 两点. (1)求抛物线的解析式; (2)点 P 从点 C 出发,沿射线 CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点 P 作 PF ⊥ CD 于点 F .当 t 为何值时,以点P, F ,D 为顶点的三角形与△COD 相似? (3)点 M 为直线 AB 上一动点,点N 为抛物线上一动点,是否存在点M, N,使得以点M,N, D, E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.

中考数学复习指导:解二次函数中三角形面积最值问题

解二次函数中三角形面积最值问题 一、灵割巧补,间接转化求最值 这里的割补法分为两部分,割是指将图形分解成几部分分别求解,补是指将所求图形填上一部分然后用补后的图形面积减去所补的部分面积.两种做法的实质都是间接的求出所求图形的面积. 例1 在如图所示的直角坐标系中,有抛物线2424455 y x x =-+.连接AC ,问在直线AC 的下方,是否在抛物线上存在一点N ,使NAC V 的面积有最大值?若存在请求出此值;若不存在请说明理由. 解析 设N 点坐标为2424(,4)55 a a a -+,(0,5)a ∈,如图所示过点A 作直线平行于x 轴,过点N 作直线平行于y 轴,与x 轴交于点F ,与AC 相交于点G ,两直线相交于点D .容易求得直线 AC 的方程445y x =- +,得出G 点坐标(4(,4)5a a -+,求出NG 的长为2445 a a -+,111222 ACN ANG CGN S S S NG OF NG CF NG OC =+=?+?=?V V V 2210a a =-+,故当52a =时三角形面积有最大值252,此时N 点的坐标为5(,3)2-. 点拨 本题中将三角形割开求解的方法在应用中是较为常见的,此种方法也可视为是铅垂法,即三角形的面积等于三角形的水平宽与铅垂高的积的一半,本题中就是演示了整个的推理以及求解过程. 二、直线平移,化为切线求最值 切线法体现了数学中最为常见的数形结合思想,即通过平移直线,当直线与抛物线只有一个交点时(此时就是相切)存在长度的极值,借此来直接求出点的坐标.此法不用求出面积的解析式就可直接求解,是解题的新思路. 例2 如图所示,在平面直角坐标系中,有一抛物线2142 y x x =+-,在第三象限的抛物线上是否存在一动点M ,使ABM V 面积存在最大值?若存在,求出最值;若不存在,说明理由.

二次函数与实际问题(面积最值问题)教学设计解读

[教学设计 ] 二次数学的实际运用 ——图形面积的最值问题 【知识与技能】 :通过复习让学生系统性地掌握并认识如何用函数的思想解决几何问题中面积最值问题, 培养其整体性思想。 【过程与方法】 :能通过设置的三个问题, 概括出二次函数解决这类问题的基本思路和基本方法, 并学会用数学问题的结论,分析是否是实际问题的解,掌握类比的数学思想方法。 【情感态度与价值观】 :体会函数建模思想的同时, 体会数学与现实生活的紧密联系, 培养学生认真观察, 不断反思,主动纠错的能力和乐于思考,认真严谨、细心的好习惯。感受多媒体的直观性和愉悦感。 【重点】 :如何利用二次函数的性质解决实际问题——图形面积的最值问题 【难点】 :如何探究在自变量取值范围内求出实际问题的解 【教学过程】 【活动 1】 :导入引言: 二次函数在实际问题中的应用常见类型有抛物线形问题和最值问题。而最值问题考试类型有两类 (1利润最大问题; (2几何图形中的最值问题:面积的最值,用料的最佳方案等,本节课,我们学习如何用二次函数解决实际问题中图形面积的最值问题。 【活动 2】 :师生互动,合作学习 我们来看一道简单的例题

例 1:李大爷要借助院墙围成一个矩形菜园 ABCD ,用篱笆围成的另外三边总长为 24米,则矩形的长宽分别为多少时,围成的矩形面积最大? 师(让学生思考 :题目中已知量是什么? 未知量是什么?如何理解“矩形面积最大”问题?是什么影响了矩形面积的变化呢?我们一起来看下面的动画演示(通过动画演示,让学生感受量的变化 师:在演示中你们看到了什么?想到了什么?你能列出函数解析式吗? 学生解决:若设矩形一边长为 X ,当 X 在变长时,另一边变短,当 X 变短时,另一边变长,则面积 S 也随之发生了变化;设宽 AB 为 X 米,则长为 24-2X (m 所以面积 S=X(24-2X=-2X2+24X=-2(X-122 +288 师:分析归纳解函数问题的一般步骤是什么? (板书 : 第一步,正确理解题意 , 分析问题中的常量和重量; 第二步,巧设未知数,用未知数表示已知量和未知量,列二次函数解析式表示它们的关系; 第三步,计算,将一般式转化为顶点式,求出数学问题的最值。 师:请问这时解出的数学问题的解是不是实际问题的解,如何检验呢?(在师生共同研讨的过程中找出计算中学生容易犯的错误,分析解答是否符合实际问题 小结:求解完答案后,我们要善于检查,分析,反思数学问题的解是否是实际问题的解。 活动 3:变式训练,巩固应用。

