文档库 最新最全的文档下载
当前位置:文档库 › 大学物理17章答案

大学物理17章答案

大学物理17章答案
大学物理17章答案

第17章 量子物理基础

17.1 根据玻尔理论,计算氢原子在n = 5的轨道上的动量矩与其在第一激发态轨道上的动量矩之比.

[解答]玻尔的轨道角动量量子化假设认为电子绕核动转的轨道角动量为

2π==n n h

L mvr n ,

对于第一激发态,n = 2,所以

L 5/L 2 = 5/2.

17.2设有原子核外的3p 态电子,试列出其可能性的四个量子数.

[解答] 对于3p 态电子,主量子数为n = 3,

角量子数为 l = 1,

磁量子数为 m l = -l , -(l - 1), …, l -1, l ,

自旋量子数为 m s = ±1/2.

3p 态电子的四个可能的量子数(n ,l ,m l ,m s )为

(3,1,1,1/2),(3,1,1,-1/2),(3,1,0,1/2),(3,1,0,-1/2),(3,1,-1,1/2),(3,1,-1,-1/2) .

17.3 实验表明,黑体辐射实验曲线的峰值波长λm 和黑体温度的乘积为一常数,即λm T = b = 2.897×10-3m·K .实验测得太阳辐射波谱的峰值波长λm = 510nm ,设太阳可近似看作黑体,试估算太阳表面的温度.

[解答]太阳表面的温度大约为

3

92.8971051010λ--?==?m b T = 5680(K).

17.4 实验表明,黑体辐射曲线和水平坐标轴所围成的面积M (即单位时间内从黑体单位表面上辐射出去的电磁波总能量,称总辐射度)与温度的4次方成正比,即M = σT 4,其中σ =5.67×10-8W·m -2·K -4.试由此估算太阳单位表面积的辐射功率(太阳表面温度可参见上题).

[解答]太阳单位表面积的辐射功率大约为

M = 5.67×10-8×(5680)4 = 5.9×107(W·m -2).

17.5宇宙大爆炸遗留在宇宙空间的均匀背景辐射相当于3K 黑体辐射.求:

(1)此辐射的单色辐射强度在什么波长下有极大值?

(2)地球表面接收此辐射的功率是多少?

[解答](1)根据公式λm T = b ,可得辐射的极值波长为

λm = b/T = 2.897×10-3/3 = 9.66×10-4(m).

(2)地球的半径约为R = 6.371×106m ,

表面积为 S = 4πR 2.

根据公式:黑体表面在单位时间,单位面积上辐射的能量为 M = σT 4,

因此地球表面接收此辐射的功率是

P = MS = 5.67×10-8×34×4π(6.371×106)2

= 2.34×109(W).

17.6 铝表面电子的逸出功为6.72×10-19J,今有波长为λ = 2.0×10-7m 的光投射到铝表面上.试求:

(1)由此产生的光电子的最大初动能;

(2)遏止电势差;

(3)铝的红限波长.

[解答](1)光子的能量为E = hν = hc/λ,

根据爱因斯坦光电效应方程

hν = E k + A,

产生的光电子的最大初动能为

E k= hν - A

= 6.63×10-34×3×108/2.0×10-7-6.72×10-19

= 3.23×10-19(J).

(2)遏止电势差的公式为eU s = E k,遏止电势差为

U s = E k/e = 3.23×10-19/1.6×10-19=2.0(V).

(3)铝的红限频率为ν0= A/h,红限波长为

λ0= c/ν0= hc/A

= 6.63×10-34×3×108/6.72×10-19

= 2.96×10-7(m).

17.7 康普顿散射中入射X射线的波长是λ = 0.70×10-10m,散射的X 射线与入射的X射线垂直.求:

(1)反冲电子的动能E K ;

(2)散射X 射线的波长;

(3)反冲电子的运动方向与入射X 射线间的夹角θ.

[解答](1)(2)根据康普顿散射公式得波长变化为

21222sin 2 2.42610sin 24?

π

λΛ-?==??

= 2.426×10-12(m),

散射线的波长为

λ` = λ + Δλ = 0.72426×10-10(m).

反冲电子的动能为

`k hc

hc

E λλ=-

348348

10106.6310310 6.63103100.7100.7242610----??????=-??

= 9.52×10-17(J).

(3)由于 /`tan /`hc hc λλθλλ==,

0.70.96650.72426==,

所以夹角为θ = 44°1`.

17.8 求波长分别为λ1 = 7.0×10-7m 的红光;λ2 = 0.25×10-10m 的X 射线的能量、动量和质量.

[解答]X 射线的能量为E = h ν = hc/λ,

动量为 p = h/λ;

由E = hc/λ = mc 2,得其质量为

m = h/cλ.

对于红光来说,能量为

348

176.6310310710E --???=?

= 2.84×10-19(J),

动量为

34

176.6310710p --?=?

= 9.47×10-25(kg·m·s -1),

质量为

34

1876.6310310710m --?=???

= 3.16×10-36(kg).

对于X 射线来说,能量为

348

2106.63103100.2510E --???=?

