文档库 最新最全的文档下载
当前位置:文档库 › 纳米粒子医用合成方法

纳米粒子医用合成方法

纳米粒子医用合成方法
纳米粒子医用合成方法

面积愈大,原子的蒸发速度愈高,超微粒的获得量愈大。溅射法制备纳米微粒材料的优点是:(1)可以制备多种纳米金属,包括高熔点和低熔点金属。常规的热蒸发法只能适用于低熔点金属;(2)能制备出多组元的化合物纳米微粒,如AlS2,Tl48,Cu91,Mn9,ZrO2等;通过加大被溅射阴极表面可加大纳米微粒的获得量。采用磁控溅射与液氮冷凝方法可在表面沉积有方案膜的电镜载网上支撑制备纳米铜颗粒。1.4

冷冻干燥法

先使干燥的溶液喷雾在冷冻剂中冷冻,然后在低温低压下真空干燥,将溶剂升华除去,就可以得到相应物质的纳米粒子。如果从水溶液出发制备纳米粒子,冻结后将冰升华除去,直接可获得纳米粒子。如果从熔融盐出发,冻结后需要进行热分解,最后得到相应纳米粒子。冷冻干燥法用途比较广泛,特别是以大规模成套设备来生产微细粉末时,其相应成本较低,具有实用性。

此外,还有火花放电法,是将电极插入金属粒子的堆积层,利用电极放电在金属粒子之间发生电火花,从而制备出相应的微粉。爆炸烧结法,是利用炸药爆炸产生的巨大能量,以极强的载荷作用于金属套,使得套内的粉末得到压实烧结,通过爆炸法可以得到1μm以下的纳米粒子。活化氢熔融金属反应法的主要特征是将氢气混入等离子体中,这种混合等离子体再加热,待加热物料蒸发,制得相应的纳米粒子。

2

制备纳米粒子的化学方法

2.1

气相化学反应法

气相化学反应法制备纳米粒子是利用挥发

性的金属化合物的蒸气,通过化学反应生成所需要的化合物,在保护气体环境下快速冷凝,从而制备各类物质的纳米粒子。气相反应法制备超微粒子具有很多优点,如粒子均匀、纯度高、粒度小、分散性好、化学反应性与活性高等。气相化学反应法适合于制备各类金属、金属化合物以及非金属化合物纳米粒子,如各种金属、氮化合物、碳化物、硼化物等。按体系反应类型可将气相化学反应法分为气相分解和气相合成两

类方法。气相分解是对待分解的或经前期预先处理的中间化合物进行加热、蒸发、分解,得到目标物质的纳米粒子;气相合成法通常是利用两种以上物质之间的气相化学反应,在高温下合成出相应的化合物,再经过快速冷凝,从而制备各种物质的纳米粒子。2.2

沉淀法

沉淀法是在溶液状态下将不同化学成分的物质混合,在混合溶液中加入适当的沉淀剂制备纳米粒子的前驱体沉淀物,再将此沉淀物进行干燥或煅烧,从而制得相应的纳米粒子。一般粒子在1μm 左右时就可以发生沉淀,

从而产生沉淀物,生成粒子的粒径通常取决于沉淀物的溶解度,沉淀物的溶解度越小,相应粒径也越小。而粒子的粒径随溶液的过饱和度减小呈增大趋势。沉淀法制备纳米粒子的方法主要有:直接沉淀法、共沉淀法、均相沉淀法、化合物沉淀法、水解沉淀法等多种。2.3 水热合成法水热合成法是液相中制备纳米粒子的一种方法。一般是在100~350℃温度下和高气压环境下使无机或有机化合物与水化合,通过对加速渗析反应和物理过程的控制,得到改进的无机物,再过滤、洗涤、干燥,从而得到高纯、超细的各类微粒子。

水热合成法可以采用两种不同的实验环境进行反应:其一为密闭静态,即将金属盐溶液或其沉淀物置入高压反应釜内,密闭后加以恒温,在静止状态下长时间保温;其二为密闭动态,即在高压釜内加磁性转子,密闭后将高压釜置于电磁搅拌器上,在动态的环境下保温。一般动态反应条件下可以大大加快合成速率。2.4

喷雾热解法

喷雾热解法的原理是将所需的某种金属盐的溶液喷成雾状,送入加热设定的反应室内,通过化学反应生成细微的粉末粒子。

根据对喷雾液滴热处理的方式不同,可以把喷雾热解法分为喷雾干燥、喷雾焙烧、喷雾燃烧和喷雾水解等四类。喷雾干燥是将制成的溶液或微乳液靠喷嘴喷成雾状物来进行微粒化的一种方法。将液滴进行干燥并随即捕集,捕集后直接或经过热处理后,就会得到各种化合物的纳米粒子。利用这种方法可以制得Ni、Zn、Fe的铁氧体纳米粒子。喷雾燃烧是将金属盐溶液用氧气26北京石油化工学院学报2003年第11卷雾化后,在高温下燃烧分解而制得相应的纳米粒子。喷雾水解法是利用醇盐喷雾,制成相应的气溶胶,再让这些气溶胶与水蒸气反应进行水解,从而制成单分散性的粒子,最后将这些粒子再焙烧,即可得到相应的纳米粒子。

