文档库 最新最全的文档下载
当前位置:文档库 › 数值分析-第六章

数值分析-第六章

数值分析-第六章
数值分析-第六章

数值分析

第六章

2.用雅可比迭代与高斯—塞德尔迭代解线性方程组b Ax =,证明若取???

?

? ??--=212120203A ,

则两种方法均收敛,试比较哪种方法收敛快?

解:

雅可比迭代法的迭代矩阵:

???????

?

?

?

--=+=-0211210

03200)(1U L D B J ,11211)(<=J B ρ, 故雅可比迭代法收敛。

高斯—塞德尔迭代法的迭代矩阵

?

??????? ?

?

-=????? ??-????? ??-=-=--12110021003200000100200212020003)(1

1

U L D B S ,11211)(<=

S B ρ, 故高斯—塞德尔迭代法收敛。

因)(12

11

1211)(J S B B ρρ=<=

,故高斯—塞德尔迭代法收敛快。 3. 用SOR 方法解线性方程组(分别取松弛因子ω=1.03,ω=1,ω=1.1)

精确解x *=(

21,1,-2

1

)T .要求当)(*k x x -∞

<5×106-时迭代终止,并且对每

一个ω值确定迭代次数.

解: 用SOR

方法解此方程组的迭代公式为:

取X

(0)

=(0,0,0)T

当ω=1.03时,迭代5次达到要求:

X

(5)

=(0.500 004 3,0.100 000 1,-0.499 999)T

若取ω=1时,迭代6次得:

X

(6)

=(0.500 003 8,0.100 000 2,-0.499 995)T

若取ω=1.1时,迭代6次得:

X

(6)

=(0.500 003 5,0.099 998 9,-0.500 000 3)T

第七章

2.为求方程012

3=--x x 在5.10=x 附近的一个根,设将方程改写成下列等价形式,并建立相应的迭代公式。

(1).2

/11x x +=,迭代公式2

1/11k k x x +=+;

(2).123+=x x ,迭代公式32

11+=+k k x x ; (3).1

1

2

-=

x x ,迭代公式1/11-=+k k x x 。 试分析每种迭代公式的收敛性,并选取一种公式求出具有四位有效数字的近似根。 解:

考虑5.10=x 的领域]6.1,3.1[。 (1).当]6.1,3.1[∈x 时,]6.1,3.1[11)(2∈+

=x x ?,1910.03.122)('3

3<=≈≤-=L x x ?,故迭代211

1k

k x x +

=+在]6.1,3.1[上整体收敛。 (2).当]6.1,3.1[∈x 时,()

]6.1,3.1[1)(3

/12

∈+=x x ?,

1522.0)3.11(6

.132)1(32)('3

/223/22<=≈+<+=

L x x x ?,

故迭代32

11+=+k k x x 在]6.1,3.1[上整体收敛。 (3).当]6.1,3.1[∈x 时,1

1)(-=

x x ?,1)16.1(21

)1(21)('2

/3>->--=x x ?,故迭代 1/11-=+k k x x 发散。

4. 用下列方法求

3

()310f x x x =--=在02x =附近的根.根的准确值* 1.87938524...x =,要求计算结果准确到四位有效数字. (1)用牛顿法; (2)用弦截法,取

012, 1.9x x ==; (3)用抛物线法,取0121,3,2x x x ===.

解:

22(1)0,(2)0,()333(1)0,''()60f f f x x x f x x <>=-=-≥=>,对[1,2].x ?∈

(1)取

02x =,用牛顿迭代法

3312

23121

333(1)k k k k k k k x x x x x x x +--+=-=--

计算得

3

1221

1

.

8

88

8

8

8889

,1.

2

x x x x -==-

,

2* 1.879451567x x ≈=.

(2)取20=x ,9.11=x ,利用弦截法

111()()()()k k k k k k k x x f x x x f x f x -+--=-

-

得,3

23441

1.981093936, 1.880840630, 1.879489903,|*|102x x x x x -===-

4*1.879489903

x x ≈=. (3)

0121,3,2x x x ===.抛物线法的迭代式为

11121[,][,,]()

k k k k k k k k k x x w f x x f x x x x x +----==+-

迭代结果为:

3451.953967549, 1.87801539, 1.879386866x x x ===已达四位有效数字.