= 7.956×10-15(J),

动量为

34

2106.63100.2510p --?=?

= 2.652×10-23(kg·m·s -1),

质量为

34

28106.63103100.2510m --?=???

= 8.84×10-32(kg).

17.9 处于第四激发态上的大量氢原子,最多可发射几个线系,共几条谱线?那一条波长最长.

[解答]第四激发态的氢原子处于第5个能级,最多可发射四个线系.

(1)能级5到4,1条谱线;

(2)能级5和4到3,2条谱线;

(3)能级5、4和3到2,3条谱线;

(3)能级5、4、3和2到1,4条谱线.

共10条谱线.从能级5跃迁到4发射的光谱频率最小,波长最长.

17.10 设氢原子中电子从n = 2的状态被电离出去,需要多少能量.

[解答]氢原子能级公式为

4222018n me E h n ε=-,

当n =1时,基态能级的能量为

4

12208me E h ε=-

≈-2.18×10-18(J) = -13.6(eV),

因此 1

2n E E n =.

当电子从n 能级跃迁到m 能级时放出(正)或吸收(负)光子的能量为

12211()n m E E E E n m ?=-=-.

电离时,m 趋于无穷大.当电子从n = 2的能级电离时要吸收能量 221113.6()2E ?=--∞= -3.4(eV),

因此需要3.4eV 的能量.

17.11 质量为m 的卫星,在半径为r 的轨道上环绕地球运动,线速度为v .

(1)假定玻尔氢原子理论中关于轨道角动量的条件对于地球卫星同样成立.证明地球卫星的轨道半径与量子数的平方成正比,即r = Kn 2,(式中K 是比例常数);

(2)应用(1)的结果求卫星轨道和下一个“容许”轨道间的距离,由此进一步说明在宏观问题中轨道半径实验上可认为是连续变化的(利用以下数据作估算:普朗克常数h = 6.63×10-34J·s ,地球质量M = 6×1024kg ,地球半径R = 6.4×103km ,万有引力常数G =

6.7×10-11N·m 2·kg -2.

[解答](1)卫星绕地球运动的向心力是万有引力

2

2Mm mv G r r =;

根据玻尔理论,角动量为

mvr = nh /2π.

将前式乘以mr 3得

2

222()()4nh GMm r mvr π==,

所以 222224h n r Kn GMm π==,

即:卫星的轨道半径与量子数的平方成正比.

(2)假设卫星质量m = 100kg ,比例系数为

2

224h K GMm π=

342211242

(6.6310)4 6.710610(100)π--?=????? = 2.77×10-87.

可见:比例系数很小.

当r = R 时,地球表面的量子数为

460 4.810n ?.

可见:地球表面处的量子数很大.

地面以上的量子数设为n `,(n` = 1,2,3,…),则总量子数可表示为两个量子数之和:n =n 0 + n`.轨道间的距离为

Δr = K [(n 0 + n` + 1)2 - (n 0 + n`)2]

= K [2(n 0 + n`) + 1].

由于n 0>>1,所以Δr = 2Kn 0 + 2Kn`.

设n` = kn 0,即:取地面以上的量子数为地球表面量子数的倍数,有n = (k + 1)n 0,则

r = Kn 02(k + 1)2,

Δr = 2Kn 0(k + 1) = 2.66×10-40(k + 1).

这说明:当地面以上的量子数按k + 1成倍地增加时,半径将按k + 1的平方的规律增加,而轨道之间的距离只按k + 1的一次方的规律增加;由于Δr 的系数很小,所以轨道间距是非常非常小的,因此可认为轨道半径是连续变化的.

17.12 电子和光子各具有波长2.0×10-10m ,它们的动量和总能量各是多少?

[解答]它们的动量都为

34

106.6310210h p λ--?==?

= 3.315×10-24(kg·m·s -1).

根据公式E 2 = p 2c 2 + m 02c 4,电子的总能量为

E ==3×108×[(3.315×10-24)2

+ (9.1×10-31×3×108)2]1/2

=8.19×10-14(J).

光子的静止质量为零,总能量为

E = cp

= 3×108×3.315×10-24 = 9.945×10-16(J).

17.13 室温下的中子称为热中子T = 300K ,试计算热中子的平均德布罗意波长.

[解答]中子热运动的平均速度为

=

v

其中k为玻尔兹曼常数k= 1.38×10-23J·K-1,m p是电子的质量m p= 1.675×10-27kg,可得平均速度为

v= 2.509×104(m·s-1),

平均动量为

=

n

p m v= 4.2×10-27(kg·m·s-1).

平均德布罗意波长为

/

λ=h p= 1.58×10-10(m) = 0.158(nm).

17.14 一束动量是p的电子,通过缝宽为a的狭缝,在距离狭缝为R 处放置一屏,屏上电子衍射图样中央最大的宽度是多少?

[解答]根据动量和位置的不确定关系

Δp x·Δx≧h,

其中位置不确定量为Δx = a,动量的不确定量为Δp x = p sinθ.设电子衍射图样的中央最大半宽度为w,则sinθ = w/R,

可得

w

p a h

R

?≥

,宽度为

2

2

hR

w

pa

[注意]如果将h改为?/2,则宽度为2w≧?R/pa.两者相差很小.