喷雾热解法属于气—液反应一类的方法,因为其原料制备过程是液相法,而其部分化学反应又是气相法,因此,该方法集中了气、液法两者的优点。这些优点表现为:可以方便地制备多种组元的复合物质粉末粒子;粒子分布均匀;粒子形状好,一般呈理想的球状;制备过程简单,从配制溶液到粒子形成,几乎是一步到位。2.5溶胶—凝胶法溶胶—凝胶法是制备纳米粒子的一种湿化学法。它的基本原理是以液体的化学试剂配制成金属无机盐或金属醇盐前驱物,前驱物溶于溶剂中形成均匀的溶液,溶质与溶剂产生水解或醇解反应,反应生成物经聚集后,一般生成1nm左右的粒子并形成溶胶。通常要求反应物在液相下均匀混合、均匀反应,反应生成物是稳定的溶胶体系。在这段反应过程中不应该有沉淀发生。经过长时间放置或干燥处理溶胶会转化为凝胶。在凝胶中通常还含有大量的液相,需要借助萃取或蒸发除去液体介质,并在远低于传统的烧结温度下热处理,最后形成相应物质化合物微粒。

控制溶胶—凝胶化的参数很多,也比较复杂。目前多数人认为有4个主要参数对溶胶—凝胶化过程有重要影响,即溶液的pH值、溶液的浓度、反应温度和反应时间。

3

制备纳米粒子的物理化学方法

3.1

激光诱导气相化学反应法

利用大功率激光器的激光束照射于反应气

体,反应气体通过对入射激光光子的强吸收,气体分子或原子在瞬间得到加热、活化,在极短的时间内反应气体分子或原子获得的化学反应所需要的温度后,迅速完成反应、成核、凝聚、生长等过程,从而获得相应物质的纳米粒子。通常,入射激光束垂直于反应气流照射,反应气分子或原子吸收激光光子后被迅速加热。根据John.S.Haggerty的估算,

激光加热速率为106~108℃/s,

加热到反应最高温度的时间小于10-4s。被加热的反应气流将在反应区域内形成稳

定分布的火焰,火焰中心处的温度一般远高于相应化学反应所需的温度,因此反应在10-3s 内即可完成。生成的核粒子在载气流的吹送下迅速脱离反应区,经短暂的生长过程到达收集室,如图1所示。离子或电子以高速射到各种金属或化合物原料表面时,就会大量溶入原料中,使原料瞬间熔融,并伴有原料蒸发。蒸发的原料与等离子体或反应性气体发生相应的化学反应,生成各类化合物的核粒子,核粒子脱离等离子体反应区后,就会形成相应化合物的纳米粒子。

其他综合方法还有γ射线辐照法,即金属盐溶液在γ射线辐照下逐级还原成金属粒子;电子辐照法,原理同γ射线辐照法相似;相转移法等等[4]。超声技术应用于化学领域形成了一门新的边缘学科———声化学。功率超声的空化作用和传统搅拌技术相比更容易实现介观均匀混合,消除局部浓度不匀,提高反应速度,刺激新相的形成,对团聚体还可以起到剪切

作用。超声波的这些特点决定了它在超细粉体材料制备中的独特作用,可以期望它将是一种具有很

强竞争力的新方法[5]。

4纳米粒子的应用领域

由于纳米粒子具有小尺寸效应、表面与界

面效应、量子效应、宏观量子隧道效应和催化效应。因此,它在催化性能、光学性能、磁性能、增强增韧性能、储氢性能和润滑性能等方面都具有特异功能。从而获得了广泛的应用。主要应用于:催化剂、纳米电子器件、传感器、磁性材料、光学和隐身材料以及增韧补强材料、生物医学材料。

在增强结构材料方面有纳米颗粒增强材料、纳米晶须、纤维增强材料、纳米颗粒助烧结材料、纳米焊接技术。

在磁性材料方面有纳米巨磁电阻材料、纳

米磁记录材料、纳米微晶软磁材料、纳米微晶稀土永磁材料、纳米磁制冷工质材料。在生物材料方面有纳米复合牙齿替代材料、纳米复合骨替代材料。

在半导体方面有纳米温敏材料、纳米压敏材料、纳米湿敏材料、纳米气敏材料、纳米光敏材料。

在光学隐身材料方面有纳米光学隐身材料,其中又分为可见光隐身、微波隐身、红外隐身和激光隐身等。

5结束语

纳米技术及纳米材料是21世纪最有前途

的材料,已成为材料领域的研究热点。作为结构材料可制得一维钠米晶须、二维纳米薄膜和三维纳米碳管;作为功能材料已在光学、声学、生物学等方面获得了应用。

参考文献

1严东生,冯端.纳米材料科学[M].长沙:湖南科学技术出版社,

2赵麦群,

赵宇航.湿化学法制备纳米粉的热力学条件[J].粉末冶金技术,1999,17(2):83~88 3戴峰泽,蔡兰.激光法制备纳米材料的进展[J].电加工与模具,2001(3):10~13 4曹茂盛,关长斌,徐甲强.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版社,5李春喜,