二次函数与几何图形动点问题--答案

二次函数与几何图形 模式1:平行四边形 分类标准:讨论对角线 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成平行四边形,则可分成以下几种情况 (1)当边AB 是对角线时,那么有BC AP // (2)当边AC 是对角线时,那么有CP AB // (3)当边BC 是对角线时,那么有BP AC // 1、本题满分14分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.

2、如图1,抛物线322 ++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m . ①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.

模式2:梯形 分类标准:讨论上下底 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成梯形,则可分成以下几种情况 (1)当边AB 是底时,那么有PC AB // (2)当边AC 是底时,那么有BP AC // (3)当边BC 是底时,那么有AP BC // 3、已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线 x y 3 2 -=与边BC 相交于点D . (1)求点D 的坐标; (2)抛物线c bx ax y ++=2 经过点A 、D 、O ,求此抛物线的表达式; (3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.

人教版九年级数学下二次函数最全的中考二次函数知识点总结

人教版九年级数学二次函数在中考中知识点总结 一、相关概念及定义 1 二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2 二次函数2y ax bx c =++的结构特征: (1)等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. (2)a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数各种形式之间的变换 1二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2 的形式,其中 a b a c k a b h 4422 -=-=,. 2 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2; ③()2 h x a y -=;④()k h x a y +-=2 ;⑤c bx ax y ++=2. 三、二次函数解析式的表示方法 1 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 4 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 四、二次函数2y ax bx c =++图象的画法 1 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. 一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c , 、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 2 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2ax y =的性质 六、二次函数2y ax c =+的性质

二次函数及三角形周长,面积最值问题

二次函数与三角形周长,面积最值问题 知识点:1、二次函数线段,周长问题 2、二次函数线段和最小值线段差最大值问题 3、二次函数面积最大值问题 【新授课】 考点1:线段、周长问题 例1.(2018·)在平面直角坐标系中,已知抛物线的顶点坐标为(2,0),且经过点(4,1), 如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1. (1)求抛物线的解析式; (2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由. 拓展:在l上是否存在一点P,使PB-PA取得最大值?若存在,求出点P的坐标。

练习 1、如图,已知二次函数24 =-+的图象与坐标轴交于点A(-1,0)和点B(0,-5). y ax x c (1)求该二次函数的解析式;

(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标. 2、如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC ∥x轴,点A在x轴上,点C在y轴上,且AC=BC. (1)求抛物线的解析式. (2)在抛物线的对称轴上是否存在点M,使|MA-MB|最大?若存在,求出点M的坐标;若不存在,请说明理由.

例2. (2018?莱芜)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C (0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E. (1)求抛物线的函数表达式; (2)如图1,求线段DE长度的最大值; 练习 1x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,1、如图,抛物线y= 2

九年级数学二次函数应用题-含答案

九年级数学专题二次函数的应用题 一、解答题 1.一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为米时,达到最大高度米,然后准确落入篮圈。已知篮圈中心到地面的距离为米。(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高米,在这次跳投中,球在头顶上方米处出手,问:球出手时,他跳离地面的高度是多少 2.某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.(1)试求y与x之间的关系式;(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润每月的最大利润是多少 3.在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5)(1)求这个二次函数的解析式;(2)该男同学把铅球推出去多远(精确到米,) 4.某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件),与每件的销售价(元/件)可看成是一次函数关系: 1.写出商场卖这种服装每天的销售利润与每件的销售价之间的函数关系式(每天的销售利润是指所卖出

服装的销售价与购进价的差); 2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少 5.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件),在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面10米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3米,问此次跳水会不会失误并通过计算说明理由 6.某服装经销商甲,库存有进价每套400元的A品牌服装1200套,正常销售时每套600元,每月可卖出100套,一年内刚好卖完,现在市场上流行B品牌服装,此品牌服装进价每套20 0元,售出价每套500元,每月可买出120套(两套服装的市场行情互不影响)。目前有一可进B品牌的机会,若这一机会错过,估计一年内进不到这种服装,可是,经销商手头无流动资金可用,只有低价转让A品牌服装,经与经销商乙协商,达成协议,转让价格(元/套)与转让数量(套)有如下关系:转让数量(套) 1200 1100 1000 900 800 700 600 500 400 300 200 100 价格(元/套)240 250 260 270 280 290 300 310 320 330 340 350 方案1:不转让A品牌服装,也不经销B品牌服装;方案2:全部转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装;方案3:部份转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装,同时经销A品牌服装。问:①经销商甲选择方案1与方案2一年内分别获得利润各多少元②经销商甲选择哪种方案可以使自己一年内获得最大利润若选用方案3,请问他转让给经销商乙的A品牌服装的数量是多少(精确到百套)此时他在一年内共得利润多少元 7.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量(件)与每