计算机上机

首先是两个算法的实现(如下图所示):

图1:Jacobi迭代算法

图2:SOR迭代算法1.n取6时运行结果:

图3:Jacobi迭代结果图4:ω=1时SOR迭代结果

图5:ω=1.25时SOR迭代结果图6:ω=1.5时SOR迭代结果

结果分析:

从MATLAB输出的结果可以看出:当n=6时,取初始向量x0=(0,0,0,0,0,0)’,用Jacobi迭代法求解该矩阵方程经过m1=487次迭代所得结果x1 =(Inf,Inf,NaN,NaN,NaN,NaN)’,可见用Jacobi迭代法在这种情况下求解该矩阵方程是不收敛的。用SOR方法求解该矩阵方程,当松弛因子w=1时,经过m11=17406次迭代所得结果xx11 =(0.9999,1.0009,0.9981,0.9974,1.0089,0.9947)’,此结

果与精确解)'1,1,1,1,1,1(*=x 比较可得0.010911*=-x xx ,可见此结果已经很接近精确解了;当松弛因子w=1.25时,经过m21=16290次迭代所得结果xx21 =( 1.0000,1.0003,1.0010,0.9922,1.0126,0.9939)’,此结果与精确解)'1,1,1,1,1,1(*=x 比较可得0.0160 21*=-x xx ,可见此结果没有w=1所得的解接近精确解,但迭代次数比它少;当松弛因子w=1.5时,经过m31=16769次迭代所得结果xx31 =( 1.0000,0.9995,1.0052,0.9829,1.0216,0.9907)’,此结果与精确解)'1,1,1,1,1,1(*=x 比较可得0.0296 31*=-x xx ,可见此结果没有w=1和w=1.25所得的解接近精确解,迭代次数虽然比w=1时少,但比w=1.25多。

2.n 取8时运行结果:

图7:Jacobi 迭代结果图8:ω=1时SOR 迭代结果

图9:ω=1.25时SOR迭代结果图10:ω=1.5时SOR迭代结果3.n取10时运行结果:

图11:Jacobi迭代结果图12:ω=1时SOR迭代结果

图13:ω=1.25时SOR 迭代结果图14:ω=1.5时SOR 迭代结果 结果分析

从MATLAB 输出的结果可以看出:

(1) 用Jacobi 迭代法求解该矩阵方程时:

①当n=8时取初始向量x0=(0,0,0,0,0,0,0,0)’,经过m2=396次迭代所得结果x2 =( -Inf ,NaN ,NaN ,NaN ,NaN ,NaN ,NaN ,NaN)’;

②当n=10时,取初始向量x0=(0,0,0,0,0,0,0,0,0,0)’,经过m3=347次迭代所得结果x3 =(Inf ,Inf ,Inf ,NaN ,NaN ,NaN ,NaN ,NaN ,NaN ,NaN)’;

对比(1)题中所得结果可见无论n 确何值用Jacobi 迭代法在这种情况下求解该矩阵方程是不收敛的,其原因为其迭代矩阵)(1U L D B +=- (其中

D=diag(diag(H)),L=-tril(H,-1),U=-triu(H,1))的谱半径 4.3085)(=B ρ不满足1)(

(2) 用SOR 方法求解该矩阵方程:

①当n=8时,取初始向量x0=(0,0,0,0,0,0,0,0)’当松弛因子w=1时,经过m12=8342次迭代所得结果xx12 =(1.0001,0.9974,1.0136,0.9794,0.9982,1.0141,1.0101,0.9870)’,此结果与精确解)'1,1,1,1,1,1,1,1(*=x 比较可得0.0330 12*=-x xx ;当松弛因子w=1.25时,经过m22=17436次迭代所得结果xx22 =( 1.0002,0.9964,1.0179,0.9726,1.0031,1.0130,1.0091,0.9877)’,此结果与精确解)'1,1,1,1,1,1,1,1(*=x 比较可得0.0387 22*=-x xx ,;当松弛因子w=1.5时,经过m32=16769次迭代所得结