17.15 一宽度为a的一维无限深势阱,试用不确定关系估算阱中质量为m的粒子最低能量为多少?

[解答]粒子坐标的不确定范围是

Δx ≦a ,

动量的不确定范围是

Δp ≧h /Δx ≧h /a .

这也就是动量p 的范围.因此能量为

E = p 2/2m ≧ h 2/2ma 2,

最低能量可估计为

E min = h 2/2ma 2.

17.16 设有一宽度为a 的一维无限深势阱,粒子处于第一激发态,求在x = 0至x = a /3之间找到粒子的几率?

[解答]粒子在一维无限深势阱中的定态波函数为

(0)(),(1,2,3,...)πψ≤≤==n x a n x x n a ,

Ψ(x ) = 0,(x < 0,x > a ).

当粒子处于第一激发态时,n = 2,在x = 0至x = a /3之间被发现的几率为

/3220|()|d ψ?a x x /3

2022sin d π=

?a x x a a

23== 0.391.

17.17 设粒子在宽度为a 的一维无限深势阱运动时,其德布罗意波在阱内形成驻波,试利用这一关系导出粒子在阱中的能量计算式.

[解答]当粒子在势阱中形成稳定驻波时,势阱宽度必然为半波长

的整数倍,即

n (λ/2) = a ,(n = 1,2,3,…).

根据德布罗意假设 λ = h/p ,

可得粒子的动量为

==h nh

p a 能量为 22

2228==p h E n m ma .

17.18假定对某个粒子动量的测定可精确到千分之一,试确定这个粒子位置的最小不确定量.

(1)该粒子质量为5×10-3kg ,以2m·s -1的速度运动;

(2)该粒子是速度为1.8×108m·s -1的电子.

[解答]粒子的动量为 p = mv ,

动量的不确定量为 Δp = p /1000,

根据动量和位置的不确定关系Δp ·Δx ≧?/2,

位置的不确定量为 Δx = ?/2Δp .

(1)100024h x p mv π?≥=?h

34

31000 6.631045102-??=π???= 5.276×10-30(m).

(2)100024h x p mv π?≥=?h

34

3181000 6.631049.110 1.810--??=π????

= 3.22×10-10(m).

17.19设有某线性谐振子处于第一激发态,其波函数为

2221ψ-=

a x .

式中a =,k 为常数,则该谐振子在何处出现的概率最大?

[解答]第一激发态的概率为

22221||a x

w e ψ-==,

对x 求导得

222222d (2)]d a x a x w xe x a x e t --=+-

2222(1)a x

x x a e -=-,

令d w /d t = 0,得概率最大的位置为

x = ±1/a .

17.20一维运动的粒子,处于如下的波函数所描述的状态

,(0);()0,(0).x Axe x x x λψ-?>=?

式中λ > 0,A 为常数.

(1)将此波函数归一化;

(2)求粒子位置的概率分布函数;

(3)粒子在在何处出现的概率最大?

[解答](1)归一化得

222201||

d d x x A x

e x λψ∞∞

--∞=

=?? 22201d 2x A x e λλ∞--=?

2222001{2d }2x x A x e xe x λλλ∞∞

---=-?

222012()d 2x

A x e λλ∞

--=-? 22220012(){d }2x

x A xe e x λλλ∞

∞---=--?

22323012()24x

A A e λλλ∞

--==,

所以A =2λ3/2 .归一化波函数为

3/22,(0);()0,(0).x xe x x x λλψ-?>=?

([注]利用Γ函数的性质可简化积分过程.

10()d n x n x e x

--Γ=?,

当n 为整数时,Γ(n ) = (n - 1)!.设y = 2λx ,则d x = d y /2λ,可得

22331001d ()d 2x y x e

x y e y λλ∞

---=?? 33

11()(3)2()22λλ=Γ=,

可以得出同一结果.)

(2)粒子坐标的几率分布函数为

3222

4,(0);()|()|0,(0).x x e x w x x x λλψ-?>==?

(3)利用上一题的方法求导可得几率最大的位置为x = 1/λ.17.21 设有某一维势场如下:

0,(0);

,(0,).

≤≤

?

=?

<>

?

x L

V

V x x L

该势场可称为有限高势阱,设粒子能量E < V0,求E所满足的关系式.

[解答]粒子运动的薛定谔方程为

2

2

2

()0

m

E V

ψψ

?+-=

h.

在三个区域的方程为

2

1

01

22

d2

()0,(0);

d

m

E V x

x

ψ

ψ

+-=<

h

2

2

2

22

d2

0,(0);

d

m

E x L

x

ψ

ψ

+=<<

h

2

3

03

22

d2

()0,().

d

m

E V x L

x

ψ

ψ

+-=>

h

设1k=h

,2k=h,

则得

2

2

1

11

2

d

0,(0);

d

k x

x

ψ

ψ

-=<

(1)

2

2

2

22

2

d

0,(0);

d

k x L

x

ψ

ψ

+=<<

(2)

2

2

3

13

2

d

0,().

d

k x L

x

ψ

ψ

-=>

(3)

方程的通解为

ψ1(x) = A1exp(k1x) + B1exp(-k1x),(x<0);(4)

ψ2(x ) = A 2cos(k 2x ) + B 2sin(k 2x ),(0

ψ3(x) = A 3exp(k 1x ) + B 3exp(-k 1x ),(x >L ).(6)

当x →-∞时,ψ1有限,所以B 1 = 0;当x →∞时,ψ3有限,所以A 3 = 0.

