文档库 最新最全的文档下载
当前位置:文档库 › 高一数学(下)【ty】暑假专题——平面向量的数量积

高一数学(下)【ty】暑假专题——平面向量的数量积

高一数学(下)【ty】暑假专题——平面向量的数量积
高一数学(下)【ty】暑假专题——平面向量的数量积

一. 教学内容:

暑假专题——平面向量的数量积

二. 本周教学目标:

掌握平面向量的数量积,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。

三. 本周知识要点:

1. 两个向量的数量积:

已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a

︱·︱b ︱cos θ

叫做a 与b

的数量积(或内积),规定00a ?= 。

2. 向量的模与平方的关系:22||a a a a ?== 。

3. 乘法公式成立:

()()

2222a b a b a b a b

+?-=-=- ;

()2

2

2

2a b a a b b

±=±?+ 222a a b b

=±?+

4. 平面向量数量积的运算律:

①交换律成立:a b b a ?=?

②对实数的结合律成立:

()()

()

()a b a b a b R λλλλ?=?=?∈

③分配律成立:()

a b c a c b c ±?=?±? ()c a b

=?±

特别注意:(1)结合律不成立:()()

a b c a b c

??≠??

(2)消去律不成立:a b a c ?=? 不

c b

= (3)a b ?

=0不能

a =0 或

b =0 5. 两个向量的数量积的坐标运算:

已知两个向量

1122(,),(,)a x y b x y == ,则a ·b =1212x x y y + 6. 向量的夹角:已知两个非零向量a

与b ,作OA =a ,OB =b ,则∠AOB =θ

(0

01800≤≤θ)叫做向量a 与b 的夹角。

cos θ=cos ,a b a b a b ?<>=?

=2

22221212

121y x y x y y x x +?++

当且仅当两个非零向量a 与b 同方向时,θ=0°,当且仅当a 与b

反方向时θ=180°,同时0

与其它任何非零向量之间不谈夹角这一问题。

7. 垂直:如果a 与b 的夹角为90°则称a 与b 垂直,记作a ⊥b

8. 两个非零向量垂直的条件:

a ⊥

b ?a 2b

=0?02121=+y y x x 。

【典型例题】

例1. 判断下列各命题正确与否: (1)00a ?=

(2)00a ?=

(3)若0,a a b a c ≠?=?

,则b c = ; (4)若a b a c ?=? ,则b c ≠ 当且仅当0a =

时成立;

(5)()()a b c a b c ??=?? 对任意,,a b c

向量都成立;

(6)对任意向量a ,有

2

2a a = 。

解:⑴错; ⑵对; ⑶错; ⑷错; ⑸ 错;⑹对。

例2. 已知两单位向量a 与b 的夹角为

120,若2,3c a bd b a =-=- ,试求c 与d 的夹角。

解:由题意,1a b == ,且a 与b 的夹角为

120,

所以,

21120cos ||||-

==?

b a b a , 2

c c c =?= (2)(2)a b a b -?- 22447a a b b =-?+= ,

c ∴=

同理可得

d ∴=

而c d ?=

2217(2)(3)7322a b b a a b b a -?-=?--=- , 设θ为c 与d

的夹角,

182911713

7217cos -

==

θ

两向量的夹角为],0[),18291

17arccos(π∈θ-

例3. 已知()4,3a = ,()1,2b =- ,,m a b λ=- 2n a b =+ ,按下列条件求实数λ的值。 (1)m n ⊥ ;(2)//m n ;(3)m n

=

解:()4,32,m a b λλλ=-=+- ()27,8n a b =+=

∴(1)m n

⊥ ()()082374=?-+?+?λλ952

-

=?λ (2)//m n

()()0

72384=?--?+?λλ21

-=?λ (3)m n =

()()088458723422222=--?+=-++?λλλλ

511

22±=

例4. 已知a =(1,3),b =(3+1,3-1),则a 与b

的夹角是多少?

分析:为求a 与b 夹角,需先求b a ?及|a

|2|b |,再结合夹角θ的范围确定其值。

解:由a

=(1,3),b =(3+1,3-1)

有a 2b =3+1+3(3-1)=4,|a

|=2,|b |=

记a 与b 的夹角为θ,则cos θ=22

=??b

a b a

又∵0≤θ≤π,∴θ=4π

例5. 在△ABC 中,AB

=(2,3),AC =(1,k ),且△ABC 的一个内角为直角,求k

值。

解:当A = 90?时,AB ?AC = 0,∴231 +33k = 0 ∴k =23-

当B = 90?时,AB ?BC = 0,BC =AC -AB = (1-2,k -3) = (-1,k -3)

∴23(-1) +33(k -3) = 0 ∴k =311

当C = 90?时,AC ?BC

= 0,∴-1 + k (k -3) = 0 ∴k =2133±

例6. 已知a =(3,4),b =(4,3),求x ,y 的值使(x a +y b )⊥a ,且|x a +y b

|=

1。

分析:这里两个条件互相制约,注意体现方程组思想。

解:由a =(3,4),b =(4,3),有x a +y b =(3x +4y ,4x +3y )

又(x a +y b )⊥a ?(x a +y b )2a =0?3(3x +4y )+4(4x +3y )=0

即25x +24y =0 ①

又|x a +y b |=1?|x a +y b |2

=1

?(3x +4y )2+(4x +3y )2=1

整理得25x 2+48xy +25y 2=1即 x (25x +24y )+24xy +25y 2=1 ② 由①②有24xy +25y 2=1 ③

将①变形代入③可得:y =±75

再代回①得:???????=-=???