王子镐.超声技术在纳米材料制备中的应用[J].化学通报,2001(5):268~271

作用。超声波的这些特点决定了它在超细粉体材料制备中的独特作用,可以期望它将是一种具有很

强竞争力的新方法[5]。

(完整版)金属纳米颗粒制备中的还原剂与修饰剂の总结,推荐文档

《金属纳米颗粒制备中的还原剂与修饰剂》总结 一:金属纳米材料具有表面效应(比表面积大,表面原子多,表面原子可与其他原子结合稳定下来,使材料化学活性提高。)和量子尺寸效应,因而有不同于体相材料的光学、电磁学、化学特性。 目前制备方法为液相合成(操作简便、成本低、产量高、颗粒单分散性好)。——以金属盐或金属化合物为原料将其还原得到金属原子后聚集成金属纳米粒子。而金属纳米粒子比表面积大、物化活性高、易氧化、易团聚,所以需要引入修饰剂来控制形貌、稳定或分散纳米颗粒。 液相还原法按照溶剂不同可分为有机溶剂合成法(结晶性好、单分散性好、形貌易控、不能直接用于生物体系、环境不友好)和水溶液合成法(水溶性、制备方法简单环保、成本低、颗粒大小不均一)。按照还原手段不同可分为化学试剂还原法、辐射还原法、电化学还原法。 二:化学试剂还原法中常用的还原剂及其还原机理 还原能力不同:1)强还原剂(硼氢化物、水合肼、氢气、四丁基硼氢化物),还原能力强、反应速率快、纳米颗粒多为球形或类球形、尺寸小。2)弱还原剂(柠檬酸钠、酒石酸钾、胺类化合物、葡萄糖、抗坏血酸、次亚磷酸钠、亚磷酸钠、醇类化合物、醛类化合物、双氧水、DMF),反应体系一般需要加热。例如多元羟基类化合物可做溶剂和还原剂,通过控制反应条件可制备多种形貌的材料。柠檬酸钠、抗坏血酸做还原剂的同时可做保护剂。(一)无机类还原剂 1,硼氢化物(硼氢化钠钾、硼氢化四丁基铵TBAB),硼氢化钠化学性质活波与水反应放出 氢气,与金属盐反应时所需浓度低。 2,氢化铝锂,还原性极强,应用不及硼氢化钠。 3,水合肼N2H4·H2O,应用广泛。在碱性介质中为强还原剂。 4,双氧水。 5,有机金属化合物,二茂铁还原制备银纳米线。 6,氢气,(可以合成相当稳定无保护的可进一步修饰的银纳米颗粒。),控制反应时间可以得到相当大尺寸跨度的纳米颗粒,进一步处理如过滤离心可以得到尺寸分布窄的颗粒。 7,次亚磷酸盐,弱还原剂,因为容易与氧气反应所以一般用3-4倍。酸性条件下反应速度加快,认为酸性条件下利于次亚磷酸像活泼型转变。

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

纳米粒子制备方法

一、纳米粒子的物理制备方法 1.1 机械粉碎法 机械粉碎就是在粉碎力的作用下,固体料块或粒子发生变形进而破裂,产生更微细的颗粒。物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。一般的粉碎作用力都是这几种力的组合,如球磨机和振动磨是磨碎与冲击粉碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。理论上,固体粉碎的最小粒径可达0.01~0.05 μ m。然而,用目前的机械粉碎设备与工艺很难达到这一理想值。粉碎极限取决于物料种类、机械应力施加方式、粉碎方法、粉碎工艺条件、粉碎环境等因素。比较典型的纳米粉碎技术有:球磨、振动磨、搅拌磨、气流磨和胶体磨等。其中,气流磨是利用高速气流(300~500m/s)或热蒸气(300~450℃)的能量使粒子相互产生冲击、碰撞、摩擦而被较快粉碎。气流磨技术发展较快,20世纪80年代德国Alpine公司开发的流化床逆向气流磨可粉碎较高硬度的物料粒子,产品粒度达到了1~5μm。降低入磨物粒度后,可得平均粒度1μm的产品,也就是说,产品的粒径下限可达到0.1μm以下。除了产品粒度微细以外,气流粉碎的产品还具有粒度分布窄、粒子表面光滑、形状规则、纯度高、活性大、分散性好等优点。因此,气流磨引起了人们的普遍重视,其在陶瓷、磁性材料、医药、化工颜料等领域有广阔的应用前景。 1.2 蒸发凝聚法 蒸发凝聚法是将纳米粒子的原料加热、蒸发,使之成为原子或分子;再使许多原子或分子凝聚,生成极微细的纳米粒子。利用这种方法得到的粒子一般在5~100nm之间。蒸发法制备纳米粒子大体上可分为:金属烟粒子结晶法、真空蒸发法、气体蒸发法等几类。而按原料加热技术手段不同,又可分为电极蒸发、高频感应蒸发、电子束蒸发、等离子体蒸发、激光束蒸发等几类。 1.3 离子溅射法 用两块金属板分别作为阴极和阳极,阴极为蒸发用材料,在两电极间充入Ar(40~250Pa),两极间施加的电压范围为0.3~1.5kV。由于两极间的辉光放电使Ar粒子形成,在电场作用下Ar离子冲击阳极靶材表面,使靶材原子从其表面蒸发出来形成超微粒子,并在附着面上沉积下来。离子的大小及尺寸分布主要取决于两极间的电压、电流、气体压力。靶材的表面积愈大,原子的蒸发速度愈高,超微粒的获得量愈大。溅射法制备纳米微粒材料的优点是:(1)可以制备多种纳米金属,包括高熔点和低熔点金属。常规的热蒸发法只能适用于低熔点金属;(2)能制备出多组元的化合物纳米微粒,如AlS2,Tl48,Cu91,Mn9,ZrO2等;通过加大被溅射阴极表面可加大纳米微粒的获得量。采用磁控溅射与液氮冷凝方法可在表面沉积有方案膜的电镜载网上支撑制备纳米铜颗粒。 1.4 冷冻干燥法 先使干燥的溶液喷雾在冷冻剂中冷冻,然后在低温低压下真空干燥,将溶剂升华除去,就可以得到相应物质的纳米粒子。如果从水溶液出发制备纳米粒子,冻结后将冰升华除去,直接可获得纳米粒子。如果从熔融盐出发,冻结后需要进行热分解,最后得到相应纳米粒子。冷冻干燥法用途比较广泛,特别是以大规模成套设备来生产微细粉末时,其相应成本较低,具有实用性。此外,还有火花放电法,是将电极插入金属粒子的堆积层,利用电极放电在金属粒子之间发生电火花,从而制备出相应的微粉。爆炸烧结法,是利用炸药爆炸产生的巨大能量,以极强的载荷作用于金属套,使得套内的粉末得到压实烧结,通过爆炸法可以得到1μm以下的纳米粒子。活化氢熔融金属反应法的主要特征是将氢气混入等离子体中,这种混合等离子体再加热,待加热物料蒸发,制得相应的纳米粒子。 二、制备纳米粒子的化学方法