当x = 0时,ψ1(0) = ψ2(0),可得

A 1 = A 2; (7)

同时ψ1`(0) = ψ2`(0),可得

k 1A 1 = k 2B 2. (8)

当x = L 时,ψ2(L ) = ψ3(L ),ψ2`(L ) = ψ3`(L ),可得

A 2cos k 2L +

B 2sin k 2L = B 3exp(-k 1L );(9)

-k 2A 2sin k 2L + k 2B 2cos k 2L = -k 1B 3exp(-k 1L )(10)

将(9)乘以k 1加(10)得

k 1A 2cos k 2L + k 1B 2sin k 2L

-k 2A 2sin k 2L + k 2B 2cos k 2L = 0.

即 (k 1A 2 + k 2B 2)cos k 2L = (k 2A 2 - k 1B 2)sin k 2L ,

亦 1222

22212t a n k A k B k L k A k B +=-. (11)

由(7)和(8)得k 1A 2 = k 2B 2,

即 B 2 = k 1A 2/k 2, (12)

(12)代入(11)式得

12

22

2

212tan k

k k L k k =-,

0t a n =h (13)

这就是总能量满足的关系式.

17.22 原子内电子的量子态由n 、l 、m l 、m s 四个量子数表征,当n 、l 、m l 一定时,不同的量子态数目为多少?当n 、l 一定时,不同量子态数目为多少?当n 一定时,不同量子态数目为多少?

[解答]当n 、l 、m l 一定时,m s 只取两个值,所以量子态数目为2. 当n 、l 一定时,m l 有(2l + 1)种不同取值,所以量子态数目为2(2l + 1).

当n 一定时,l 从0到(n - 1)共有n 种不同取值,量子态数目为

1110002(21)421

n n n l l l l l ---===+=+∑∑∑

2

(1)4222n n n n -=?+=.

大学物理下答案习题14

习题14 14.1 选择题 (1)在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹[ ] (A) 对应的衍射角变小. (B) 对应的衍射角变大. (C) 对应的衍射角也不变. (D) 光强也不变. [答案:B] (2)波长nm (1nm=10-9m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d=12mm,则凸透镜的焦距是[ ] (A)2m. (B)1m. (C)0.5m. (D)0.2m. (E)0.1m [答案:B] (3)波长为的单色光垂直入射于光栅常数为d、缝宽为a、总缝数为N的光栅上.取k=0,±1,±2....,则决定出现主极大的衍射角的公式可写成[ ] (A) N a sin=k. (B) a sin=k. (C) N d sin=k. (D) d sin=k. [答案:D] (4)设光栅平面、透镜均与屏幕平行。则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级次k [ ] (A)变小。 (B)变大。 (C)不变。 (D)的改变无法确定。 [答案:B] (5)在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为[ ] (A) a=0.5b (B) a=b (C) a=2b (D)a=3b [答案:B] 14.2 填空题 (1)将波长为的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为,则缝的宽度等于________________. λθ] [答案:/sin (2)波长为的单色光垂直入射在缝宽a=4 的单缝上.对应于衍射角=30°,单缝处的波面可划分为______________个半波带。 [答案:4] (3)在夫琅禾费单缝衍射实验中,当缝宽变窄,则衍射条纹变;当入射波长变长时,则衍射条纹变。(填疏或密) [答案:变疏,变疏]

大学物理习题答案--第一章

第一章作业解 1-7液滴法是测定液体表面张力系数的一种简易方法。将质量为m 的待测液体吸入移液管,然后让液体缓缓从移液管下端滴出。可以证明 d n mg πγ= 其中,n 为移液管中液体全部滴尽时的总滴数,d 为液滴从管口落下时断口的直径。请证明这个关系。 证:当液滴即将滴下的一刻,其受到的重力与其颈部上方液体给予的张力平衡 F g m =' d r L F πγπγγ===2 n m m = ', d n m πγ= 得证:d n mg πγ= 1-8 在20 km 2的湖面上下了一场50 mm 的大雨,雨滴半径为1.0 mm 。设温度不变,雨水在此温度下的表面张力系数为7.3?10-2N ?m -1。求释放的能量。 解:由 S E ?=?γ 雨滴落在湖面上形成厚为50 mm 的水层,表面积就为湖面面积,比所有落下雨滴的表面积和小,则释放的表面能为: )4(2 S r n E -?=?πγ 其中,3 43 r Sh n π= 为落下的雨滴数,r 为雨滴半径 J r h S E 8 3 3 6 2 1018.2)110 0.110503( 102010 3.7)13( ?=-???????=-=?---γ 1-9假定树木的木质部导管为均匀的圆柱形导管,树液完全依靠毛细现象在导管内上升,接触角为45°,树液的表面张力系数1 2 10 0.5--??=m N γ。问要使树液到达树木的顶部,高 为20 m 的树木所需木质部导管的最大半径为多少? 解:由朱伦公式:gr h ρθ γcos 2= 则:cm gh r 5 3 2 10 6.320 8.91012 /210 0.52cos 2--?=??????= = ρθ γ 1-10图1-62是应用虹吸现象从水库引水的示意图。已知虹吸管粗细均匀,其最高点B 比水库水面高出m h 0.31=,管口C又比水库水面低m h 0.52=,求虹吸管内的流速及B点处的