果xx32 =( 1.0001,0.9976,1.0119,0.9812,1.0043,1.0055,1.0079,0.9915)’,

此结果与精确解)'1,1,1,1,1,1,1,1(*=x 比较可得0.0262 32*=-x xx ;

②当n=10时,取初始向量x0=(0,0,0,0,0,0,0,0,0,0)’当松弛因子w=1时,经过m13=2695次迭代所得结果xx13 =(1.0001,0.9982,1.0056,0.9993,0.9916,0.9968,1.0052,1.0087,1.0039,0.9904)’,此结果与精确解)'1,1,1,1,1,1,1,1,1,1(*=x 比较可得

0.0181 13*=-x xx ;当松弛因子w=1.25时,经过m23=30092次迭代所得结果xx23

=( 1.0001,0.9989,1.0022,1.0042,0.9903,0.9965,1.0042,1.0080,1.0039,0.9916)’,此结果与精确解)'1,1,1,1,1,1,1,1,1,1(*=x 比较可得0.0173 23*=-x xx ,;当松弛因子w=1.5时,经过m33=32174次迭代所得结果xx33 =( 1.0000,0.9997,0.9986,1.0109,0.9850,0.9993,1.0020,1.0086,1.0033,0.9924)’,此结果与精确解)'1,1,1,1,1,1,1,1,1,1(*=x 比较可得0.0222 33*=-x xx ,对比n=8,n=10时,w 取相同值时的结果,当n=10时的迭代步骤比n=8都少,且所得解比起n=8也精确。 总结

无论n 确何值用Jacobi 迭代法在这种情况下求解该矩阵方程是不收敛的,而用SOR 方法解题时,虽然迭代收敛,但需要迭代很多次。若改用另外一种古典迭代法Gauss-Seidel 法解决此缺点。

最新第六章习题答案-数值分析

第六章习题解答 2、利用梯形公式和Simpson 公式求积分2 1 ln xdx ? 的近似值,并估计两种方法计算值的最大 误差限。 解:①由梯形公式: 21ln 2 ()[()()][ln1ln 2]0.3466222 b a T f f a f b --= +=+=≈ 最大误差限 3''2 ()111 ()()0.0833******** T b a R f f ηη-=-=≤=≈ 其中,(1,2)η∈ ②由梯形公式: 13()[()4()()][ln14ln()ln 2]0.38586262 b a b a S f f a f f b -+= ++=++≈ 最大误差限 5(4)4()66 ()()0.0021288028802880 S b a R f f ηη-=-=≤≈, 其中,(1,2)η∈。 4、推导中点求积公式 3''()()()()() ()224 b a a b b a f x dx b a f f a b ξξ+-=-+<

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

数值分析习题与答案

第一章绪论 习题一?1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。 解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有 已知x*的相对误差满足,而 ,故 即 2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得?有5位有效数字,其误差限,相对误差限 有2位有效数字, 有5位有效数字, 3.下列公式如何才比较准确? (1)?(2) 解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)?(2) 4.近似数x*=0.0310,是 3 位有数数字。 5.计算取,利用 :式计算误差最小。 四个选项: 第二、三章插值与函数逼近 习题二、三 1. 给定的数值表 用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newto n插值,并应用误差估计(5.8)。线性插值时,用0.5及0.6两点,用Newton插值??误差限 ,因,

故? 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 ?误差限,故? 2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少? 解:用误差估计式(5.8), ?令 因?得 3. 若,求和.

解:由均差与导数关系 ?于是 4. 若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有?而当P=n +1时 ?于是得 5. 求证. 解:解:只要按差分定义直接展开得 ? 6. 已知的函数表

数值分析第三版课本习题及答案

第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位 有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1 234,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y . (五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字 . 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 2 12S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误差增加,而相 对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…), 若0 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一 等价公式 ln(ln(x x =- 计算,求对数时误差有多大? 14. 试用消元法解方程组 { 101012121010;2. x x x x +=+=假定只用三位数计算,问结果是否可靠?