一种纳米金颗粒的制备方法

说明书摘要 本发明公开了一种纳米金颗粒的制备方法,其步骤如下:(1)在去离子水中加入氯金酸溶液、CTAC、硼氢化钠溶液,得到老化的种子溶液;(2)在去离子水中加入氯金酸溶液、CTAC、溴化钠溶液、抗坏血酸溶液,得到生长溶液1;(3)在去离子水中加入氯金酸溶液、CTAC、溴化钠溶液、抗坏血酸溶液,得到生长溶液2;(4)取(1)中的老化好的种子溶液加入到(2)中的生长溶液1,反应完全后得一次生长的Au纳米颗粒分散溶液;(5)取(4)中的溶液加入到(3)中的生长溶液2,反应完全后得二次生长的Au纳米颗粒分散溶液,即为最终的Au纳米颗粒。本发明以水为基液,具有经济性好、操作简单、分散性好的优点,所获得的产品粒径大小比较均匀,且可控,从10 nm到100 nm均可获得。

权利要求书 1、一种纳米金颗粒的制备方法,其特征在于所述方法步骤如下: (1)在5~20 ml去离子水中加入0.001 ~ 0.2 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,与氯金酸溶液混合后均匀后,再加入0.01 ~ 1 mL硼氢化钠溶液,摇晃10 ~ 20 s将溶液混合均匀,静置30 ~ 60 min 后得到老化的种子溶液; (2)在5~20 ml去离子水中加入0.001 ~ 1 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,再加入0 .001~ 0.01 mL溴化钠溶液,超声震荡0.5 ~ 5 min将溶液混合均匀,接着加入0.01 ~ 1 mL抗坏血酸溶液,摇晃30 ~ 60 s使溶液混合均匀后得到无色透明的生长溶液1; (3)在5~20 ml去离子水中加入0.001 ~ 1 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,再加入0.001 ~ 0.01 mL溴化钠溶液,超声震荡0.5 ~ 5 min将溶液混合均匀,接着加入0.001 ~ 1 mL抗坏血酸溶液,摇晃30 ~ 60 s使溶液混合均匀后得到无色透明的生长溶液2; (4)取(1)中的老化好的种子溶液1 ~ 100 μL加入到(2)中配置好的生长溶液1,摇晃10 ~ 20 s使溶液混合均匀后,在30 ℃条件下放置5 ~ 30 min使其反应完全,得一次生长的Au纳米颗粒分散溶液; (5)取(4)中的溶液1 ~ 100 μL加入到(3)中配置好的生长溶液2,摇晃10 ~ 20 s使溶液混合均匀后,在30 ℃条件下放置10 ~60 min使其反应完全,得二次生长的Au纳米颗粒分散溶液,即为最终的Au纳米颗粒。 2、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述Au纳米颗粒的粒径为10 nm到100 nm。 3、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述氯金酸溶液的浓度为0.01 mol/L。 4、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述氯金酸溶液的浓度为0.00025 mol/L。 5、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于

金纳米粒子的制备方法

金纳米粒子的制备方法 由于不同状态的纳米粒子的性质有较大的差异,故人们已经尝试很多方法用简单和多样的合成方法制备特定形貌和大小的金纳米粒子,如纳米线、纳米棒、纳米球纳米片和纳米立方。下面将介绍下目前合成金纳米粒子最常用的方法。 1梓檬酸盐还原法 目前在众多的合成金纳米粒子方法中,最方便的方法是还原Au的衍生物。很长的一段时间最流行的方法是在1951年Turkevitch提出的水溶液中用梓檬酸盐还原HAuCl4的方法,可得到20mn左右的金纳米粒子。金纳米粒子在水溶液中合成的方法主要分为三个步骤:第一,金的盐溶液在适当的溶液中分解;第二,在某种还原剂中还原金的盐溶液;最后,在稳定剂中合成稳定的金纳米粒子。目前,最流行的制备金纳米粒子的方法是在加热的条件下,在水溶液中用梓檬酸盐还原HAuCl4。对于这个方法,通过改变金的浓度和梓檬酸盐的浓度,可以制备出大量的平均粒度的金纳米粒子。 2 Brust-Schiffrin法:两相合成并通过硫醇稳定 人们于1994年提出了合成金纳米粒子的Brust-Schiffrin方法。由于热稳定合成方法简单易行,在不到十年的时间内,此方法在所有领域都有重要的影响。金纳米粒子在有机溶剂中能分散和再溶解,并且没有不可逆的团聚或分解。作为有机分子化合物,它们能很容易的控制和功能化。Faraday的两相合成体系给予合成技术一定的启发,由于Au和S的软性质,这种方法便利用硫醇配体强烈绑住金。四正辛基溴化按作为相转移试剂将AuCV转移到甲苯溶液中,并用NaBH4在正十二硫醇中还原AuCLT。在NaBH4还原过程中,橙色相在几秒内向