???

?-==7535

24753524y x y x 和

【模拟试题】

1. 若a =(-4,3),b =(5,6),则2||3a -4b a ?=( ) A. 23

B. 57

C. 63

D. 83

2. 已知a

=(1,2),b =(2,3),c =(-2,5),则△ABC 为( )

A. 直角三角形

B. 锐角三角形

C. 钝角三角形

D. 不等边三角形

3. 已知a =(4,3),向量b 是垂直a

的单位向量,则b 等于( )

A. )54,53(或)53,54(

B. )54,53(或)

54,53(--

C. )54,53(-或)53,54(-

D. )54,53(-或)54,53(-

4. 已知a =(λ,2),b =(-3,5)且a 与b

的夹角为钝角,则λ的取值范围是( )

A. λ>310

B. λ≥310

C. λ<310

D. λ≤310

5. 给定两个向量a =(3,4),b =(2,-1)且(a +x b )⊥(a -b

),则x 等于( )

A. 23

B. 223

C. 323

D. 423

6. a =(2,3),b =(-2,4),则(a +b )2(a -b

)= 。

7. 已知a

=(3,2),b =(-1,-1),若点P (x ,-21)在线段的中垂线上,则x

= 。

8. 已知a =(1,0),b =(3,1),c =(2,0),且a =BC ,b =CA ,则a 与b 的夹角为 。

9. 已知|a |=10,b =(1,2)且a ∥b ,则a

的坐标为 。

10. 已知a =(1,2),b =(1,1),c =b -k a

,若c ⊥a ,则c = 。

11. 已知a =(3,0),b =(k ,5)且a 与b

的夹角为43π,则k 的值为 。

12. 已知a =(3,-1),b =(1,2),求满足条件x 2a

=9与x 2b =-4的向量x 。 13. 已知?ABC 的三顶点分别为A (2,-1),B (3,2),C (-3,-1),BC 边上的高

为AD ,求点D 和AD 的坐标。

14. 正方形ABCD 中,P 是对角线DB 上的一点,PFCE 是矩形, 证明:(1)PA =EF ;(2)PA ⊥EF 。

【试题答案】

1. D

2. A

3. D

4. A

5. C

6. –7

7. 47

8. 45°

9. (2,22)或(-2,-22)

10. (51,52-

11. -5 12. (2,-3)

13. 设()y x D ,,则()1,2+-=y x ,()2,3--=y x ,()3,6=

∵ ?????⊥// ,∴

()()()()???-=-=++-263301326y x y x ,解得:??

?==11

y x 。

于是:()1,1D ,()2,1-=。

14. 不妨设:()1,0A ,()1,1B ,()0,1C ,()a a P ,,则有:()a E ,1,()0,a F 。

∵()1,-=a a ,()a a --=,1,∴

()EF a a PA =-+=2

2

1; 又∵()()()011=--+-a a a a ,∴⊥。

高中数学必修《平面向量》单元测试

平面向量单元测试卷(5) 一、选择题 1.在△OAB中,=,=,M为OB的中点,N为AB的中点,ON,AM交于点P,则=() A. ﹣B. ﹣+ C. ﹣ D. ﹣+ 2.已知向量≠,||=1,对任意t∈R,恒有|﹣t|≥|﹣|,则() A. ⊥B. ⊥(﹣)C.⊥(﹣)D.(+)⊥(﹣ ) 3.已知A,B,C是坐标平面内不共线的三点,o是坐标原点,动点P满足 (λ∈R),则点P的轨迹一定经过 △ABC的() A.内心B.垂心C.外心D.重心 4.已知平面上三点A、B、C满足,,,则 的值等于() A.25 B.﹣25 C.24 D.﹣24 5.已知向量=(2,0),向量=(2,2),向量=(cosα,sinα),则向量与向量的夹角范围为() A. [0,]B. [,] C. [,] D. [,] 6.设非零向量、、满足,则=()A.150°B.120°C.60°D.30° 7.设,,为同一平面内具有相同起点的任意三个非零向量,且满足与不共线,⊥,||=||,则|?|的值一定等于()