大学物理上册答案详解

大学物理上册答案详解 习题解答 习题一 1—1 |r ?|与r ? 有无不同? t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即 r ?12r r -=,12r r r -=?; (2) t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量。 ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中 t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1—1图所示. 题1—1图 (3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分 量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ +=

式中 dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度 和加速度时,有人先求出r =2 2 y x +,然后根据v =t r d d ,及a =22d d t r 而 求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v =2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确。因为速度与加速度都是矢量,在平面直角坐标 系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 22 2222d d d d d d d d d d d d +==+==∴ 故它们的模即为 2 22 222 2 22 2 22d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x 而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作 22d d d d t r a t r v ==

大学物理课后习题答案(赵近芳)下册

习题八 8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系 ? 解: 如题8-1图示 (1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 2 220)3 3(π4130cos π412a q q a q '=?εε 解得 q q 3 3- =' (2)与三角形边长无关. 题8-1图 题8-2图 8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2 图所示.设小球的半径和线的质量都可 解: 如题8-2图示 ?? ? ?? ===220)sin 2(π41 sin cos θεθθl q F T mg T e 解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式2 04r q E πε= ,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解 ?

解: 02 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电 荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f = 2 024d q πε,又有人 说,因为f =qE ,S q E 0ε=,所以f =S q 02 ε.试问这两种说法对吗?为什么? f 到底应等于多少 ? 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε= ,另一板受它的作用 力S q S q q f 02 022εε= =,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为 r E = 302cos r p πεθ, θ E =3 04sin r p πεθ 证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量 θsin p . ∵ l r >>

大学物理上册课后习题答案

大学物理上册课后习题答案

习题解答 习题一 1-1 |r ?|与r ? 有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解: (1)r ?是位移的模,?r 是位矢的模的增量, 即r ?1 2r r -=,1 2 r r r ? ?-=?; (2)t d d r 是速度的模,即t d d r = =v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1-1图所示. 题 1-1图 (3) t d d v 表示加速度的模,即 t v a d d ? ?= ,t v d d 是加速度a 在切向上的分量.

∵有ττ??(v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d τ τ???+= 式中dt dv 就是加速度的切向分量. ( t t r d ?d d ?d τ??Θ与的运算较复杂,超出教材规定,故不予 讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r = 2 2 y x +,然后根据v =t r d d ,及a = 2 2d d t r 而求得结果; 又有人先计算速度和加速度的分量,再合成求得结果,即 v =2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种 方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有 j y i x r ? ??+=, j t y i t x t r a j t y i t x t r v ??? ???? ?222222d d d d d d d d d d d d +==+==∴ 故它们的模即为 2 222 22222 2 2 2d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x

大学物理答案第17章

大学物理答案第17章

17-3 有一单缝,缝宽为0.1mm ,在缝后放一焦距为50cm 的汇聚透镜,用波长为546.1nm 的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。 解:单缝衍射中央明条纹的宽度为 a f x λ 2=? 代入数据得 mm x 461.510 1.0101.54610 5023 9 2 =????=?--- 17-4 用波长为632.8nm 的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。 解:单缝衍射极小的条件 λθk a =sin 依题意有 m a μλ 26.70872 .0108.6325sin 9 =?==- 17-5 波长为20m 的海面波垂直进入宽50m 的港口。在港内海面上衍射波的中央波束的角宽是多少? 解:单缝衍射极小条件为 λθk a =sin

依题意有 011 5.234.0sin 5 2 sin 20sin 50===→=--θθ 中央波束的角宽为0 475 .2322=?=θ 17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。 解:单缝衍射明纹条件为 2 ) 12(sin λ θ+=k a 依题意有 2)122(2)132(2 1λλ+?=+? 代入数据得 nm 6.4287 60057521=?== λλ 17-7 用肉眼观察星体时,星光通过瞳孔的衍射在视网膜上形成一个亮斑。 (1)瞳孔最大直径为7.0mm ,入射光波长为550nm 。星体在视网膜上像的角宽度多大? (2)瞳孔到视网膜的距离为23mm 。视网膜上星体的像的直径多大? (3)视网膜中央小凹(直径0.25mm )中的柱状感光细胞每平方毫米约1.5×105个。星体的像照亮了几个这样的细胞?