深棕色转变(图1): 图1 Au化合物在硫醇溶液中被还原,其Au纳米粒子表面被有机外壳所覆盖 其反应机理如下: 3其它含硫配体 其它含硫配体已经用于稳定金纳米粒子,如黄酸盐和二硫化物等。二硫化物不如硫醇的稳定,但是在催化方面有明显的效果。同样,硫醚不能很好的约束金纳米粒子,但是Rheinhout 团队利用聚硫醚就能很好的解决这个问题。另外,利用碘氧化以硫醇为包覆剂的金纳米粒子,使其分解为金的碘化物和二硫化物。Crook等人利用这一现象制备了以金纳米粒子为模版的环胡精的空心球。 4微乳液,反向胶束,表面活性剂,细胞膜和聚合电解质类 在有或是没有硫醇溶液的情况下,使用微乳液,共聚物胶束,反相胶束,表面活性剂,细胞膜和其它两亲物都是合成稳定的金纳米粒子重要探究领域。用表面活性剂合成的两相系统会引起微乳液或是胶束的形成,将金属离子从水相抽离到有机相,从而维持良好的微环境。表面活性剂的双重角色和硫醇与金纳米粒子的相互作用可以控制金纳米粒子或是纳米晶体的稳定和生长。聚合电解质也广泛用于金纳米粒子的合成。酸衍生的金纳米粒子的聚合电解质包覆剂己经通过带电的聚合电解质静电自组装 得到了。

纳米材料的概述及化工制备方法

目录 摘要 (1) 引言 (2) 1 纳米材料的概述 (3) 1.1纳米材料的定义 (3) 1.2纳米材料的制备方法 (4) 1.2.1机械法 (4) 1.2.2化学制备方法 (5) 2 微乳反应器原理 (6) 2.1微乳液 (6) 2.2微乳反应器原理 (7) 2.2.1分别增溶有反应物A、B的微乳液混合 (8) 2.2.2反应物A的微乳液与反应物B水溶液混合 (9) 2.2.3反应物A的微乳液与反应物B气体 (9) 2.3微乳反应器的形成及结构 (10) 2.3.1微乳液的形成机理 (10) 2.3.2微乳液的结构 (11) 3 微乳反应器的应用——纳米颗粒材料的制备 (12) 3.1纳米催化材料的制备 (12) 3.2聚合物纳粒的制备 (12) 3.3金属单质和合金的制备 (13) 3.4无机化合物纳粒的制备 (13) 3.5磁性氧化物颗粒的制备 (13) 结论 (14) 致谢 (16) 参考文献 (17)

摘要 本文从纳米粒子制备的角度出发,论述了微乳反应器的原理、形成与结构,并对微乳液在纳米材料制备领域中的应用状况进行了阐述。 并简单的对什么是纳米材料,纳米材料的一系列制备方法做了介绍,从而了解到微乳化法相对于其它制备方法的优缺点。 关键词:纳米粒子;微乳液;微乳反应器;纳米材料制备

引言 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。1992年,《Nanostructured Materials》正式出版,标志着纳米材料学成为一门独立的科学。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。1982年,Boutonmt首先报道了应用微乳液制备出了纳米颗粒:用水合胼或者氢气还原在W/O型微乳液水核中的贵金属盐,得到了单分散的Pt,Pd,Ru,Ir金属颗粒(3~10nm)。从此以后,不断有文献报道用微乳液合成各种纳米粒子。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。作为高级纳米结构材料和纳米器件的基本构成单元(Bui1ding Blocks),纳米颗粒的合成与组装是纳米科技的重要组成部分和基础。

3.7 金纳米粒子的合成方法

1 金纳米粒子的合成方法 1.1 物理法 物理法即采用高能消耗的方式将块体金细化成为纳米级小颗粒,主要包括块状固体粉碎法(又称为磨球法或机械研磨法)、气相法、电弧法、金属蒸汽溶剂化法、辐照分解和热分解等。辐照分解包括近红外辐照和紫外辐照。近红外辐照通过使硫醇包裹的纳米粒子的粒径变大,从而可以获得粒径较大的金纳米粒子;紫外辐照通过影响种子和胶束的协同作用,从而控制金纳米粒子的合成。另外,激光消融通过对温度、反应器位置、异丙醇用量、超声场等实验条件的控制,可以合成形貌,粒径不同的金纳米粒子。总之,金纳米粒子合成的关键在于同时精确地控制其尺寸和形貌。通过物理法制备的金纳米粒子虽然纯度较高,但其产量低下,设备成本极高。 1.2 化学法 化学法主要是以金盐为原料,利用还原反应生成金纳米粒子,在形成过程中通过控制粒子的生长从而控制其尺寸。化学法主要包括水相氧化还原法、相转移法(主要为Brust法)、晶种生长法(又称种金生长法)、模板法、反相胶束法、湿化学合成法、电化学法、光化学法。相对物理法而言,化学法制备金纳米粒子所得到的产物粒径均匀、稳定性高,并且易于控制形貌,是最为方便和经济的方法。 1.2.1 水相氧化还原法 水相氧化还原法合成金纳米粒子主要是指在含有Au3+的溶液中,利用适当的还原剂(例如鞣酸,柠檬酸等,还原剂的选择根据所要合成的金纳米粒子的粒径而定),将Au3+还原成零价,从而聚集成粒径为纳米级的金纳米粒子。常见的方法有AA还原法、白磷还原法、柠檬酸钠还原法和鞣酸-柠檬酸钠还原法。制备粒径在5~12nm的金纳米粒子,一般采用AA还原或白磷还原HAuCl4溶液;制备粒径在大于12nm的金纳米粒子,则采用柠檬酸钠还原HAuCl4溶液。柠檬酸钠法还原Au3+合成金纳米粒子是最早且应用最为广泛的方法。 1951年,Turkevitch首次报道了柠檬酸钠还原HAuCl4溶液的方法制备金纳米粒子,其粒径分布在20nm左右。基于此,Frens发现,通过控制柠檬酸钠和金的比率来控制金纳米粒子的形成,从而可以得到特定尺寸(粒径可以控制在16~147 nm)的金纳米粒子。经典的Frens法至今仍得到了广泛的使用,用于保护和稳定金纳米粒子的柠檬酸根与金纳米粒子的结合能力较弱,易于被其他稳定剂所取代,因此可用于分析DNA,从而扩大了金纳米粒子的应用领域。

