文档库 最新最全的文档下载
当前位置:文档库 › 中考数学复习专题练2-4 不等式与不等式组1

中考数学复习专题练2-4 不等式与不等式组1

中考数学复习专题练2-4 不等式与不等式组1
中考数学复习专题练2-4 不等式与不等式组1

§2.4 不等式与不等式组

一、选择题 1.已知a <b ,下列式子不成立的是

( )

A .a +1

B .3a <3b

C .-12a >-1

2b

D .如果c <0,那么a c

c

解析 本题考查不等式的性质,由不等式性质3可知,如果c <0,那么a c >b

c ,

所以D 不成立.故选D. 答案 D

2.不等式组???2x +1>3,

3x -5≤1

的解集在数轴上表示正确的是

( )

解析 解不等式2x +1>3,得x >1;解不等式3x -5≤1,得x ≤2.故选D. 答案 D

3.若不等式组???1+x >a ,

2x -4≤0无解,则a 的取值范围是

( )

A .a ≥3

B .a >3

C .a >2

D .a ≥2

解析 解不等式1+x >a ,得x >a -1;解不等式2x -4≤0,得x ≤2.∵不等式组无解,∴a -1≥2,即a ≥3.故选A. 答案 A

4.若不等式组???x -b <0,

x +a >0的解集为2

( )

A .-2,3

B .2,-3

C .3,-2

D .-3,2

解析 解不等式组,得?????x

x >-a 即-a <x <b .∵不等式组的解集是2

=2,b =3,即a =-2,b =3.故选A. 答案 A

5.若关于x ,y 的二元一次方程组???3x +y =1+a ,

x +3y =3的解满足x +y <505,则a 的取

值范围是

( )

A .a >2 016

B .a <2 016

C .a >505

D .a <505

解析 两个方程相加,得4x +4y =4+a ,∴x +y =4+a 4.∵x +y <505,∴4+a

4<505,解得a <2 016.故选B. 答案 B

6.不等式组????

?5x -1>3(x +1),12x -1≤7-3

2x 的解集是 ( )

A .x >2

B .x ≤4

C .x <2或x ≥4

D .2

解析 解不等式5x -1>3(x +1),得x >2;解不等式12x -1≤7-3

2x ,得x ≤4;∴不等式组的解集为2

7.已知ab =2,-3≤b ≤-1,则a 的取值范围是________. 解析 由ab =2得b =2

a ,∵a

b =2,-3≤b ≤-1,∴a <0.

∴-3≤2a ≤-1.组成不等式组?????2a ≥-3,2a ≤-1,解这个不等式组得-2≤a ≤-2

3.

答案 -2≤a ≤-2

3

8.关于x 的不等式(m -2)x >1的解集为x >1m -2

,则m 的取值范围是________. 解析 根据题意,得m -2>0,∴m >2. 答案 m >2

9.不等式2x +9≥3(x +2)的正整数解是________.

解析 去括号得2x +9≥3x +6,移项、合并同类项得-x ≥-3,系数化为1得x ≤3,因此正整数解是1,2,3. 答案 1,2,3

10.若不等式组???x >a ,3x +2<4x -1的解集是x >3,则a 的取值范围是________.

解析 解3x +2<4x -1得x >3,再由该不等式组的解集是x >3,因此a ≤3. 答案 a ≤3 三、解答题

11.阅读下列材料:解答“已知x -y =2,且x >1,y <0,试确定x +y 的取值范围”有如下解法: 解 ∵x -y =2,∴x =y +2. 又∵x >1,∴y +2>1. ∴y >-1.

又∵y <0,∴-1<y <0.① 同理得:1<x <2.②

由①+②得-1+1<y +x <0+2, ∴x +y 的取值范围是0<x +y <2, 请按照上述方法,完成下列问题:

(1)已知x -y =3,且x >2,y <1,则x +y 的取值范围是________. (2)已知y >1,x <-1,若x -y =a 成立,求x +y 的取值范围(结果用含a 的

式子表示). 解 (1)∵x -y =3, ∴x =y +3. 又∵x >2,

∴y +3>2,∴y >-1. 又∵y <1,∴-1<y <1.① 同理得:2<x <4.②

由①+②得-1+2<y +x <1+4, ∴x +y 的取值范围是1<x +y <5; (2)∵x -y =a , ∴x =y +a . 又∵x <-1, ∴y +a <-1, ∴y <-a -1. 又∵y >1, ∴1<y <-a -1.① 同理得:a +1<x <-1.②

由①+②得1+a +1<y +x <-a -1+(-1), ∴x +y 的取值范围是a +2<x +y <-a -2.