专题二次函数与几何图形

y A x B O C D 专题:二次函数与几何图形 一、二次函数与平行四边形 1.已知抛物线c bx ax y ++=2 )0(≠a 过点A (-3,0),B (1,0),C (0,3)三点 (1)求抛物线的解析式; (2) 若抛物线的顶点为P ,求∠PAC 正切值; (3)若以A 、P 、C 、M 为顶点的四边形是平行四边形, 求点M 的坐标. 2.已知一次函数1y x =+的图像和二次函数2 y x bx c =++的图像 都经过A 、B 两点,且点A 在y 轴上,B 点的纵坐标为5. (1)求这个二次函数的解析式; (2)将此二次函数图像的顶点记作点P ,求△ABP 的面积; (3)已知点C 、D 在射线AB 上,且D 点的横坐标比C 点 的横坐标大2,点E 、F 在这个二次函数图像上,且CE 、 DF 与y 轴平行,当CF ∥ED 时,求C 点坐标. 二、二次函数与相似三角形 3.如图,直线y =x +3与x 轴、y 轴分别交于点A 、C ,经过A 、C 两点的抛物线y =ax 2 +bx +c 与x 轴的负半轴上另一交点为B ,且tan ∠CBO=3. (1)求该抛物线的解析式及抛物线的顶点D 的坐标; (2)若点P 是射线BD 上一点,且以点P 、A 、B 为顶点的 三角形与△ABC 相似,求P 点坐标.【2014徐汇区】 1 2345 -1 -1-2 123456 x y O 图8

x y O O N C M B A 4.已知:在直角坐标系中,直线y=x+1与x 轴交与点A ,与y 轴交与点B ,抛物线 21 ()2 y x m n =-+的顶点D 在直线AB 上,与y 轴的交点为C 。 (1)若点C (非顶点)与点B 重合,求抛物线的表达式;(2015杨浦区) (2)若抛物线的对称轴在y 轴的右侧,且CD ⊥AB ,求∠CAD 的正切值; (3)在第(2)的条件下,在∠ACD 的内部作射线CP 交抛物线的对称 轴于点P ,使得∠DCP=∠CAD ,求点P 的坐标。 三、二次函数与特殊三角形(Rt △ 等腰△ 等腰Rt △) 5.如图,已知二次函数y=-x 2 +bx+c (c>0)的图像与x 轴交于A 、B 两点(A 在B 左侧),与y 轴交于点C ,且OB=OC=3,顶点为M 。 (1)求二次函数的解析式。 (2)线段BM 上是否存在点N ,使得△NMC 为等腰三角形? 若存在,求出点N 的坐标,若不存在,请说理。 6.已知二次函数y=ax 2 +bx+c (a ≠0)的图像经过点 (1)求此函数的解析式和对称轴. (2)试探索该抛物线在x 轴下方的对称轴上存在几个点P, 使△PAB 是直角三角形,并求出这些点的坐标.

最新九年级数学求二次函数解析式专题讲解

最新九年级数学求二次函数解析式专题讲解 类型一利用“三点式”求二次函数解析式 1.已知一个二次函数的图象经过A(0,-1)、B(1,5)、C(-1,-3)三点. (1)求这个二次函数的解析式; (2)用配方法把这个函数的解析式化为y=a(x+m)2+k的形式. 解析(1)设这个二次函数的解析式为y=ax2+bx+c(a≠0), - 根据题意得 -- 解得 - 所以这个二次函数的解析式为y=2x2+4x-1. (2)y=2x2+4x-1=2(x2+2x+1-1)-1=2(x+1)2-3. 2.已知二次函数的图象经过点(0,3)、(-3,0)、(2,-5). (1)试确定此二次函数的解析式; (2)请你判断点P(-2,3)是否在这个二次函数的图象上.