大学物理习题及综合练习答案详解

库仑定律 7-1 把总电荷电量为Q 的同一种电荷分成两部分,一部分均匀分布在地球上,另一部分均匀分布在月球上, 使它们之间的库仑力正好抵消万有引力,已知地球的质量M =l024kg ,月球的质量m =l022 kg 。(1)求 Q 的最小值;(2)如果电荷分配与质量成正比,求Q 的值。 解:(1)设Q 分成q 1、q 2两部分,根据题意有 2 221r Mm G r q q k =,其中041πε=k 即 2221q k q GMm q q Q += +=。求极值,令0'=Q ,得 0122=-k q GMm C 1069.5132?== ∴k GMm q ,C 1069.51321?==k q GMm q ,C 1014.11421?=+=q q Q (2)21q m q M =Θ ,k GMm q q =21 k GMm m q mq Mq ==∴2122 解得C 1032.6122 2?==k Gm q , C 1015.51421?==m Mq q ,C 1021.51421?=+=∴q q Q 7-2 三个电量为 –q 的点电荷各放在边长为 l 的等边三角形的三个顶点上,电荷Q (Q >0)放在三角形 的重心上。为使每个负电荷受力为零,Q 值应为多大 解:Q 到顶点的距离为 l r 33= ,Q 与-q 的相互吸引力为 20141r qQ F πε=, 两个-q 间的相互排斥力为 2 2 0241l q F πε= 据题意有 10 230cos 2F F =,即 2 022041300cos 41 2r qQ l q πεπε=?,解得:q Q 33= 电场强度 7-3 如图7-3所示,有一长l 的带电细杆。(1)电荷均匀分布,线密度为+,则杆上距原点x 处的线元 d x 对P 点的点电荷q 0 的电场力为何q 0受的总电场力为何(2)若电荷线密度=kx ,k 为正常数,求P 点的电场强度。 解:(1)线元d x 所带电量为x q d d λ=,它对q 0的电场力为 200200)(d 41 )(d 41 d x a l x q x a l q q F -+=-+= λπεπε q 0受的总电场力 )(4)(d 400020 0a l a l q x a l x q F l +=-+= ?πελπελ 00>q 时,其方向水平向右;00

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

大学物理答案第10章

第十章 静电场中的导体与电介质 10-1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 题 10-2 图 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4= = 题 10-3 图

分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D ) 电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解 电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6 不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

大学物理教程(上)课后习题答案解析

物理部分课后习题答案(标有红色记号的为老师让看的题) 27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位, 求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 21)y = 或 1= (2)将1t s =和2t s =代入,有 11r i =u r r , 241r i j =+u r r r 213r r r i j =-=-r u r u r r r V 位移的大小 r ==r V (3) 2x dx v t dt = = 2(1)y dy v t dt ==- 22(1)v ti t j =+-r r r 2x x dv a dt ==, 2y y dv a dt == 22a i j =+r r r 当2t s =时,速度和加速度分别为 42/v i j m s =+r r r 22a i j =+r r r m/s 2

1-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+r r r ,式中的R 、ω均为 常量。求(1)质点的速度;(2)速率的变化率。 解 (1)质点的速度为 sin cos d r v R ti R t j dt ωωωω==-+r r r r (2)质点的速率为 v R ω== 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在 t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t dt θ ω= = 质点在t 时刻的法向加速度n a 的大小为 2216n a R Rt ω== 角加速度β的大小为 24/d rad s dt ω β== 77 页2-15, 2-30, 2-34, 2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用 下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2.0 2.0 2.020 (63)(33) 18I Fdt t dt t t N s ==+=+=? ?g 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力 (空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,

赵近芳版《大学物理学上册》课后答案

1 习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和 t d d r 有无不同? t d d v 和 t d d v 有无不同?其不同在哪里?试举例说明. 解:(1) r ?是位移的模,? r 是位矢的模的增量,即r ?1 2r r -=,1 2r r r -=?; (2) t d d r 是速度的模,即 t d d r = =v t s d d .t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与 r 不同如题1-1图所示 . 题1-1图 (3) t d d v 表示加速度的模,即t v a d d = , t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢) ,所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y = y (t ),在计算质点的速度和加速度时,有人先求出r =2 2y x +,然后根据v = t r d d ,及a = 2 2d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 2 2d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 222222d d d d d d d d d d d d +==+==∴ 故它们的模即为

大学物理17章答案.docx

第17章量子物理基础 17.1根据玻尔理论,计算氢原子在斤=5的轨道上的动量矩与其在第一激发态轨道上的动量矩之比. [解答]玻尔的轨道角动量量子化假设认为电子绕核动转的轨道角动量为 L =mvr =n — N2TC , 对于第一激发态,n = 2,所以 厶仏2 = 5/2? 17.2设有原子核外的3p态电子,试列出其可能性的四个量子数. [解答]对于3p态电子,主量子数为n = 3, 角量子数为/=1, 磁量子数为mi = - 1), I -1, 自旋量子数为m s = ±1/2. 3p态电子的四个可能的量子数(斤丿,叫叫)为 (3,1 丄1/2), (3,1,1,? 1/2), (3丄0,1/2), (3,1,0,-1/2),(3,1,?1,1/2), (3,1,-1,-1 ⑵. 17.3实验表明,黑体辐射实验曲线的峰值波长九和黑体温度的乘积为一常数,即入』=b = 2.897xl(y3m?K?实验测得太阳辐射波谱的峰 值波长九= 510nm,设太阳可近似看作黑体,试估算太阳表面的温度.