12.某物流公司要同时运输A ,B 两种型号的商品共13件,A 型商品每件体积为2 m 3,每件质量为1吨;B 型商品每件体积为0.8 m 3,每件质量为0.5吨,这两种型号商品的体积之和不超过18.8 m 3,质量之和大于8.5吨. (1)求A 、B 两种型号商品的件数共有几种可能?写出所有可能情况; (2)若一件A 型商品运费200元,一件B 型商品运费为180元,则(1)中哪种情况的运费最少?最少运费是多少? 解 (1)设A 种型号的商品有x 件, 则B 种型号的商品有(13-x )件, 由题意,得:???2x +0.8(13-x )≤18.8,

1·x +0.5(13-x )>8.5.

解这个不等式组,得:???x ≤7,

x >4,即4

∵x 为正整数, ∴x =5,6,7. ∴13-x =8,7,6.

答:共有三种可能,即A 种型号的商品分别为5,6,7件时,对应的B 种型号的商品分别为8,7,6件.

(2)∵A 种型号的商品的运费>B 种型号的商品的运费, ∴要使运费最少,则只要A 种型号的商品尽量少.

∴当A 种型号的商品为5件,B 种型号的商品为8件时运费最少,最少运费为:200×5+180×8=2 440(元).

不等式与不等式组专题复习

不等式与不等式组专题复习 (一)不等式 考点1:不等式的定义 知识点: 1.不等式:用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式。 (像a+2≠a-2这样用“ ≠”号表示不等关系的式子也是不等式。) 2.常见不等式的基本语言有: ①x 是正数,则x >0; ②x 是负数,则x <0; ③x 是非负数,则x≥0; ④x 是非正数,则x≤0; ⑤x 大于y ,则x -y >0; ⑥x 小于y ,则x -y <0; ⑦x 不小于y ,则x ≥ y ; ⑧x 不大于y ,则x ≤ y 。 例1.下列式子哪些是不等式?哪些不是不等式?为什么? -2<5 x+3>6 4x-2y ≤0 a-2b a+b ≠c 5m+3=8 8+4<7 考点2:不等式的解集 知识点: 1.不等式的解:使不等式成立的未知数的值,叫做不等式的解。 2.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。 例1.判断下列数中哪些是不等式 的解: 76 , 73 , 79 , 80, 74.9 , 75, 75.1, 90 , 60 —————————————————————————————————— 变式练习: 1.下列说法正确的是( ) A. x=3是2x+1>5的解 B. x=3是2x+1>5的唯一解 C. x=3不是2x+1>5的解 D. x=3是2x+1>5的解集 2.在下列表示的不等式的解集中,不包括-5的是 ( ) A.x ≤ 4 B.x ≥ -5 C.x ≤ -6 D.x ≥ -7 考点3:不等式解集在数轴上的表示方法 知识点: 1.用数轴表示不等式的解集的步骤: ①画数轴; ②定边界点; ③定方向. 2.用数轴表示不等式的解集,应记住下面的规律: 大于向右画,小于向左画;有等号(≥ ,≤)画实心点, 无等号(>,<)画空心圆. 例1.图中表示的是不等式的解集,其中错误的是( ) A 、x ≥- 2 B 、x <1 C 、x ≠、x <0 变式练习: 1.不等式2≤x 在数轴上表示正确的是( ) 5032 >x 0-1-2

不等式与不等式组专题复习

不等式与不等式组专题复习 (一)不等式 考点1:不等式的定义 知识点: 1. 不等式:用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式。 (像2≠2 这样用“ ≠”号表示不等关系的式子也是不等式。) 2. 常见不等式的基本语言有: ①x是正数,则x>0;②x是负数,则x<0;③x是非负数,则x≥ 0; ④x是非正数,则x≤0;⑤x大于y ,则x-y> 0; ⑥x小于y,则x-y < 0; ⑦x不小于y,则x ≥ y ;⑧x不大于y,则x ≤ y 。 例1. 下列式子哪些是不等式?哪些不是不等式?为什么? -2 <5 3>6 42y ≤0 2b ≠c 53=8 8+4<7