第六章习题答案数值分析.docx

第六章习题解答 2 2、利用梯形公式和 Simpson 公式求积分 ln xdx 的近似值, 并估计两种方法计算值的最大 1 误差限。 解:①由梯形公式: T ( f ) b a [ f (a) f (b)] 2 1 [ln1 ln 2] ln 2 0.3466 2 2 2 最大误差限 R ( f ) (b a)3 f '' ( ) 1 1 1 0.0833 T 12 12 2 12 12 其中, (1,2) ②由梯形公式: b a 4 f ( b a f (b)] 1 4ln( 3 ln 2] 0.3858 S( f ) [ f (a) ) [ln1 ) 6 2 6 2 最大误差限 R S ( f ) (b a)5 f (4) ( ) 6 6 0.0021, 2880 2880 4 2880 其中, (1,2) 。 4、推导中点求积公式 f ( x)dx (b a) f ( a b ) (b a) 3 (a b) b a 2 24 证明: 构造一次函数 P ( x ),使 P a 2 b f a b , P ' ( a b ) f ' ( a b ), P '' ( x) 0 2 2 2 则,易求得 P( x) f ' ( a b )( x a b ) f ( a b ) 2 2 2 且 P(x)dx f ' ( a b )( x a b ) f ( a b ) dx b b a a 2 2 2 f ( a b )dx (b a) f ( a b ) ,令 P(x)dx I ( f ) b b a 2 2 a 现分析截断误差:令 r ( x) f ( x) P(x) f ( x) f ' ( a b )( x a b ) f ( a b ) 2 2 2 由 r ' ( x) f ' (x) f ' ( a b ) 易知 x a 2 b 为 r (x) 的二重零点, 2 a b )2 , 所以可令 r (x) ( x)( x 2

第五章习题解答_数值分析

第五章习题解答 1、给出数据点:0134 19156 i i x y =?? =? (1)用012,,x x x 构造二次Lagrange 插值多项式2()L x ,并计算15.x =的近似值215(.)L 。 (2)用123,,x x x 构造二次Newton 插值多项式2()N x ,并计算15.x =的近似值215(.)N 。 (3)用事后误差估计方法估计215(.)L 、215(.)N 的误差。 解: (1)利用012013,,x x x ===,0121915,,y y y ===作Lagrange 插值函数 2 20 2 1303011915 01031013303152933 ()()()()()() ()()()()()()()() i i i x x x x x x L x l x y x x =------== ?+?+?-------++= ∑ 代入可得2151175(.).L =。 (2)利用 134,,x x x ===,9156,,y y y ===构造如下差商表: 229314134196()()()()()N x x x x x x =+-+---=-+- 代入可得215135(.).N =。 (3)用事后误差估计的方法可得误差为 ()()()02222 03-x 150 x x x -=117513506563-04.()()()(..).x f L R L x N x x x --≈= -≈- ()()()3222203-154 x x -=1175135-1.0938-04 .()()()(..)x x f N R x L x N x x x --≈=-≈- 2、设Lagrange 插值基函数是 0012()(,,,,)n j i j i j j i x x l x i n x x =≠-==-∏ 试证明:①对x ?,有 1()n i i l x ==∑ ②00110001211()()(,,,)()()n k i i i n n k l x k n x x x k n =?=?==??-=+? ∑ 其中01,,,n x x x 为互异的插值节点。 证明: ①由Lagrange 插值多项式的误差表达式10 1()()()()()!n n i i f R x x x n ξ+==-+∏知,对于函数1()f x =进行

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字. 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误 差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =- 计算,求对数时误差有多大?