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

金纳米粒子的制备及表征研究

金纳米粒子的制备及表征研究 8四川化工第14卷 2019年第3期 金纳米粒子的制备及表征研究 王静 易中周 李自静 (红河学院理学院,云南蒙自,661100) 摘要 以氯金酸为原料,柠檬酸钠为保护剂,成功制备出金纳米粒子,并应用透射电镜和紫外 可见分光光度计对该实验样品进行了表征,结果表明此类纳米粒子尺寸均匀、呈球形单分 散分布。 关键词:纳米金 制备 表征 1 引言 金纳米粒子的制备已经报道了许许多多的方法,其中以柠檬酸盐做稳定剂和还原剂的 化学合成是最为经典的。控制Au(III)和柠檬酸盐的比例,Frens获得了不同尺寸的单分散 金纳米粒子,最小粒径为12nm。这一方法目前已经被广泛使用。由于柠檬酸盐稳定的Au纳米粒子无细胞毒性,在生物医学领域中具有广泛的应用。另一方面,人们为获得单分散或更 小尺寸具有生物相容性的胶体金纳米粒子,使用壳聚糖、多巴胺、氨基酸、环糊精等做稳 定剂和表面修饰的制备研究也有报道[1-4]。此类报道主要是针对体系中的保护剂做改变, 方法类似,但是所制备金纳米颗粒尺寸不是很均匀,分散性较差。 采用柠檬酸钠水溶液体系制备Au纳米粒子,不用加入制备纳米金胶体时常用的高分子 聚合物保护剂PVA(聚乙烯醇)、PVP(聚乙烯吡咯烷酮)等,并且柠檬酸钠对人体无毒副作用。在本研究中提出了一种简单的Au纳米粒子的化学制备方法。通过对胶体溶液UV Vis吸收 光谱和粒子的TEM表征,获得了良好球形和单分散的金纳米粒子,并且尺寸比其他文献所报 道的小,平均粒径只有7-8nm。同时对金纳米粒子成核机理进行了探讨。 [5] 2 1 试剂与仪器

HAuCl4溶液:用王水溶解99 99%纯金制备;柠檬酸钠(分析纯,天津市化学试剂一厂); 水为石英蒸馏器蒸馏的二次水。 仪器:Lambda900UV/VIS/NIR光谱仪(Per kinElmer公司);JEM 2000EX透射电子显微镜。 2 2 Au纳米粒子制备 在100mL烧杯中加入30mg柠檬酸钠水溶液,将其加热至95 ,然后将2ml0 6mg/mlHAuCl4加入水中,保持温度并定容,30分钟后冷却。2 3 纳米粒子的表征 Au纳米粒子用UV Vis吸收光谱表征和TEM表征,TEM的样品制备是将胶体溶液滴在碳 膜覆盖的铜网上,溶液挥发至干,然后在操作电压200kV时摄取TEM图像。 3 结果与机理探讨 3 1 UV Vis吸收光谱表征 当将HAuCl4加入到柠檬酸钠溶液时,溶液的颜色迅速的变成蓝色,随着加热时间增长, 又变为紫色,最后变为红色。当为红色时纳米Au胶体溶液已制备结束。 12 实验部分 第3期金纳米粒子的制备及表征研究粒子的UV Vis吸收光谱图[5,6]。3 2 TEM表征图2为柠檬酸钠水溶液体系所制备的Au纳米粒子的TEM 图。 9 柠檬酸钠还原为Au单质;然后,Au单质在柠檬酸钠保护下进行团聚和不断长大,最后成为Au纳米粒子,但是柠檬酸钠阻止了Au纳米粒子的进一步团聚,控制了较小粒径,并使其 颗粒均匀并呈球形分布。 图3 柠檬酸钠水溶液体系金纳米粒子的热化学合成机理 3 结论 通过较为严格温度控制的柠檬酸钠水溶液体系制备得到的Au纳米粒子: (1)尺寸均匀; (2)呈球形单分散分布;(3)平均粒径只有7-8nm。 参考文献 [1]Marie ChristineDaniel,DidierAstruc.GoldNanoparticles:As sembly,SupramolecularChemistry,Quantum Size RelatedProper

一维纳米材料的制备概述

学年论文 ` 题目:一维纳米材料的制备方法概述 学院:化学学院 专业年级:材料化学2011级 学生姓名:龚佩斯学号:20110513457 指导教师:周晴职称:助教