考点2:不等式的解集

1. 不等式的解:使不等式成立的未知数的值,叫做不等式的解。 2. 不等式的解集: 一个含有未知数的不等式的所有解, 组成这个 不等式的解集。 例 1. 判断下列数中哪些是不等式 的解 : 76 , 73 , 79 , 80, 74.9 , 75, 75.1, 90 , 60 23x 50 变式练习: 1. 下列说法正确的是 ( ) A. 3 是 21>5的解 B. 3 C. 3 不是 21>5的解 D. 3 2. 在下列 表示的不等式的解集中,不包括 -5 的是 ( ≤ 4 ≥ -5 ≤ -6 ≥ -7 考点 3:不等式解集在数轴上的表示方法 是 21>5 的唯一 解

1.用数轴表示不等式的解集的步骤: ①画数轴; ②定边界点; ③ 定方向. 2.用数轴表示不等式的解集, 应记住下面的规律 大于向右画,小于向左画;有等号(≥ , ≤)画实心点, 无等号(>,<) 画空心圆. 例1. 图中表示的是不等式的解集,其中错误的是( ) A、x≥-* 2- 2 - 1 0 B C、x ≠0 D 变式练习: 1. 不等式x 2在数轴上表示正确的 是( ) A. C.

基本不等式专题 ---完整版(非常全面)

创作编号:BG7531400019813488897SX 创作者: 别如克* 基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅 当b a =时取“=”) (4)若 R b a ∈,,则 2)2(2 22b a b a ab +≤ +≤ ( 5 ) 若 * ,R b a ∈,则 2 2111 22b a b a ab +≤+≤≤+ ( 1 ) 若 ,,,a b c d R ∈,则 22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 2222222 1231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+) 22212) n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等

不等式经典题型专题练习(含答案)-

不等式经典题型专题练习(含答案) :__________ 班级:___________ 一、解答题 1.解不等式组: ()13x 2x 11{ 25 233x x -+≤-+≥-,并在数轴上表示不等式组的解集. 2.若不等式组21{ 23x a x b -<->的解集为-1

5.解不等式组:并写出它的所有的整数解. 6.已知关于x、y的方程组 521118 23128 x y a x y a +=+ ? ? -=- ? 的解满足x>0,y>0,数a的取 值围. 6.求不等式组 x20 x 1x3 2 -> ? ? ? +≥- ?? 的最小整数解. 7.求适合不等式﹣11<﹣2a﹣5≤3的a的整数解. 8.已知关于x的不等式组的整数解共有5个,求a的取值围. 9.若二元一次方程组 2 { 24 x y k x y -= += 的解x y >,求k的取值围.

10.解不等式组5134122 x x x x ->-???--??≤并求它的整数解的和. 11.已知x ,y 均为负数且满足:232x y m x y m +=-?? -=?①②,求m 的取值围. 12.解不等式组?? ???<+-+≤+12312)2(352x x x x ,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集. 14.若方程组2225 x y m x y m +=+??-=-?的解是一对正数,则: (1)求m 的取值围 (2)化简:42m m -++ 15.我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?

专题:基本不等式常见题型归纳(学生版)

专题:基本不等式 基本不等式求最值 利用基本不等式求最值:一正、二定、三等号. 三个不等式关系: (1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R + ,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b 2)2 ,当且仅当a =b 时取等号. 上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系. 其中,基本不等式及其变形:a ,b ∈R + ,a +b ≥2ab (或ab ≤(a +b 2)2),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系 【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则 1 12 -+b a 的最小值为 . 练习:1.若实数满足,且,则的最小值为 . 2.若实数,x y 满足1 33(0)2xy x x +=<< ,则313 x y +-的最小值为 . 3.已知0,0,2a b c >>>,且2a b += ,则 2ac c c b ab +-+ 的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +y x +y 的最大值为 . 【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________. 变式:1.若,a b R +∈,且满足22 a b a b +=+,则a b +的最大值为_________. 2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______ 3.设R y x ∈,,142 2 =++xy y x ,则y x +2的最大值为_________ 4.已知正数a ,b 满足 19 5a b +=,则ab 的最小值为 ,x y 0x y >>22log log 1x y +=22 x y x y +-