解析(1)设此二次函数的解析式为y=ax2+bx+c, 将(0,3)、(-3,0)、(2,-5)代入y=ax2+bx+c,得 解得-- ∴此二次函数的解析式是y=-x2-2x+3. (2)当x=-2时,y=-(-2)2-2×(-2)+3=3, ∴点P(-2,3)在这个二次函数的图象上. 3.已知:在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点A(3,0),B(2,-3),C(0,-3). (1)求抛物线的表达式; (2)设点D是抛物线上一点,且点D的横坐标为-2,求△AOD的面积. 解析(1)把A(3,0),B(2,-3),C(0,-3)代入y=ax2+bx+c得- -

解得- - ∴该抛物线的解析式为y=x2-2x-3. (2)把x=-2代入抛物线的解析式得y=5,即D(-2,5), ∵A(3,0),∴OA=3, ∴S△AOD=×3×5=. 类型二利用“顶点式”求二次函数解析式 4.对称轴平行于y轴的抛物线的顶点坐标为(2,3)且抛物线经过点(3,1),那么该抛物线的解析式是() A.y=-2x2+8x+3 B.y=-2x2-8x+3 C.y=-2x2+8x-5 D.y=-2x2-8x+2 答案C根据题意,设该抛物线的解析式为y=a(x-2)2+3(a≠0),因为该抛物线经过点(3,1),所以a+3=1,a=-2.所以抛物线的解析式为y=-2(x-2)2+3=-2x2+8x-5.故选C. 5.已知二次函数y=ax2+bx+c中,函数值y与自变量x的部分对应值如

二次函数与几何图形综合题

二次函数与几何图形综合题 类型1二次函数与相似三角形的存在性问题 1.(2015·昆明西山区一模)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2)三点. (1)求这条抛物线的解析式; (2)P为线段BC上的一个动点,过P作PE垂直于x轴与抛物线交于点E,设P点横坐标为m,PE长度为y,请写出y与m的函数关系式,并求出PE的最大值; (3)D为抛物线上一动点,是否存在点D使以A、B、D为顶点的三角形与△COB相似?若存在,试求出点D的坐标;若不存在,请说明理由.

2.(2013·曲靖)如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A,B两点,过A,B两点的抛物线为y=-x2+bx+c.点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点 E. (1)求抛物线的解析式; (2)当DE=4时,求四边形CAEB的面积; (3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求出D点坐标;若不存在,说明理由.

3.(2015·襄阳)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点. (1)求抛物线的解析式; (2)点P从点C出发,沿射线CB以每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD 于点F.当t为何值时,以点P,F,D为顶点的三角形与△COD相似? (3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.

二次函数线段、周长、面积最值问题

1. 如图,对称轴为直线x=-1的抛物线y=ax 2+bx+c (a ≠0)与x 轴相交于A 、B 两点,其中点A 的坐标为(-3,0). (1)求点B 的坐标;(2)若a=1,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且S △POC =4S △BOC .求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于 点D ,求线段QD 长度的最大值. 2.如图,二次函数y=ax 2-32 x+c (a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,已知点A (-1,0),点C (0,-2).(1)求抛物线的函数解析式;(2)若点M 是线段BC 下方的抛 物线上的一个动点,求△MBC 面积的最大值以及此时点M 的坐标. 3.如图,二次函数y=ax 2 +bx 的图象与一次函数y=x+2的图象交于A 、B 两点,点A 的横坐标是-1,点B 的横坐标是2.(1)求二次函数的表达式;(2)设点C 在二次函数图象的OB 段上,求四边形OABC 面积的最大值.

4.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3). (1)求抛物线的解析式; (2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由; (3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标. 5.如图,已知抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴与x轴交于点H. (1)求该抛物线的解析式; (2)若点P是该抛物线对称轴上的一个动点,求△PBC周长的最小值; (3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.求S与m的函数关系式。S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.

如何求解二次函数中的面积最值问题

如何求解二次函数中的面积最值问题 从近几年的各地中考试卷来看,求面积的最值问题在压轴题中比较常见,而且通常与二次函数相结合.使解题具有一定难度,本文以一道中考题为例,介绍几种不同的解题方法,供同学们在解决这类问题时参考. 题目(重庆市江津区) 如图1,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3, 0)两点. (1)求该抛物线的解析式; (2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由; (3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.

解答 (1)抛物线解析式为 y=-x2-2x+3; (2)Q(-1,2); 下面着重探讨求第(3)小题中面积最大值的几种方法. 一、补形、割形法 几何图形中常见的处理方式有分割、补形等,通过对图形的这些直观处理,一般能辅助解题,使解题过程简捷、明快.此类方法的要点在于把所求图形的面积进行适当的补或割,变成有利于表示面积的图形.方法一 如图3,设P点(x,-x2-2x+3)(-3

方法二如图4,设P点(x,-x2-2x+3)(-3

相关文档
相关文档 最新文档