A. 以,为邻边的平行四边形的面积 B. 以,为两边的三角形面积 C. ,为两边的三角形面积 D. 以,为邻边的平行四边形的面积 8.设D是正△P1P2P3及其内部的点构成的集合,点P0是△P1P2P3的中心,若集合S={P|P∈D,|PP0|≤|PP i|,i=1,2,3},则集合S表示的平面区域是() A.三角形区域B.四边形区域C.五边形区域D.六边形区域 9.已知P={|=(1,0)+m(0,1),m∈R},Q={|=(1,1)+n(﹣1,1),n∈R}是两个向量集合,则P∩Q=() A.{(1,1)} B.{(﹣1,1)} C.{(1,0)} D.{(0,1)} 10.已知、是不共线的向量,=λ+,=+μ(λ,μ∈R),那么A、B、C三点共线的充要条件为() A.λ+μ=1 B.λ﹣μ=1 C.λμ=﹣1 D.λμ=1 二、填空题 11.若平面向量,满足,平行于x轴,,则=.12.给定两个长度为1的平面向量和,它们的夹角为120°.如图所示,点C在以O 为圆心,以1半径的圆弧AB上变动.若=x+y,其中x,y∈R,则x+y的最大值是. 13.在平行四边形ABCD中,E和F分别是边CD和BC的中点,若=λ+μ,其中λ、μ∈R,则λ+μ=.

平面向量的数量积与应用举例专题训练

平面向量的数量积与应用举例专题训练 A组基础题组 1.已知向量a=(2,1),b=(1,m),c=(2,4),且(2a-5b)⊥c,则实数m=( ) A.- B.- C. D. 2.已知向量a=(1,0),|b|=,a与b的夹角为45°,若c=a+b,d=a-b,则c在d方向上的投影为( ) A. B.- C.1 D.-1 3.向量a,b满足|a+b|=2|a|,且(a-b)·a=0,则a,b的夹角的余弦值为( ) A.0 B. C. D. 4.如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O.记 I1=·,I2=·,I3=·,则( ) A.I1

10.已知向量a=(cos x,sin x),b=(3,-∈[0,π]. (1)若a∥b,求x的值; (2)记f(x)=a·b,求f(x)的最大值和最小值以及对应的x的值. B组提升题组 1.已知a、b均为单位向量,且a·b=0.若|c-4a|+|c-3b|=5,则|c+a|的取值范围是( ) A.[3,] B.[3,5] C.[3,4] D.[,5] 2.非零向量m,n的夹角为,且满足|n|=λ|m|(λ>0),向量组x1,x2,x3由一个m和两个n排列而成,向量组 y1,y2,y3由两个m和一个n排列而成,若x1·y1+x2·y2+x3·y3的所有可能值中的最小值为4|m|2,则λ = . 3.在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1). (1)求以线段AB,AC为邻边的平行四边形的两条对角线的长; (2)设实数t满足(-t)·=0,求t的值.

高一数学集合练习题及答案-经典

升腾教育高一数学 满分150分 姓名 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 8、设集合A=} { 12x x <<,B=} { x x a <,若A ?B ,则a 的取值范围是 ( ) A } { 2a a ≥ B } { 1a a ≤ C } { 1a a ≥ D } { 2a a ≤ 9、 满足条件M U }{1=}{ 1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4

二、填空题 11、若}4,3,2,2{-=A ,},|{2 A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2 +x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={ } 2 2,3,23a a +-,A={}2,b ,C U A={} 5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 三、解答题 17、已知集合A={x| x 2 +2x-8=0}, B={x| x 2 -5x+6=0}, C={x| x 2 -mx+m 2 -19=0}, 若B ∩C ≠Φ,A∩C=Φ,求m 的值 18、已知二次函数f (x )=2 x ax b ++,A=}{ }{ ()222x f x x ==,试求 f ()x 的解析式 19、已知集合{}1,1A =-,B=} { 2 20x x ax b -+=,若B ≠?,且A B A ?= 求实数 a , b 的值。

平面向量的数量积及运算律测试题

平面向量的数量积及运算律同步练习 一、选择题: 1. 若|a |=|b |=1,a ⊥b ,且2a +3b 与k a -4b 也互相垂直,则k 的值为( ) A.-6 B.6 C.3 D.-3 2.若AP 31 = PB ,AB λ=BP ,则λ的值为 ( ) A .41 B .43 C .34 D .3 4- 3.设a 和b 的长度均为6,夹角为 120?,则-|a b|等于 ( ) A .36 B .12 C .6 D .36 4.若| |=2sin15°,| |=4cos375°、 , 夹角为30°,则 · 为( ) A . 2 3 B .3 C .32 D .21 5.若|a |=|b |=|a -b |,则b 与a +b 的夹角为 ( ) A .30° B .60° C .150° D .120° 6.已知向量)sin ,(cos θθ=,向量)1,3(-=则|2|-的最大值,最小值分别( ) A .0,24 B .24,4 C .16,0 D .4,0 7.已知、均为单位向量,它们的夹角为60°,那么|+ 3| = ( ) A .7 B .10 C .13 D .4 8.已知,,为非零的平面向量. 甲:则乙,:,=?=? ( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件 C .甲是乙的充要条件 D .甲既非乙的充分条件也非乙的必要条件 9.已知a 、b 是非零向量且满足(a -2b) ⊥a ,(b -2a ) ⊥b ,则a 与b 的夹角是( ) A .6π B .3π C .32π D .6 5π 10.若向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为( ) A .2 B .4 C .6 D .12 11.设)4 1,cos 1(),cos 1,2(-+=--=θθb a ,且,2 0,||π θ<