不等式与不等式组专项训练(含答案详解)

《不等式与不等式组专项训练》一、选择: 1.下列不等式一定成立的是() A.a≥﹣a B.3a>a C.a D.a+1>a 2.若a>b,则下列不等式仍能成立的是() A.b﹣a<0B.ac<bc C.D.﹣b<﹣a 3.解不等式中,出现错误的一步是() A.6x﹣3<4x﹣4B.6x﹣4x<﹣4+3C.2x<﹣1D. 4.不等式的正整数解有() A.2个B.3个C.4个D.5个 5.在下列不等式组中,解集为﹣1≤x<4的是() A.B.C.D. 6.若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34B.22C.﹣3D.0 二、填空: 7.用不等式表示“6与x的3倍的和大于15”. 8.不等式的最大正整数解是,最小正整数解是.9.一次不等式组的解集是. 10.若y=2x+1,当x时,y<x. 11.关于x的不等式ax+b<0(a<0)的解集为. 12.若方程mx+13=4x+11的解为负数,则m的取值范围是. 13.若a>b,则的解集为.

14.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对道. 三、解不等式或不等式组: 15.解不等式或不等式组: (1)3(x﹣2)﹣4(1﹣x)<1 (2)1﹣≥x+2 (3) (4). 四、解答下列各题: 16.x取什么值时,代数式5(x﹣1)﹣2(x﹣2)的值大于x+2的相反数. 17.k取什么值时,解方程组得到的x,y的值都大于1. 18.某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数. 19.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.

2017年中考数学专题练习6《不等式(组)》

2017年中考数学专题练习6《不等式(组)》 【知识归纳】 1.不等式的有关概念:用 连接起来的式子叫不等式;使不等式成立的 的值叫做不等式的解;一个含有 的不等式的解的 叫做不等式的解集.求一个不等式的 的过程或证明不等式无解的过程叫做解不等式. 2.不等式的基本性质: (1)若a <b ,则a +c c b +; (2)若a >b ,c >0则ac bc (或 c a c b ); (3)若a >b ,c <0则ac bc (或c a c b ). 3.一元一次不等式:只含有 未知数,且未知数的次数是 ,且不等式的两边都是 ,称为一元一次不等式;一元一次不等式的一般形式为 或ax b <;解一元一次不等式的一般步骤:去分母、 、移项、 、系数化为1. 4.一元一次不等式组:几个 合在一起就组成一个一元一次不等式组. 一般地,几个不等式的解集的 ,叫做由它们组成的不等式组的解集. 5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知a b <) x a x b ??>? 的解集是 ,即“大大取大”; x a x b >??? 的解集是 ,即“大大小小取不了”. 6.列不等式(组)解应用题的一般步骤: ①审: ;②找: ;③设: ;④列: ;⑤解: ;⑥答: . 【基础检测】 1.(2016·内蒙古包头)不等式﹣ ≤1的解集是( ) A .x≤4 B .x≥4 C .x≤﹣1 D .x≥﹣1 2.(2016·云南昆明)不等式组 的解集为( )

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

人教版七年级数学下册不等式与不等式组专项练习

不等式与不等式组专项练习(能力提高) 1.已知方程组3133x y k x y +=+?? +=?的解x 、y,且2-4)5(的解集. 7.已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小. 8.(类型相同)当k 取何值时,方程组? ??-=+=-52,53y x k y x 的解x ,y 都是负数. 9(类型相同)已知???+=+=+1 22,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围. 10.已知a 是自然数,关于x 的不等式组? ??>-≥-02,43x a x 的解集是x >2,求a 的值. 11.关于x 的不等式组???->-≥-1 23,0x a x 的整数解共有5个,求a 的取值范围. 12.(类型相同)k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10? 13.(类型相同)已知关于x ,y 的方程组? ??-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围. 14.若关于x 的不等式组???????+<+->+a x x x x 3 22,3215只有4个整数解,求a 的取值范围. 五、解答题 1. 在一次爆破中,用1米的导火索来引爆炸药,导火索的燃烧速度为0.5cm/s, 引爆员点着 导火索后,至少以每秒多少米的速度才能跑到600m 或600m 以外的安全区域?