[解答]太阳表面的温度大约为 T_ b _ 2.897X10-3 ~ 510x10—9 =5680(K)? 17.4实验表明,黑体辐射曲线和水平坐标轴所围成的面积M (即单位时间内从黑体单位表面上辐射出去的电磁波总能量,称总辐射度) 与温度的4次方成正比,即必=〃,其中^=5.67xl0-8W m_2 K-4.试由此估算太阳单位表面积的辐射功率(太阳表面温度可参见上题). [解答]太阳单位表面积的辐射功率大约为 A/=5.67xl0-8x(5680)4 = 5.9xl07(W-m-2)? 17.5宇宙大爆炸遗留在宇宙空间的均匀背景辐射相当于3K黑体辐射.求: (1)此辐射的单色辐射强度在什么波长下有极大值? (2)地球表面接收此辐射的功率是多少? [解答](1)根据公式UT=b,可得辐射的极值波长为 九=b/T= 2.897X10_3/3 = 9.66x104(m). (2)地球的半径约为7? = 6.371x10%, 表面积为 5 = 47T T?2. 根据公式:黑体表面在单位时间,单位面积上辐射的能量为M = al4, 因此地球表面接收此辐射的功率是 P = MS= 5.67x 1 (T8x34x4 兀(6.371 x 106)2

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理习题集(下)答案

一、 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ] (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子 的初相为4 3 π,则t=0时,质点的位置在: [ D ] (A) 过1x A 2=处,向负方向运动; (B) 过1x A 2 =处,向正方向运动; (C) 过1x A 2=-处,向负方向运动;(D) 过1 x A 2 =-处,向正方向运动。 3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表 此简谐振动的旋转矢量图为 [ B ] 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ] (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ] (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。 6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ] (4) 题(5) 题

大学物理答案第17章

17-2一单缝用波长为λ1和λ2的光照明,若λ1的第一级衍射极小与λ2的第二级衍射极小重合。问 (1)这两种波长的关系如何? (2)所形成的衍射图样中是否还有其它极小重合? 解:(1)单缝衍射极小条件为 λθk a =sin 依题意有 212λλ= (2)依题意有 11sin λθk a = 22sin λθk a = 因为212λλ=,所以得所形成的衍射图样中还有其它极小重合的条件为 212k k = 17-3 有一单缝,缝宽为0.1mm ,在缝后放一焦距为50cm 的汇聚透镜,用波长为546.1nm 的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。 解:单缝衍射中央明条纹的宽度为 a f x λ 2=? 代入数据得 mm x 461.510 1.0101.54610 5023 9 2 =????=?--- 17-4 用波长为632.8nm 的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。 解:单缝衍射极小的条件 λθk a =sin 依题意有 m a μλ 26.70872 .0108.6325sin 9 0=?==- 17-5 波长为20m 的海面波垂直进入宽50m 的港口。在港内海面上衍射波的中央波束的角 宽是多少? 解:单缝衍射极小条件为 λθk a =sin 依题意有 011 5.234.0sin 5 2 sin 20sin 50===→=--θθ 中央波束的角宽为0 475.2322=?=θ

17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。 解:单缝衍射明纹条件为 2 ) 12(sin λ θ+=k a 依题意有 2)122(2)132(2 1λλ+?=+? 代入数据得 nm 6.4287 60057521=?== λλ 17-7 用肉眼观察星体时,星光通过瞳孔的衍射在视网膜上形成一个亮斑。 (1)瞳孔最大直径为7.0mm ,入射光波长为550nm 。星体在视网膜上像的角宽度多大? (2)瞳孔到视网膜的距离为23mm 。视网膜上星体的像的直径多大? (3)视网膜中央小凹(直径0.25mm )中的柱状感光细胞每平方毫米约1.5×105个。星体的像照亮了几个这样的细胞? 解:(1)据爱里斑角宽公式,星体在视网膜上像的角宽度为 rad d 4 3 9109.110 0.71055044.244.22---?=??==λ θ (2)视网膜上星体的像的直径为 mm l d 34104.423109.1 2--?=??==θ (3)细胞数目应为3.2105.14 )104.4(52 3=????= -πn 个 17-8 在迎面驶来的汽车上,两盏前灯相距120cm 。试问汽车离人多远的地方,眼睛恰能分 辨这两盏前灯?设夜间人眼瞳孔直径为5.0mm ,入射光波长为550nm.。 解: 38.9101.22l L l L l D L m λδθλ ????==?设两灯距为,人车距为。人眼最小分辨角为, =1.22=D 17-9 据说间谍卫星上的照相机能清楚识别地面上汽车的牌照号码。(1)若被识别的牌照上的字划间的距离为5cm ,在160km 高空的卫星上的照相机的角分辨率应多大? (2)此照相机的孔径需多大?光的波长按500nm 计算。 解:装置的光路如图所示。 S 15cm S 2 160km D