高一数学《平面向量》测试

高一平面向量测试 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知向量()3,1=a ,()21,k k =-b ,且()+⊥a b a ,则k 的值是( ) A .1- B .37 C .35 - D .35 2.已知向量(3,2)=a ,(1,2)=-b ,(4,1)=c ,若()()2k +-∥a c b a ,()k ∈R , 则k =( ) A .43 B .1922- C .1613- D .1316 - 3.若向量()3,1AB =-u u u r ,()1,2=n ,且7AC ?=u u u r n ,那么BC ?u u u r n 的值为( ) A .6- B .0 C .6 D .6-或6 4.在ABC △中,2BD DC =u u u r u u u r ,AD mAB nAC =+u u u r u u u r u u u r ,则m n 的值为( ) A .12 B .13 C .2 D .3 5.四边形ABCD 中,AB DC =u u u r u u u r ,且ABCD 是( ) A .平行四边形 B .菱形 C .矩形 D .正方形 6.如果向量a 与b 的夹角为θ,那么我们称?a b 为向量的“向量积”,?a b 的大小为 sin θ?=?a b a b ,如果5=a ,1=b ,3?=-a b ,则?=a b ( ) A .3 B .4- C .4 D .5 7.已知向量(1,2)=a ,(1,1)=b ,若a 与λ+a b 的夹角为锐角,则实数λ的取值范围是( ) A .5 ,3 ??-+∞ ??? B .()5,00,3??-+∞ ?? ? U C .5 ,3 ?? -∞- ?? ? D .5,3?? -∞ ?? ?

平面向量数量积运算专题附答案

. 平面向量数量积运算平面向量数量积的基本运算题型一DCBCEFABCDBAD,,=120°,点的边长为2,∠1 例(1)(2014·天津)已知菱形分别在边→→AFDFAEBCBEDC________. .若λ·上,的值为=3=,1=λ,则→→PBPAPAOPBAB) · (2)已知圆为切点,的半径为1,, 那么为该圆的两条切线,的最小值为,( 2 -43+2 +B.A.-2 3+2C.-4+D.22 -→→→→→OBOAOAABOA________. ·=|=1 变式训练(2015·湖北)已知向量3⊥,则,| 利用平面向量数量积求两向量夹角题型二 22babaababab与+(|,且2-(1)(2015·重庆例2 )若非零向量,则,)⊥(3满足||)=|3的夹 角为( ) ππ3πA. B. C. D.π424πabababab的夹角2-+与=|2,|,则|=32(2)若平面向量与平面向量,的夹角等于|3的余弦值等于( ) 1111A. B.- C. D.-262612121→→→→ABCOAOABACAB与)=(+,则上的三点,若2 变式训练(2014·课标全国Ⅰ)已知,,为圆2→AC的夹角为________. 教育资料. . 利用数量积求向量的模题型三 baababab等于+的夹角为|120°,则|=2,且例3 (1)已知平面向量|2和与,|||=1,) ( B.4 A.2 D.6 5 C.2ABCDADBCADCADBCPDC上的动点,则是腰=,∠1=90°,,=(2)已知直角梯形2中,,∥→→PAPB|的最小值为________. +3|1eeeebbe·.是平面单位向量,且若平面向量·满足变式训练3 (2015·浙江)已知,=beb|=,则=|·________. 112212 =12

高一数学期末专题复习——集合及其运算

高一数学期末专题复习(1)——集合及其运算 一、知识梳理 1.集合与元素 (1)集合元素的三个特征:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于关系,用符号∈或?表示. (3)集合的表示法:列举法、描述法、图示法、区间法. (4)常用数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R. (5)集合的分类:按集合中元素个数划分,集合可以分为有限集、无限集、空集.2.集合间的基本关系 (1)子集:对任意的x∈A,都有x∈B,则A?B(或B?A). (2)真子集:若A?B,且A≠B,则A B(或B A). (3)空集:空集是任意一个集合的子集,是任何非空集合的真子集.即??A,?B(B≠?). (4)若A含有n个元素,则A的子集有2n个,A的非空子集有2n-1个. (5)集合相等:若A?B,且B?A,则A=B. 3.集合的基本运算 (1)并集:A∪B={x|x∈A,或x∈B}. (2)交集:A∩B={x|x∈A,且x∈B}. (3)补集:?U A={x|x∈U,且x?A}. (4)集合的运算性质 ①A∪B=A?B?A,A∩B=A?A?B; ②A∩A=A,A∩?=?; ③A∪A=A,A∪?=A; ④A∩?U A=?,A∪?U A=U,?U(?U A)=A. 二、典型例题 类型一集合的基本概念 【例1】(1)已知集合A={m+2,2m2+m},若3∈A,则m的值为________.(2)设集合A={-1,1,3},B={a+2,a2+2},A∩B={1,3},则实数a的值