数值分析 第六章 习题

第六章 习 题 1. 计算下列矩阵的1A ,2A ,A ∞三种范数。 (1)1101A ???=????,(2)312020116A ????=??????? . 2. 用Jacobi 方法和Gauss-Seidel 迭代求解方程组 1231231 238322041133631236x x x x x x x x x ?+=??+?=??++=? 要求取(0)(0,0,0)T x =计算到(5)x ,并分别与精确解(3,2,1)T x =比较。 3. 用Gauss-Seidel 迭代求解 12312312 35163621122x x x x x x x x x ??=??++=???+=?? 以(0)(1,1,1)T x =?为初值,当(1)() 310k k x x +?∞?<时,迭代终止。 4. 已知方程组121122,2,x x b tx x b +=?? +=? (1)写出解方程组的Jacobi 迭代矩阵,并讨论迭代收敛条件。 (2)写出解方程组的Gauss-Seidel 迭代矩阵,并讨论迭代收敛条件. 5. 设有系数矩阵 122111221A ?????=?????? , 211111112B ?????=??????? , 证明:(1)对于系数矩阵A ,Jacobi 迭代收敛,而Gauss-Seidel 迭代不收敛. (2)对于矩阵B ,. 6. 讨论方程组 112233302021212x b x b x b ?????????????=??????????????????? 用Jacobi 迭代和Gauss-Seidel 迭代的收敛性;如果都收敛,比较哪种方法收敛更快.

第六章非线性方程的数值解法习题解答

第六章非线性方程的数值解法习题解答 填空题: 1. 求方程()x f x =根的牛顿迭代格式是__________________。 Ans:1()1()n n n n n x f x x x f x +-=- '- 2.求解方程 在(1, 2)内根的下列迭代法中, (1) (2) (3) (4) 收敛的迭代法是(A ). A .(1)和(2) B. (2)和(3) C. (3)和(4) D. (4)和(1) 3.若0)()(,故迭代发散。 以上三中以第二种迭代格式较好。 2、设方程()0f x =有根,且'0()m f x M <≤≤。试证明由迭代格式1()k k k x x f x λ+=- (0,1,2,)k =L 产生的迭代序列{}0k k x ∞ =对任意的初值0(,)x ∈-∞+∞,当2 0M λ<< 时,均收敛于方程的根。

数值分析第四版习题和答案解析

第四版 数值分析习题 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝ 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大这个计算过程 稳定吗 12.计算,取,利用下列等式计算,哪一个得到的结果最好 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大若改用另一等价公式 计算,求对数时误差有多大 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 . 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3.

4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误 差做比较. 2.求证: (a)当时,. (b)当时,. 3.在次数不超过6的多项式中,求在的最佳一致逼近多项式.

《数值分析》第五章答案

习题5 1.导出如下3个求积公式,并给出截断误差的表达式。 (1) 左矩形公式:?-≈b a a b a f dx x f ))(()( (2) 右矩形公式:))(()(a b b f dx x f b a -≈? (3) 中矩形公式:?-+≈b a a b b a f dx x f ))(2 ( )( 解:(1) )()(a f x f ≈, )()()()(a b a f dx a f dx x f b a b a -=≈?? (2) )()(b f x f ≈,??-=≈b a b a a b a f dx b f dx x f ))(()()( )()(2 1)()()()(2 ηηξf a b dx b x f dx b x f b a b a '--=-'=-'=??,),(,b a ∈ηξ (3) 法1 )2 ( )(b a f x f +≈ , 法2 可以验证所给公式具有1次代数精度。作一次多项式 )(x H 满足 )2()2( b a f b a H +=+,)2 ()2(b a f b a H +'=+',则有 2 )2 )((!21)()(b a x f x H x f +-''= -ξ, ),(b a ∈ξ 于是 2.考察下列求积公式具有几次代数精度: (1) ?'+ ≈1 )1(2 1 )0()(f f dx x f ; (2) )3 1()31()(1 1f f dx x f +- ≈?-。 解: (1)当1)(=x f 时,左=1,右=1+0=1,左=右; 当x x f =)(时,左21= ,右=2 1 210=+,左=右; 当2 )(x x f =时,左=3 1 ,右=1,左≠右,代数精度为1。

数值分析习题集及答案

数值分析习题集 (适合课程《数值方法A》和《数值方法B》) 长沙理工大学 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少? 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差? 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求? 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到的结果最好? 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 .