2015年3月26日 成绩 一维纳米材料制备方法概述 --气相法、液相法、模板法制备一维纳米材料 材料化学专业2011级龚佩斯 指导教师周晴 摘要:一维纳米材料碳纳米棒、碳纳米线等因其独特的用途成为国内外材料科学家的研究热点。然而关于如何制备出高性能的一维纳米材料正是各国科学家所探究的问题。本文概述了一维纳米材料的制备方法:气相法、液相法、模板法等。 关键词:一维纳米材料;制备方法;气相法;液相法;模板法 Abstract: the nanoscale materials such as carbon nanorods and carbon nanowires have become the focus of intensive research owing to their unique applications. but the question that how to make up highqulity one-dimentional nanostructure is discussing by Scientists all around the world. This parper has reviewed the preparation of one dimention nanomaterials ,such as vapor-state method, liqulid -state method ,template method and so on. Key words: one-dimention nanomaterials ; preparatinal method ; vapor-state method liqulid-state method ; template method 纳米材料是基本结构单元在1nm ~100nm之间的材料,按其尺度分类包括零维、一维、二维纳米材料。自80年代以来,零维纳米材料不论在理论上和实践中均取得了很大的进展;二维纳米材料在微型传感器中也早有应用。[1]一维纳米材料因其特殊的结构效应在介观物理、纳米级结构方面具有广阔的应用前景,它的制备研究为器件的微型化提供了材料基础。本文主要概述了近年来文献关于一维纳米材料的制备方法。 1 一维纳米材料的制备方法 近几年来,文献报导了制备一维纳米材料的多种方法,如溶胶-凝胶法、气相-溶液-固相法、声波降解法、溶剂热法、模板法、化学气相沉积法等。然而不同制备方法的纳米晶体生长机制各异。本文按不同生长机制分类概述,主要介绍气相法、液相法、模板法三大类制备方法。 1.1 气相法 在合成一维纳米结构时,气相合成可能是用得最多的方法。气相法中的主要机

金纳米颗粒的有序制备及其光学特性

金纳米颗粒的有序制备及其光学特性 3 王 凯 杨 光 龙 华 李玉华 戴能利 陆培祥 (华中科技大学武汉光电国家实验室激光科学与技术研究部,武汉 430074) (2007年10月26日收到;2007年11月14日收到修改稿) 采用纳米球蚀刻技术在石英衬底上制备了不同高度的金纳米颗粒阵列.通过扫描电子显微镜对其表面形貌进行了观测,表明金纳米颗粒为有序分布的三棱柱结构.通过红外—紫外吸收光谱仪在190—900nm 波长范围内对其光吸收特性进行了测量,并成功观测到了金纳米颗粒表面等离子体振荡效应引起的光吸收峰,结果表明随着金纳米颗粒高度的增加,其吸收峰的位置向短波方向移动(蓝移).同时对金纳米颗粒的光吸收特性进行了基于离散偶极子近似的理论计算,并与实验结果进行了比较. 关键词:纳米球蚀刻技术,金纳米颗粒,离散偶极子近似 PACC :7865E ,8116N 3国家自然科学基金(批准号:10604018,10574050)和高等学校博士学科点专项科研基金(批准号:20060487006)资助的课题. 通讯联系人.E 2mail :gyang @https://www.wendangku.net/doc/9f18515017.html, E 2mail :lupeixiang @https://www.wendangku.net/doc/9f18515017.html, 11引言 随着现代纳米技术的发展,贵金属纳米颗粒的制备和可控光学特性的研究,引起了人们广泛的兴趣.其在纳米光学 [1] 、非线性光学 [2] 、催化作用 [3] 、热 动力学[4] 和传感器[5] 以及医学诊断[6] 等研究领域都有着十分重要的应用前景. 贵金属纳米颗粒最具代表性的特性是在可见光范围内伴随有强烈的吸收峰,这是其颗粒里大量的自由传导电子对外界光波入射的响应.当电子振动频率和入射光波频率相等时,即发生表面等离子体 振荡(surface plasm on res onance ,SPR )效应,从而产生强烈的吸收峰.SPR 光谱峰位对颗粒的形状、大小、分布以及外部环境的变化非常敏感. 以往制备贵金属纳米颗粒主要采用溅射或离子注入等方法,但通过上述方法制备的纳米颗粒,其形状不一,而且分布不均匀,不便于定量地研究其光学特性.在1995年,Van Duyne 研究组[7] 在自然蚀刻法[8] 的基础上提出了纳米球刻蚀技术(nanosphere lithography ,NS L ),即将尺寸均匀的聚苯乙烯纳米球的悬浊液滴在衬底上,形成单层或双层纳米球的自组装密排的掩膜板.在沉积金属颗粒的过程中,掩 膜板只允许金属通过纳米球之间的间隙沉积到衬底 上.再用超声波清洗去除聚苯乙烯纳米球,得到二维纳米颗粒阵列.最近几年,科学家们通过这种方法制备出了不同尺寸和形状的Ag ,Au ,Cu ,Pt 等金属纳米颗粒.其中Au 纳米颗粒由于其优良的化学稳定性、生物吸附性[9] 和光学特性,成为金属纳米颗粒研究中的热点方向. 另一方面,科学家们尝试从理论上合理解释贵金属纳米颗粒的可控光学特性.离散偶极子近似 (discrete dipole approximation ,DDA )最初是由Purcell 和Pennypacker [10] 在计算天体尘埃的散射时提出的. 目前,DDA 法被广泛应用于小颗粒光学特性的理论 研究中 [11,12] .随着算法的改进,基于DDA 算法的软 件包DDSC AT [13] 使得能在计算机上计算不同大小、 形状、高度、种类和外部环境的颗粒的光学特质.目前已经有一些关于Au 和Ag 纳米颗粒的理论计算的报道 [14—16] ,其结果基本与实验结果相符合. 本实验中结合NS L 和脉冲激光沉积(pulsed laser deposition ,P LD )技术在石英衬底上制备了不同高度的Au 纳米颗粒阵列,对其表面形貌、尺寸进行了观测,对其在可见光范围内的光谱吸收特性进行了测量,并通过理论模拟对Au 纳米颗粒的光学特性进行了计算. 第57卷第6期2008年6月100023290Π2008Π57(06)Π3862206 物 理 学 报 ACT A PHY SIC A SI NIC A V ol.57,N o.6,June ,2008 ν2008Chin.Phys.S oc.