为________. 【训练1】(1)若集合A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则a =( ). A .4 B .2 C .0 D .0或4 (2)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( ). A .1 B .3 C .5 D .9 (3)已知a ∈R ,b ∈R ,若??????a ,b a ,1={a 2,a +b,0},则a 2 016+b 2 016=________. 类型二 集合间的基本关系 【例2】 (1)已知集合A ={x |-2≤x ≤7},B ={x |m +1

高一数学平面向量章节测试题(含答案)

高一数学平面向量章节测试题 一、选择题(本大题共12小题,共60分) 1. 已知向量a ?=(1,2),b ??=(3,1),则b ???a ?=( ) A. (?2,1) B. (2,?1) C. (2,0) D. (4,3) 2. 已知平面向量a ?=(1,?2),b ??=(?2,m),且a ?//b ??,则3a ?+2b ??等于( ) A. (-2,1) B. (1,-2) C. (-1,2) D. (2,-1) 3. 已知向量a ??,b ??满足|a ??|=1,|b ??|=2,a ???b ??=1,那么向量a ??,b ??的夹角为( ) A. 30° B. 60° C. 120° D. 150° 4. 已知|a ??|=3,|b ??|=5,a ??b ??=12,则向量a ??在向量b ??上的投影为( ) A. 12 5 B. 3 C. 4 D. 5 5. 已知菱形ABCD 的边长为2,∠BAD =120°,点E 、F 分别在边BC 、DC 上,BE ??????=λBC ??????,DF ??????=μDC ??????,若AE ???????AF ??????=1,CE ???????CF ??????=?2 3 ,则λ+μ=( ) A. 1 2 B. 2 3 C. 5 6 D. 7 12 6. 已知向量a ?=(1,m),b ??=(3,?2),且(a ?+b ??)⊥b ??,则m =( ) A. -8 B. -6 C. 6 D. 8 7. 在△ABC 中,已知D 是BC 延长线上一点,点E 为线段AD 的中点,若BC ??????=2CD ??????,且AE ??????=λAB ??????+34AC ??????,则λ=( ) A. ?1 4 B. 1 4 C. ?1 3 D. 1 3 8. 已知|a ??|=2,向量a ??在向量b ??上的投影为√3,则a ??与b ??的夹角为( ) A. π 3 B. π 6 C. 2π 3 D. π 2 9. 若向量a ?=(?2,0),b ??=(2,1),c ?=(x,1)满足条件3a ??+b ??与c ??共线,则x 的值为( ) A. ?2 B. ?4 C. 2 D. 4 10. 已知a ??、b ??均为单位向量,它们的夹角为60°,那么|a ?+3b ??|=( ) A. √7 B. √10 C. √13 D. 4 11. 在平行四边形ABCD 中,AB ??????=a ?,AD ??????=b ??,AM ???????= 4MC ???????,P 为AD 的中点,MP ???????=( ) A. 4 5a ?+3 10 b ?? B. 45a ?+13 10b ?? C. -45a ?-310b ?? D. 3 4a ?+1 4b ?? 12. 已知向量BA ??????=(12,√32),BC ??????=(√32,12 ),则∠ABC =( ) A. 30° B. 45° C. 60° D. 120° 二、填空题(本大题共4小题,共20分) 13. 设e 1????,e 2????是不共线向量,e 1?????4e 2????与k e 1????+e 2????共线,则实数k 为______ . 14. 已知向量a ?=(?1,2),b ??=(m,1),若向量a ?+b ??与a ??垂直,则m =______. 15. 设向量a ?=(m,1),b ??=(1,2),且|a ?+b ??|2=|a ?|2+|b ??|2,则m =______.