2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3. 4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少? 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误

数值分析作业答案(第5章)

5.1.设A 是对称矩阵且011≠a ,经过一步高斯消去法后,A 约化为 ?? ????21 110 A a a T 证明2A 是对称矩阵。 证明 由消元公式及A 的对称性,有 ,,,3,2,,)2(111 11111 )2(n j i a a a a a a a a a a ji i j ji j i ij ij ==-=- = 故2A 对称。 5.2.设n ij a A )(=是对称正定矩阵,经过高斯消去法一步后,A 约化为 ?? ????21 110 A a a T 其中1)2(2)(-=n ij a A 。证明: (1).A 的对角元素;,,2,1,0n i a ii => (2).2A 是对称正定矩阵。 证明 (1).因为A 对称正定,所以 n i e Ae a i i ii ,,2,1,0),( =>=, 其中T i e )0,,0,1,0,,0( =为第i 个单位向量。 (2).由A 的对称性及消元公式,有 ,,,3,2,,)2(111 11111 )2(n j i a a a a a a a a a a ji i j ji j i ij ij ==-=- = 故2A 也对称。 又由A L A a a T 121110=????? ?,其中

??? ?????- =? ????? ? ?????????--=-111 1 11111 21101 1011n n I a a a a a a L , 可见1L 非奇异,因而对任意0≠x ,由A 的正定性,有 ,0),(),(,011111>=≠x AL x L x AL L x x L T T T T 故T AL L 11正定。 由,000110211 111121111 1?? ? ?? ?=????????-??????=-A a I a a A a a AL L n T T T 而011>a ,故知2A 正定

数值分析习题

第一章 绪论 习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。 1 若误差限为5 105.0-?,那么近似数0.003400有几位有效数字?(有效数字的计算) 2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ?有几位有效数字?(有效数字的计算) 4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5* =,已知 cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v 2 π=的绝对误差限与相对误差 限。(误差限的计算) 6 设x 的相对误差为%a ,求n x y =的相对误差。(函数误差的计算) 7计算球的体积,为了使体积的相对误差限为%1,问度量半径r 时允许的相对误差限为多大?(函数误差的计算) 8 设? -=1 1dx e x e I x n n ,求证: (1))2,1,0(11 =-=-n nI I n n (2)利用(1)中的公式正向递推计算时误差逐步增大;反向递推计算时误差逐步减小。(计算方法的比较选择)

第二章 插值法 习题主要考察点:拉格朗日插值法的构造,均差的计算,牛顿插值和埃尔米特插值构造,插值余项的计算和应用。 1 已知1)2(,1)1(,2)1(===-f f f ,求)(x f 的拉氏插值多项式。(拉格朗日插值) 2 已知9,4,10=== x x x y ,用线性插值求7的近似值。(拉格朗日线性插值) 3 若),...1,0(n j x j =为互异节点,且有 ) ())(())(()())(())(()(11101110n j j j j j j j n j j j x x x x x x x x x x x x x x x x x x x x x l ----------= +-+- 试证明 ),...1,0()(0 n k x x l x n j k j k j =≡∑=。 (拉格朗日插值基函数的性质) 4 已知352274.036.0sin ,333487.034.0sin ,314567.032.0sin ===,用抛物线插值计 算3367.0sin 的值并估计截断误差。(拉格朗日二次插值) 5 用余弦函数x cos 在00=x ,4 1π =x ,2 2π = x 三个节点处的值,写出二次拉格朗日插值 多项式, 并近似计算6 cos π 及其绝对误差与相对误差,且与误差余项估计值比较。(拉格朗 日二次插值) 6 已知函数值212)6(,82)4(,46)3(,10)1(,6)0(=====f f f f f ,求函数的四阶均差 ]6,4,3,1,0[f 和二阶均差]3,1,4[f 。(均差的计算) 7 设)())(()(10n x x x x x x x f ---= 求][1,0p x x x f 之值,其中1+≤n p ,而节点 )1,1,0(+=n i x i 互异。(均差的计算) 8 如下函数值表 建立不超过三次的牛顿插值多项式。(牛顿插值多项式的构造) 9求一个次数小于等于三次多项式)(x p ,满足如下插值条件:2)1(=p ,4)2(=p , 3)2(='p ,12)3(=p 。(插值多项式的构造)