半导体纳米材料的制备方法

摘要:讨论了当前国内外主要的几种半导体纳米材料的制备工艺技术,包括物理法和化学法两大类下的几种,机械球磨法、磁控溅射法、静电纺丝法、溶胶凝胶法、微乳液法、模板法等,并分析了以上几种纳米材料制备技术的优缺点关键词:半导体纳米粒子性质;半导体纳米材料;溶胶一凝胶法;机械球磨法;磁控溅射法;静电纺丝法;微乳液法;模板法;金属有机物化学气相淀积引言 半导体材料(semiconductormaterial)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)。相对于导体材料而言,半导体中的电子动能较低,有较长的德布罗意波长,对空间限域比较敏感。半导体材料空间中某一方向的尺寸限制与电子的德布罗意波长可比拟时,电子的运动被量子化地限制在离散的本征态,从而失去一个空间自由度或者说减少了一维,通常适用体材料的电子的粒子行为在此材料中不再适用。这种自然界不存在,通过能带工程人工制造的新型功能材料叫做半导体纳米材料。现已知道,半导体纳米粒子结构上的特点(原子畴尺寸小于100nm,大比例原子处于晶界环境,各畴之间存在相互作用等)是导致半导体纳米材料具有特殊性质的根本原因。半导体纳米材料独特的质使其将在未来的各种功能器件中发挥重要作用,半导体纳米材料的制备是目前研究的热点之一。本文讨论了半导体纳米材料的性质,综述了几种化学法制备半导体纳米材料的原理和特点。

2.半导体纳米粒子的基本性质 2.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 随着纳米材料粒径的减小,表面原子数迅速增加。例如当粒径为10nm 时,表面原子数为完整晶粒原子总数的20%;而粒径为1nm时,其表面原子百分数增大到99%;此时组成该纳米晶粒的所有约30个原子几乎全部分布在表面。由于表面原子周围缺少相邻的原子:有许多悬空键,具有不饱和性,易与其他原子相结合而稳定下来,故表现出很高的化学活性。随着粒径的减小,纳米材料的表面积、表面能及表面结合能都迅速增大。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。 因此想要获得发光效率高的纳米材料,采用适当的方法合成表面完好的半导体材料很重要。 2.2量子尺寸效应 量子尺寸效应--是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。当半导体材料从体相减小到某一临界尺寸(如与电子的德布罗意波长、电子的非弹性散射平均自由程和体相激子的玻尔半径相等)以后,其中的电子、空穴和激子等载流子的运动将受到强量子封

金纳米粒子的制备及表征研究

金纳米粒子的制备及表征研究 王 静易中周李自静 (红河学院理学院,云南蒙自,661100) 摘 要 以氯金酸为原料,柠檬酸钠为保护剂,成功制备出金纳米粒子,并应用透射电镜和紫外 可见分光光度计对该实验样品进行了表征,结果表明此类纳米粒子尺寸均匀、呈球形单分散分布。 关键词:纳米金制备表征 1 引言 金纳米粒子的制备已经报道了许许多多的方法,其中以柠檬酸盐做稳定剂和还原剂的化学合成是最为经典的。控制Au(III)和柠檬酸盐的比例, Frens[5]获得了不同尺寸的单分散金纳米粒子,最小粒径为12nm。这一方法目前已经被广泛使用。由于柠檬酸盐稳定的Au纳米粒子无细胞毒性,在生物医学领域中具有广泛的应用。另一方面,人们为获得单分散或更小尺寸具有生物相容性的胶体金纳米粒子,使用壳聚糖、多巴胺、氨基酸、环糊精等做稳定剂和表面修饰的制备研究也有报道[1-4]。此类报道主要是针对体系中的保护剂做改变,方法类似,但是所制备金纳米颗粒尺寸不是很均匀,分散性较差。 采用柠檬酸钠水溶液体系制备Au纳米粒子,不用加入制备纳米金胶体时常用的高分子聚合物保护剂PVA(聚乙烯醇)、PV P(聚乙烯吡咯烷酮)等,并且柠檬酸钠对人体无毒副作用。在本研究中提出了一种简单的Au纳米粒子的化学制备方法。通过对胶体溶液U V Vis吸收光谱和粒子的TEM表征,获得了良好球形和单分散的金纳米粒子,并且尺寸比其他文献所报道的小,平均粒径只有7-8nm。同时对金纳米粒子成核机理进行了探讨。 2 实验部分2 1 试剂与仪器 H AuCl4溶液:用王水溶解99 99%纯金制备;柠檬酸钠(分析纯,天津市化学试剂一厂);水为石英蒸馏器蒸馏的二次水。 仪器:Lambda900U V/VIS/NIR光谱仪(Per kin Elmer公司);JEM 2000EX透射电子显微镜。 2 2 Au纳米粒子制备 在100mL烧杯中加入30mg柠檬酸钠水溶液,将其加热至95 ,然后将2ml0 6mg/ml H AuCl4加入水中,保持温度并定容,30分钟后冷却。 2 3 纳米粒子的表征 Au纳米粒子用U V Vis吸收光谱表征和TEM 表征,T EM的样品制备是将胶体溶液滴在碳膜覆盖的铜网上,溶液挥发至干,然后在操作电压200kV时摄取T EM图像。 3 结果与机理探讨 3 1 U V Vis吸收光谱表征 当将H AuCl4加入到柠檬酸钠溶液时,溶液的颜色迅速的变成蓝色,随着加热时间增长,又变为紫色,最后变为红色。当为红色时纳米Au胶体溶液已制备结束。 图1为柠檬酸钠水溶液体系所制备的Au纳米 8四川化工 第14卷 2011年第3期

纳米材料的制备方法

纳米材料的制备方法 一、前言 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。 应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。 纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。 二、纳米材料的制备方法 (一)、机械法 机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部

相关文档