向量数量积专题(总)

平面向量的数量积 【知识点精讲】 一、平面向量的数量积 (1)已知两个非零向量a r 和b r ,记为OA a OB b ==u u u r r u u u r r ,,则)0(πθθ≤≤=∠AOB 叫做向量a r 与b r 的夹角,记作,a b <>r r ,并规定[],0,a b π<>∈r r 。如果a 与b 的夹角是2 π,就称a r 与b r 垂直,记为.a b ⊥r r (2)cos ,a b a b <>r r r r 叫做向量a r 与b r 的数量积(或内积),记作a b ?r r ,即b a ? cos ,a b a b <>r r r r . 规定:零向量与任一向量的数量积为0. 两个非零向量a r 与b r 垂直的充要条件是0.a b ?=r r 两个非零向量a r 与b r 平行的充要条件是.a b a b ?=±r r r r 二、平面向量数量积的几何意义 数量积a b ?r r 等于a r 的长度a r 与b r 在a r 方向上的投影cos b θr 的乘积,即cos a b a b θ ?=r r r r (b r 在a r 方向上的投影为cos a b b a θ?=r r r r );a r 在b r 方向上的投影为 cos .a b a b θ?=r r r r 三、平面向量数量积的重要性质 性质1 cos .e a a e a θ?=?=r r r r r 性质2 0.a b a b ⊥??=r r r r 性质3 当a r 与b r 同向时,a b a b ?=r r r r ;当a r 与b r 反向时,a b a b ?=-r r r r ;22a a a a ?==r r r r 或 a =r 性质4 cos (00)a b a b a b θ?=≠≠r r r r r r r r 且 性质5 a b a b ?≤r r r r 注:利用向量数量积的性质2可以解决有关垂直问题;利用性质3可以求向量长度;利用性质4可以求两向量夹角;利用性质5可解决不等式问题。 四、平面向量数量积满足的运算律 (1)a b b a ?=?r r r r (交换律);

新高中数学《集合》专项测试 (1145)

高中数学《集合》测试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________ 一、选择题 1.设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中的元素个数为 (A)3 (B)4 (C)5 (D)6(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对)) 2.设集合{|1A x =-≤x ≤2},B={x |0≤x ≤4},则A ∩B=A (A)[0,2] (B)[1,2] (C)[0,4] (D)[1,4](2006年高考浙江理) 3.设集合{1,2}A =,则满足{1,2,3}A B ?=的集合B 的个数是( ) (A)1 (B)3 (C)4 (D)8(2006辽宁理) 4.已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N 等于( ) A.{x |x <-2} B.{x |x >3} C.{x |-1<x <2} D.{x |2<x <3}(2004全国Ⅱ1) 5.若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x∈A,y∈B}中的元素的个数为 ( ) A .5 B .4 C .3 D .2(2012江西理) C 6.设集合A={x|1<x <4},集合B ={x|2x -2x-3≤0}, 则A ∩(C R B )= A .(1,4) B .(3,4) C.(1,3) D .(1,2)∪(3,4) 7.若关于x 的一元二次不等式20ax bx c ++<的解集为实数集R ,则a 、b 、c 应满足的条件为-----------------------------------------------------------------------( ) (A ) a >0,b 2―4ac >0 (B ) a >0,b 2 ―4ac <0 (C ) a <0,b 2―4ac >0 (D ) a <0,b 2―4ac <0 二、填空题 8.已知全集U ={1,2,3,4,5,6,7,8,9,10},集合{}321,,a a a A =,则满足

高一数学必修四第二章平面向量测试题及答案

一、选择题: (本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。 A、-9 B、-6 C、9 D、6 2.已知=(2,3), b=(-4,7),则在b上的投影为()。 A、B、C、D、 3.设点A(1,2),B(3,5),将向量按向量=(-1,-1)平移后得 向量为()。 A、(2,3) B、(1,2) C、(3,4) D、(4,7)4.若(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ΔABC是()。 A、直角三角形 B、等边三角形 C、等腰三角形 D、等腰直角三角形5.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于()。A、B、C、D、 6.已知O、A、B为平面上三点,点C分有向线段所成的比为2,则()。 A、B、 C、D、 7.O是ΔABC所在平面上一点,且满足条件,则点O是ΔABC的()。 A、重心 B、垂心 C、内心 D、外心8.设、b、均为平面内任意非零向量且互不共线,则下列4个命题:(1)( ·b)2= 2·b2(2)| +b|≥| -b| (3)| +b|2=( +b)2

(4)(b ) -( a )b 与 不一定垂直。其中真命题的个数是( )。 A 、1 B 、2 C 、3 D 、4 9.在ΔABC 中,A=60°,b=1, ,则 等 于( )。 A 、 B 、 C 、 D 、 10.设 、b 不共线,则关于x 的方程 x 2+b x+ =0的解的情况是( )。 A 、至少有一个实数解 B 、至多只有一个实数解 C 、至多有两个实数解 D 、可能有无数个实数解 二、填空题:(本大题共4小题,每小题4分,满分16分.). 11.在等腰直角三角形ABC 中,斜边AC=22,则CA AB =_________ 12.已知ABCDEF 为正六边形,且AC =a ,AD =b ,则用a ,b 表示AB 为______. 13.有一两岸平行的河流,水速为1,速度为 的小船要从河的一边驶 向对岸,为使所行路程最短,小船应朝________方向行驶。 14.如果向量 与b 的夹角为θ,那么我们称 ×b 为向量 与b 的“向量积”, ×b 是一个向量,它的长度| ×b |=| ||b |sin θ,如果| |=3, |b |=2, ·b =-2,则| ×b |=______。 三、解答题:(本大题共4小题,满分44分.) 15.已知向量 = , 求向量b ,使|b |=2| |,并且 与b 的夹角 为 。(10分)