数值分析第六章 13和13题答案

13- 设函数()f x 具有二阶连续导数,{}(*)0,'(*)0,''(*)0,k f x f x f x x =≠≠是由牛顿迭代 法产生的序列,证明 121''(*)lim ()2'(*)k k k k k x x f x x x f x +→∞--=-- 解 牛顿迭代法为 1(),0,1,2,...'()k k k k f x x x k f x +=- = 故 1() '()k k k k f x x x f x +-=- 2112112 121212211()'()()'()()()(*)['()][()(*)]'() '()['()](*)'()['()](*)k k k k k k k k k k k k k k k k k k x x f x f x x x f x f x f x f x f x f x f x f x f f x x x f x f x x ξξ+--------??-=-=??-?? --=---- 其中k ξ介于k x 与*x 之间,1k ξ-介于1k x -与*x 之间,根据式(7.14)得 211222111'()['()]*lim lim () '()['()](*)1''(*)2'(*)k k k k k k k k k k k k x x f f x x x x x f x f x x f x f x ξξ+-→∞→∞-----=-=--- 公式7.14----12''(*)lim 2'(*)k k k e f x e f x +→∞= 15- 考虑下列修正的牛顿公式(单点斯蒂芬森方法) 21()(())()k k k k k k f x x x f x f x f x +=-+- 设()f x 有二阶连续导数,(*)0,'(*)0f x f x =≠,试证明该方法是二阶收敛的. 证明: 将(())k k f x f x +在k x 处作台劳展开,得 21(()) ()'()()''()()2k k k k k k f x f x f x f x f x f f x ξ+=++

数值分析第六章思考题

思考题 10.设m T 是m 2+1个节点的复化梯形值,试证:143m m m T T S +-=就是m+12+1个节点的复化Simpson 值。 解:由复化梯形公式: 11()[()()2()]2n b a k h f x dx f a f b f a bh -=≈+++∑?,其中b a h n -=。 由题中条件可知:节点为m 2+1时 11 21112(2)[()()2()]2[()()2()]2(2)m m m m n k k T b a h f a f b f a bh b a f a f b f a b -==++=-+++=-+++?∑∑ 节点为m+12+1时: 11111121112(2)[()()2()]2[()()2()]2(2)m m m m n k k T b a h f a f b f a bh b a f a f b f a b ++++-==++=-+++=-+++?∑∑ m+12+1的复化Simpson 公式为: 21112111()[()()4()2()]3(2)i m m m b i a k k b a f x dx f a f b f x f x -+-==+-≈+++∑∑? 12111111211 2121 411433 11312(2)2(2)[()()4()2()]3(2)[()()2()]2(2)[()()2()]2(2)m m m i m m m m m m m m m i k k k k T T S b a b a b a f a f b f x f x b a f a f b f a b b a f a f b f a b +-++++-====++-==++-=+---+++-+++?-+++?∑∑∑∑

数值分析第六章小结

第6章 数值积分 --------学习小结 一、 本章学习体会 本章主要介绍了五种计算定积分的数值积分法,分别为:插值型求积公式、Newton-Cotes 求积公式、复化梯形公式与复化Simpson 公式、Gauss 型求积公式等。本章的重点在于掌握求积公式及其运用,并要学会求代数精度。而通过对求积公式进行比较,会发现其方法与以前所学习的解析方法有一定的不同,它并不需要求出定积分的原函数,而是去直接利用求积公式来求出所给定积分的近似值,使其达到一定的求解精度要求,从而根据不同的题型做出不同的解答,这对于我们今后的专业研究过程也有一定的作用。 例如:高阶Newton-Cotes 公式会出现数值不稳定,而低阶Newton-Cotes 公式有时又不能满足精度要求,可将积分区间[a ,b]分成若干小区间,在每个小区间上用低阶求积公式计算,然后求和,即运用复化求积法。通过运用matlab 软件,可以加深自己对各种求积公式的理解。根据求解要求,充分考虑已知条件,选择简便快捷的求积方法进行定积分求解,从而得出比较准确的结果。通过查阅相关书籍,加深对课本知识的理解,从而提高自己的自学能力。 二、本章知识梳理 1 求积公式及其代数精度: 求积公式的一般形式: () 0()()n b n k k a k f x dx f x λ=≈∑? 截断误差或余项:)()(0 k b a n k k n x f dx x f R ?∑=-=λ 代数精度:对于上面所列的求积公式,当()f x 为任何次数不高于m 的多项式时都成为等式,而当()f x 为某个m+1次多项式时不能成为等式,则称它具有m 次代数精度。 2 插值型求积公式: () ()()n b n k k a k f x dx f x λ =≈∑? 其中 ()()(0,1,...,) b n k k a l x dx k n λ ==?