基本不等式完整版(非常全面)

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则2 2 2 2 2 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 222 222 2 1 2311 23112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知 c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:222 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证: abc c b a 8)1)(1)(1(≥--- 5、已知,,a b c R + ∈,且1a b c ++=,求证: 1111118a b c ??????---≥ ??????????? 6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知0>≥b a ,求证:b a ab b a 2 2 3 3 22-≥- 题型二:利用不等式求函数值域 1、求下列函数的值域 (1)2 2 21 3x x y += (2))4(x x y -=

不等式与不等式组期末专题复习讲义(常考专题)

1 不等式与不等式组期末复习讲义 常考专题一 不等式的性质 主要考查利用不等式的性质判断不等式的变形是否正确,题型以选择题为主. 例1 :下列式子中,一元一次不等式有( )①314x -≥;②1263x + >;③136x -<;④0x π>;⑤132362 x x -+-<;⑥2x xy y +≥;⑦0x >. A .6个 B .5个 C .4个 D .3个 解析:③中 1 x 不是整式,⑥中含2个未知数,所以③⑥不是一元一次不等式,①②④⑤⑦都是一元一次不等式,故选B . 例2: 若a b >,则下列不等式不一定成立的是( ) A .a m b m +>+ B .()() 22 11a m b m +>+ C .22 a b - <- D .22 a b > 解析:根据不等式的性质针对四个选项进行分析即可.A .根据不等式的基本性质1,可知a m b m +>+一定成立;B .根据不等式的基本性质2, ∵2 10m +>,∴()() 2211a m b m +>+一定成立;C .根据不等式的基本性 质3,∵102- <,∴22a b -<-一定成立;D .根据不等式的基本性质3,a ,b 若都为负数,则22a b >不成立. 思维点拨 本题主要考查了不等式的基本性质,熟记不等式的基本性质是解题的关键.此类题目也可以用举反例的方法排除. 常考专题二 一元一次不等式(组)的解法 解一元一次不等式(组)是数学学习中必须掌握的基本运算技能,是解决实际问题的基础,解不等式(组)时,要严格依据不等式的性质按照解不等式(组)的步骤进行. 例3: 解下列不等式或不等式组,并把解集在数轴上表示出来: (1)672x x ≤-;(2)()5431,121.2 5x x x x +<+?? ?--≤? ?①② 分析:(1)解不等式并把解集在数轴上表示出来;(2)分别解不等式,并把 解集在数轴上表示出来. 解:(1)解不等式得2x ≥,在数轴上表示如下: (2)解不等式①,得1 2 x <-,解不等式②,得3x ≤, 在数轴上表示如下: 故不等式组的解集为1 2 x <- . 思维点拨 一元一次不等式与一元一次不等式组的解法是整章的重点,要熟悉它们的解法,一方面要注意每个步骤的易错之处,另一方面要正确地画出数轴,找出解集,进一步确定特殊解.