专题二 培优点9 平面向量数量积的最值问题

培优点9 平面向量数量积的最值问题 平面向量部分,数量积是最重要的概念,求解平面向量数量积的最值、范围问题要深刻理解数量积的意义,从不同角度对数量积进行转化. 例 (1)已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC → |AC →|,则PB →·PC → 的最大值等于( ) A .13 B .15 C .19 D .21 答案 A 解析 建立如图所示的平面直角坐标系,则B ????1t ,0,C (0,t ),AB →=????1t ,0,AC →=(0,t ), AP →=AB →|AB →|+4AC →| AC →|=t ????1t ,0+4t (0,t )=(1,4),∴P (1,4), PB →·PC →=????1t -1,-4· (-1,t -4) =17-????1t +4t ≤17-21t ·4t =13, 当且仅当t =12 时等号成立. ∴PB →·PC →的最大值等于13. (2)如图,已知P 是半径为2,圆心角为π3 的一段圆弧AB 上的一点,若AB →=2BC →,则PC →·P A →的最小值为________. 答案 5-213 解析 以圆心为坐标原点,平行于AB 的直径所在直线为x 轴,AB 的垂直平分线所在的直线为y 轴,建立平面直角坐标系(图略),则A (-1,3),C (2,3),

设P (2cos θ,2sin θ)????π3≤θ≤2π3, 则PC →·P A →=(2-2cos θ,3-2sin θ)·(-1-2cos θ,3-2sin θ)=5-2cos θ-43sin θ=5-213sin(θ+φ), 其中0

高一数学集合练习题及答案(人教版)

一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A=} { 12x x <<,B=} { x x a <,若A ?B ,则a 的取值范围是 ( ) A } { 2a a ≥ B } { 1a a ≤ C } { 1a a ≥ D } { 2a a ≤

9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈, {}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 二、填空题(每题3分,共18分) 11、若}4,3,2,2{-=A ,},|{2 A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2 +x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={ } 2 2,3,23a a +-,A={}2,b ,C U A={} 5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 15、已知集合A={x|2 0x x m ++=}, 若A ∩R=?,则实数m 的取值范围是 16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人. 三、解答题(每题10分,共40分) 17、已知集合A={x| x 2 +2x-8=0}, B={x| x 2 -5x+6=0}, C={x| x 2 -mx+m 2 -19=0}, 若B ∩C ≠Φ,A∩C=Φ,求m 的值 18、已知二次函数f (x )=2 x ax b ++,A=}{ }{ ()222x f x x ==,试求 f ()x 的解析式

平面向量数量积

第三节平面向量数量积及应用重点: 1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系. 2.掌握数量积的坐标表达式,会进行平面向量数量积的运算. 3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系. 4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题. 难点: 1.掌握数量积的坐标表达式,会进行平面向量数量积的运算. 2 .会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题. 教学过程: 1.平面向量的数量积 (1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cos__θ叫作a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos__θ,规定零向量与任一向量的数量积为0,即0·a =0. (2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积. 2.平面向量数量积的性质及其坐标表示 设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角. (1)数量积:a·b=|a||b|cos θ=x1x2+y1y2. (2)模:|a|=a·a=x21+y21.学-科网 (3)夹角:cos θ=a·b |a||b|= x1x2+y1y2 x21+y21·x22+y22 . (4)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0. (5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)?|x1x2+y1y2|≤ x21+y21·x22+y22. 3.平面向量数量积的运算律 (1)a·b=b·a(交换律). (2)λa·b=λ(a·b)=a·(λb)(结合律). (3)(a+b)·c=a·c+b·c(分配律).