数值分析第六章课后习题答案

第六章课后习题解答 (1)()()123(1)()213(1)()()312(0 1.21125551154213351010(1,1,1),17( 4.0000186, 2.99999k k k k k k k k k T x x x x x x x x x x x +++ì??=---??????=-+í??? ??=-++????==-(17) 解:(a )因系数矩阵按行严格对角占优,故雅可比法与高斯-塞德尔均收敛。(b )雅可比法的迭代格式为取迭代到次达到精度要求 (1)()() 123(1)(1)() 213(1)(1)(1) 312 (0) (8) 15,2.0000012) 2112555 115 4213 3510 10 (1,1,1),8( 4.0000186,2.9999915,2.0000012) T k k k k k k k k k T T x x x x x x x x x x ++++++-ì??=--- ??????=-+í??? ??=-+ + ????==-高斯塞德尔法的迭代格式为x 取迭代到次达到精度要求

1 2 1 2:00.40.4.0.40 0.80.40.80||(0.8)(0.80.32) ()1.09282031,00.4 0.4() 00.160.6400.032 0.672D L U I B D L U l l l l - -骣--÷ ?÷?÷? ÷?÷=+= -- ?÷?÷÷? ÷?÷--÷ ?桫 -=-+- =>-? -- ????=-=-????è l J J J S 解(a )雅可比法的迭代矩阵 B ()B B 故雅可比迭代法不收敛 高斯塞德尔法迭代矩阵 1 3 1 ()||||0.810 2210122 0||02 2 02 300 2S J B D L U I B D L U l l ¥ - -?÷÷÷÷ ÷÷÷÷÷÷?÷??< 骣-÷ ?÷?÷? ÷?÷=+= --?÷?÷÷? ÷?÷--?÷ 桫 -=骣 -÷?÷?÷?÷ ?÷=-= -?÷?÷÷?÷?÷?桫 l l S J J S B 故高斯-塞德尔迭代法收敛。(b )雅可比法的迭代矩阵 B (), (B )=0〈1故雅可比迭代法收敛。高斯-塞德尔法的迭代矩阵 B ()2 ||2S I B l l l ÷ -=- l S (), (B )=2 〉1故高斯-塞德尔法不收敛。

《数值分析》第六章答案

习题6 1.求解初值问题 y x y +=' )10(≤≤x 1)0(=y 取步长2.0=h ,分别用Euler 公式与改进Euler 公式计算,并与准确解 x e x y 21+-=相比较。 解: 1) 应用Euler 具体形式为 )(1i i i i y x h x y ++=+,其中i x i 2.0= 10=y 计算结果列于下表 i i x i y )(i x y i i y x y -)( 1 0.2 1.200000 1.242806 0.042806 2 0.4 1.480000 1.583649 0.103649 3 0.6 1.856000 2.044238 0.188238 4 0.8 2.347200 2.651082 0.303882 5 1.0 2.976640 3.436564 0.459924 2) 用改进的Euler 公式进行计算,具体形式如下: 10=y )() (1i i i D i y x h y y ++=+ )() (11) (1D i i i C i y x h y y +++++= )(2 1) (1)(11c i D i i y y y ++++= 4,3,2,1,0=i 计算结果列表如下 i i x i y ) (1D i y + ) (1c i y + i i y x y -)( 0 0.0 1.000000 1.200000 1.280000 0.000000 1 0.2 1.240000 1.528000 1.625600 0.002860 2 0.4 1.576800 1.972160 2.091232 0.006849 3 0.6 2.031696 2.558635 2.703303 0.012542 4 0.8 2.630669 3.316803 3.494030 0.020413 5 1.0 3.405417 0.031147