赵近芳版《大学物理学上册》课后答案之欧阳文创编

习题解答 习题一 1-1|r ?|与r ?有无不同?t d d r 和t d d r 有无不同?t d d v 和 t d d v 有无不 同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即 r ?1 2r r -=,12r r r -=?; (2)t d d r 是速度的模,即 t d d r ==v t s d d .t r d d 只是速度在径向上的 分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是 速度径向上的分量, ∴t r t d d d d 与r 不同如题1-1图所示. 题1-1 图 (3) t d d v 表示加速度的模,即 t v a d d = ,t v d d 是加速度a 在切向上 的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ +=式中dt dv 就是加速度的切向分量.

(t t r d ?d d ?d τ 与 的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =2 2y x +,然后根据v =t r d d ,及a =2 2d d t r 而求得结果;又有人先计算速度和加速度的 分量,再合成求得结果,即 v = 2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 222 22d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种 正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面 直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 222222d d d d d d d d d d d d +==+==∴故它们 的模即为 2 222 22222 222d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x 而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作 其二,可能是将2 2d d d d t r t r 与误作速度与加速度的模。在1-1题中 已说明t r d d 不是速度的模,而只是速度在径向上的分量,同 样,2 2d d t r 也不是加速度的模,它只是加速度在径向分量中的

大学物理下册练习及答案

大学物理下册练习及答 案 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

电磁学 磁力 A 点时,具有速率s m /10170?=。 (1) 欲使这电子沿半圆自A 至C 运动,试求所需 的磁场大小和方向; (2) 求电子自A 运动到C 所需的时间。 解:(1)电子所受洛仑兹力提供向心力 R v m B ev 20 0= 得出T eR mv B 3197 310101.105 .0106.11011011.9---?=?????== 磁场方向应该垂直纸面向里。 (2)所需的时间为s v R T t 87 0106.110 105 .0222-?=??===ππ eV 3100.2?的一个正电子,射入磁感应强度B =的匀强磁场中,其速度 B 成89角,路径成螺旋线,其轴在B 的方向。试求这螺旋线运动的周期T 、螺距h 和半径r 。 解:正电子的速率为 731 19 3106.210 11.9106.110222?=?????==--m E v k m/s 做螺旋运动的周期为 1019 31 106.31 .0106.11011.922---?=????==ππeB m T s 螺距为410070106.1106.389cos 106.289cos --?=????==T v h m 半径为319 7310105.1 0106.189sin 106.21011.989sin ---?=??????==eB mv r m d =1.0mm ,放在 知铜片里每立方厘米有2210?个自由电子,每个电子的电荷19106.1-?-=-e C ,当铜片中有I =200A 的电流流通时, (1)求铜片两侧的电势差'aa U ; (2)铜片宽度b 对'aa U 有无影响为什么 解:(1)53 1928'1023.210 0.1)106.1(104.85 .1200---?-=???-???== nqd IB U aa V ,负号表示'a 侧电势高。 v A C

大学物理习题答案第一章

[习题解答] 1-3 如题1-3图所示,汽车从A地出发,向北行驶60km到达B地,然后向东行驶60km到达C 地,最后向东北行驶50km到达D地。求汽车行驶的总路程和总位移。 解汽车行驶的总路程为 ; 汽车的总位移的大小为 r = 位移的方向沿东北方向,与方向一致。 1-4 现有一矢量R是时间t的函数,问与在一般情况下是否相等为什么 解与在一般情况下是不相等的。因为前者是对矢量R的绝对值(大小或长度)求导,表示矢量R的大小随时间的变化率;而后者是对矢量R的大小和方向两者同时求导,再取绝对值,表示矢量R大小随时间的变化和矢量R方向随时间的变化两部分的绝对值。如果矢量R方向不变只是大小变化,那么这两个表示式是相等的。 1-5 一质点沿直线L运动,其位置与时间的关系为r = 6t 2 2t 3 ,r和t的单位分别是m 和s。求: (1)第二秒内的平均速度; (2)第三秒末和第四秒末的速度; (3)第三秒末和第四秒末的加速度。

解取直线L的正方向为x轴,以下所求得的速度和加速度,若为正值,表示该速度或加速度沿x轴的正方向,若为负值表示,该速度或加速度沿x轴的反方向。 (1)第二秒内的平均速度 m s1; (2)第三秒末的速度 因为,将t = 3 s 代入,就求得第三秒末的速度,为 v3 = 18 m s1; 用同样的方法可以求得第四秒末的速度,为 v4 = 48 m s1; (3)第三秒末的加速度 因为,将t = 3 s 代入,就求得第三秒末的加速度,为 a3 = 24 m s2; 用同样的方法可以求得第四秒末的加速度,为 v4 = 36 m s2 . 1-6 一质点作直线运动,速度和加速度的大小分别为和,试证明: (1) v d v = a d s; (2)当a为常量时,式v 2 = v02 + 2a (s s0 )成立。

相关文档
相关文档 最新文档