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

中考数学专题复习三不等式和不等式组试题浙教版

不等式和不等式组 教学准备 一. 教学内容: 复习三不等式和不等式组 二. 教学目标: 1. 理解不等式,不等式的解等概念,会在数轴上表示不等式的解; 2. 理解不等式的基本性质,会应用不等式的基本性质进行简单的不等式变形,会解一元一次不等式; 3. 理解一元一次不等式组和它的解的概念,会解一元一次不等式组; 4. 能应用一元一次不等式(组)的知识分析和解决简单的数学问题和实际问题。 三. 教学重点与难点: 1. 能熟练地解一元一次不等式(组)。 2. 会利用不等式的相关知识解决实际问题 四.知识要点: 知识点1、不等式的解:能使不等式成立的未知数的值叫做不等式的解。 知识点2、不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集。 知识点3、不等式的解集在数轴上的表示: (1)x>a:数轴上表示a的点画成空心圆圈,表示a的点的右边部分来表示; (2)x<a:数轴上表示a的点画成空心圆圈,表示a的点的左边部分来表示; (3)x≥a:数轴上表示a的点画成实心圆点,表示a的点及表示a的点的右边部分来表示; (4)x≤a:数轴上表示a的点画成实心圆点,表示a的点及表示a的点的左边部分来表示。 在数轴上表示大于3的数的点应该是数3所对应点的右边。画图时要注意方向(向右)和端点(不包括数3,在对应点画空心圆圈)。如图所示: 同样,如果某个不等式的解集为x≤-2,那么它表示x取-2左边的点 画实心圆点。如图所示: 总结:在数轴上表示不等式解集的要点: 小于向左画,大于向右画;无等号画空心圆圈,有等号画圆点。 知识点4、不等式的性质: (1)不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; (2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变; (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。 知识点5、一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的不等式,叫做一元一次不等式。 知识点6、解一元一次不等式的一般步骤: (1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)未知数的系数化为1。 通过这些步骤可以把一元一次不等式转化为x>a (x≥a)或x<a(x≤a)的形式。 知识点7、一元一次不等式组:由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。 知识点8、不等式组的解集:不等式组中所有的不等式的解集的公共部分叫做这个不等式组的解集。

(完整版)专题--含参一元一次不等式组(1)

第15讲 一元一次不等式组培优专题 一、含参不等式(组)有关的问题 1. 探讨不等式组的解集(写出,a b 满足的关系式) (1)关于x 的不等式组x a x b >????≤11x m x 无解,则m 的取值范围是 (2)若不等式组121 x m x m <+??>-?无解,则m 的取值范围是

(3)若不等式组???>≤????+-<-3212b x a x 11<<-x )3)(3(+-b a

(2)如果关于x 的不等式组7060 x m x n -≥??-的每一个解都是21122 x -<的解,求a 的取值范围

变式:如果关于x的不等式组 22 4 x a x a >- ? ? <- ? 有解,并且所有解都是不等式组-6<x≤5的解,求a 的取值范围. 4. 若关于x的不等式组 21 1 3 x x x k - ? >- ? ? ?-< ? 的解集为2 x<,求k的取值范围 5.不等式组 12 35 a x a x -<<+ ? ? << ? 的解集是3x <<2 a+,求a的取值范围

基本不等式完整版(非常全面)

2 8 基本不等式专题辅导 2 2 2、基本不等式一般形式(均值不等式) 若 a,b R ,则 a b 2 ab 3、基本不等式的两个重要变形 (1)若 a,b R *,则 2 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数 的和为定植时,它们的积有最小值; a b 6、柯西不等式 (1)若 a, b,c, d R ,则(a 2 b 2)(c 2 d 2) (ac bd )2 (2) 若 a 1, a 2, a 3, bi, b 2, b 3 R ,则有: 2 2 2 2 2 2 2 (a 1 a 2 a 3 )(柑 b ? b 3 ) (aQ a ?b 2 a s b s ) (3) 设a 1,a 2, ,a n 与 db, ,b 是两组实数,则有 2 2 2 p22 2 佝 a 2 a . )(0 b 2 b n )(日山 a 2b 2 a n b n ) 一、知识点总结 1、基本不等式原始形式 二、题型分析 题型一:利用基本不等式证明不等式 (1)若 a,b R ,则 a 2 b 2 2ab 1、设a,b 均为正数,证明不等式:、.ab 二 (2)右 a, b R ,则 ab a,b,c 为两两不相等的实数, (2)若 a, b R ,则 ab b 2 ab bc ca 4、求最值的条件:“一正, 二定,三相等” 5、常用结论 1 (1)若 x 0,则 x — 2 (当且仅当 x 1时取“=”) x 1 (2)若 x 0,则 X - 2 (当且仅当 x 1时取 “=”) X (3)若 ab 0,则-- 2 (当且仅当 a b 时取 “=”) b a 2 2 (4)若 a, b R ,则 ab ( 旦 b)2 a b 2 2 (5)若 a, b R ,贝U 1 . a ab b a 2 b 2 v ------ 1 1 2 2 (1 已知a a,b,c a )(1 1, 求证: b)(1 c) 8abc a, b, c R