高一数学《平面向量》单元测试.docx

高一数学《平面向量》单元测试 姓名 : 班级 : 一、 选择题 (共 8 小题 ,每题 5 分 ) 1. 下列命题正确的是 ( ) A .单位向量都相等 B . 任一向量与它的相反向量不相等 C .平行向量不一定是共线向量 D .模为 0 的向量与任意向量共线 2.已知向量 a =( 3,4), b =( sin α, cos α),且 a ∥ b ,则 tan α等于( ) A . 3 B . 3 C . 4 D . 4 4 4 3 3 3.在以下关于向量的命题中,不正确的是 ( ) A .若向量 a=(x , y),向量 b=(- y , x)(x 、 y ≠ 0),则 a ⊥ b B .四边形 ABCD 是菱形的充要条件是 AB = DC ,且 | AB |=| AD | C .点 G 是△ ABC 的重心,则 GA + GB + CG =0 D .△ ABC 中, AB 和 CA 的夹角等于 180°- A 4.设 P ( 3, 6), Q ( 5, 2), R 的纵坐标为 9,且 P 、 Q 、 R 三点共线,则 R 点的横坐标为 ( ) A . 9 B . 6 C . 9 D . 6 r r r r r r r r r ) 5.若 | a | 1,| b | 2, c a b ,且 c a ,则向量 a 与 b 的夹角为 ( A . 30° B .60° C .120° D . 150° 6.在△ ABC 中, A >B 是 sinA > sinB 成立的什么条件( ) A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 7.若将函数 y sin 2x 的图象按向量 a 平移后得到函数 y sin( 2x ) -1 的图象 ,则向量 a 可以是: 4 ( ) A . ( , 1) B . ( ,1) C . ( ,1) D . ( , 1) 8 8 4 4 8.在△ ABC 中,已知 | AB | 4,| AC | 1, S ABC 3,则 AB AC 的值为( ) A .- 2 B . 2 C .± 4 D .± 2 二、 填空题 (共 4 小题 ,每题 5 分 ) 9.已知向量 a 、 b 的模分别为 3,4,则| a - b |的取值范围为 . r r r r r 10.已知 e 为一单位向量, a 与 e 之间的夹角 是 120O ,而 a 在 e 方向上的投影为- 2,则 r a . 11.设 e 1、e 2 是两个单位向量,它们的夹角是 60 ,则 (2e 1 e 2 ) ( 3e 1 2e 2 ) 12.在 ?ABC 中, a =5, b= 3,C= 1200 ,则 sin A 三、 解答题 (共 40 分 ) 13.设 e 1 ,e 2 是两个垂直的单位向量,且 a ( 2e 1 e 2 ) ,b e 1 e 2 (1)若 a ∥ b ,求 的值; (2) 若 a b ,求 的值 .( 12 分)

专题03 “三法”解决平面向量数量积问题(第二篇)-2019年高考数学压轴题命题区间探究与突破(解析

一.方法综述 平面向量的数量积是高考考查的重点、热点,往往以选择题或填空题的形式出现.常常以平面图形为载体,借助于向量的坐标形式等考查数量积、夹角、垂直的条件等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.由于命题方式灵活多样,试题内容活泼、新颖,因此,在高考试卷中备受青睐,是一个稳定的高频考点.解决这类问题有三种基本方法:投影法、基底法和坐标法.“三法”的准确定位应是并举!即不应人为地、凭主观划分它们的优劣,而应具体问题具体分析. 本专题举例说明解答解决平面向量数量积问题的方法、技巧. 二.解题策略 类型一投影定义法 【例1】【2018届河南省中原名校高三上第一次考评】已知P是边长为2的正△ABC边BC上的动点,则·(+)=_________. 【答案】6 【解析】设BC的中点为D,则AD⊥BC, 【指点迷津】

1、数量积与投影的关系(数量积的几何定义): 向量,a b 数量积公式为cos a b a b θ?=,可变形为()cos a b a b θ?=?或() cos a b b a θ?=?,进而与向量投影找到联系 (1)数量积的投影定义:向量,a b 的数量积等于其中一个向量的模长乘以另一个向量在该向量上的投影,即a b a b b λ→?=?(记a b λ→为a 在b 上的投影) (2)投影的计算公式:由数量积的投影定义出发可知投影也可利用数量积和模长进行求解: a b a b b λ→?= 即数量积除以被投影向量的模长 2、数量积投影定义的适用范围:作为数量积的几何定义,通常适用于处理几何图形中的向量问题 (1)图形中出现与所求数量积相关的垂直条件,尤其是垂足确定的情况下(此时便于确定投影),例如:直角三角形,菱形对角线,三角形的外心(外心到三边投影为三边中点)学科&网 (2)从模长角度出发,在求数量积的范围中,如果所求数量积中的向量中有一个模长是定值,则可以考虑利用投影,从而将问题转化为寻找投影最大最小的问题 【举一反三】 已知圆M 为直角三角形ABC 的外接圆,OB 是斜边AC 上的高,且6,22AC OB ==,AO OC <,点P 为线段OA 的中点,若DE 是 M 中绕圆心M 运动的一条直径,则PD PE ?=_________ M C A O B P D E Q 【答案】-5 【解析】思路:本题的难点在于DE 是一条运动的直径,所以很难直接用定义求解.考虑到DE 为直径,所以延长EP 交圆M 于Q ,即可得DQ QE ⊥,则PD 在PE 上的投影向量为PQ .所求 PD PE PE PQ ?=-?,而由PE PQ ?联想到相交弦定理,从而PE PQ AP PC ?=?.考虑与已知条 件联系求出直径AC 上的各段线段长度.由射影定理可得:2 8AO CO OB ?==,且

相关文档
相关文档 最新文档