中考数学不等式与不等式组专题训练

不等式与不等式组 命题趋势】 1.解不等式(组)并在数轴上表示解集.试题难度一般不大,选择题、填空题和解答题中都会出现.2.联系生活实际,用不等式(组)解决实际问题,常与函数、方程结合考查. 【满分技巧】 一、不等式的性质 不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变. 【规律方法】 1.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.2.不等式的传递性:若a>b,b>c,则a>c. 二、一元一次不等式及其解法 (1)已知一元一次不等式(组)的解集,确定其中字母的取值范围的方法是:①逆用不等式(组)的解集确定;②分类讨论确定;③从反面求解确定;④借助于数轴确定. (2)根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤: ①去分母;②去括号;③移项;④合并同类项;⑤化系数为1. 以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向. 三、一元一次不等式组及其解法 解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.

解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到. 四、一元一次不等式(组)的应用 (1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案. (2)列不等式解应用题需要以“至少”“最多”“不超过”“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵. (3)列一元一次不等式解决实际问题的方法和步骤: ①弄清题中数量关系,用字母表示未知数. ②根据题中的不等关系列出不等式. ③解不等式,求出解集. ④写出符合题意的解. 不等式与不等式组 一、选择题 1.若a<b,则下列各不等式中一定成立的是() A. a﹣1<b﹣1 B. ﹣a<﹣b C. D. ac<bc 2.不等式2x﹣8<0的正整数解有() A. 1个 B. 2个 C. 3个 D. 4个 3.不等式组的解集是() A. x<-3 B. x<-2 C. -3

基本不等式及其应用(优秀经典专题及答案详解)

专题7.3 基本不等式及其应用 学习目标 1.了解基本不等式的证明过程; 2.会用基本不等式解决简单的最大(小)值问题. 知识点一 基本不等式ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R);(4)????a +b 22≤a 2+b 2 2(a ,b ∈R); (5)2ab a +b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2 ,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 知识点四 利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4(简记:和定积最大). 【特别提醒】 1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立. 2.连续使用基本不等式时,牢记等号要同时成立. 考点一 利用基本不等式求最值

【典例1】(江西临川一中2019届模拟)已知x <54,则f (x )=4x -2+14x -5 的最大值为_______ 【答案】1 【解析】因为x <54 ,所以5-4x >0, 则f (x )=4x -2+ 14x -5=-????5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,取等号. 故f (x )=4x -2+ 14x -5 的最大值为1. 【方法技巧】 1.通过拼凑法利用基本不等式求最值的实质及关键点 拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键. 2.通过常数代换法利用基本不等式求解最值的基本步骤 (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1; (3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式; (4)利用基本不等式求解最值. 【变式1】(山东潍坊一中2019届模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 【答案】6 【解析】由已知得x +3y =9-xy , 因为x >0,y >0,所以x +3y ≥23xy , 所以3xy ≤????x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6,即x +3y 的最小值为6. 【方法技巧】通过消元法利用基本不等式求最值的策略 当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值. 考点二 利用基本不等式解决实际问题 【典例2】 【2019年高考北京卷理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果

基本不等式练习题(带答案)

《基本不等式》同步测试 一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2 111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.332- C.3-23 D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. 63 C. 46 D. 183 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 11123a b c + + ≥ D .3a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A . 114x y ≤+ B .111x y +≥ C .2xy ≥ D .1 1xy ≥ 8. a ,b 是正数,则 2,, 2 a b ab ab a b ++三个数的大小顺序是 ( ) A.22a b ab ab a b +≤≤+ B.22a b ab ab a b +≤≤ + C. 22ab a b ab a b +≤≤+ D.22 ab a b ab a b +≤≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<<

基本不等式专题----完整版(非常全面)

学习必备 欢迎下载 基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2)2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则 2 2111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当 b a =时取“=” 6、柯西不等式 (1)若,,,abc d R ∈,则22222 () ()()a b c d a c b d ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 2 2 2 (a a a ++???+)2 2 2 )b b b ++???+(2 ()a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知 c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:222 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证: a b c c b a 8)1)(1)(1(≥--- 5、已知,,a b c R + ∈,且1a b c ++=,求证: 1111118a b c ?????? ---≥ ???????????

相关文档 最新文档