文档库 最新最全的文档下载
当前位置:文档库 › 浅论工艺设计中减少碎米产生的方法

浅论工艺设计中减少碎米产生的方法

浅论工艺设计中减少碎米产生的方法
浅论工艺设计中减少碎米产生的方法

静电危害与消除知识

静电的危害与消除 一、静电产生的原因 最常见的产生静电的方式是接触——分离起电。当两种物体接触,其间距离小于25×10-8 cm时,将发生电子转移,并在分界面两侧出现大小相等、极性相反的两层电荷,当两种物体迅速分离时即可能产生静电。 其次,因物体电阻率的不同而产生,电阻率高的物体,其导电性能差,带电层中的电子转移较困难,构成了静电荷集聚的条件。据有关资料介绍,液体的电阻率在1010~1015Ω?m时,能产生危险的静电,而在1013Ω?m时产生的静电最大,高于1015Ω?m或者低于1010Ω?m时,静电的产生和积聚小到可以忽视的程度。特别是电阻率在106Ω?m以下时,对静电来说就等于是导体的作用了,这时可以不考虑静电的问题。 二、静电的危害 静电的危害有三种:一是可能引起爆炸和火灾。静电的能量虽然不大,但因其电压很高且易放电,出现静电火花;二是可能产生电击。静电产生的电击虽然不会致人死亡,但是往往会导致二次事故,因此也要加以防范;三是可能影响生产。在生产中,静电有可能会影响仪器设备的正常运行或降低产品的质量。此外,静电还会引起电子自动

元件的误操作。 三、静电的消除措施 静电最为严重的危害是引起爆炸和火灾,其在瞬间即释,放电能量大是其引发静电危害的突出特点。因此,必须采取切实有效的措施来消除静电危害。防止静电危害的关键是:防止或减少静电的产生;设法导走或中和产生的电荷,并使它无法积聚;防止有足够能量的静电放电;防止爆炸性混合气体的形成。 消除静电的主要途径有两条:一是创造条件加速静电泄漏或中和;二是控制工艺过程,即限制静电的产生。 第一条途径包括两种方法,泄漏法和中和法。接地、增湿、加入抗静电剂等属于泄漏法;运用感应静电消除器、放射线静电消除器及离子流静电消除器等属于中和法,一般企业都采用接地的措施。 第二条途径就是工艺控制法,包括材料选择、工艺设计、设备结构及操作管理等方面所采取的措施。 一、泄漏法和中和法 (一)静电接地:接地是消除静电灾害最简单、最常用的方法,是防止静电的最基本的措施。静电接地连接是接地措施中重要的一环,可采取静电跨接、直接接地、间接接地等方式,根据国家标准和行业规范采取正确的接地措施。 1、固定设备 (1)固定设备(塔、容器、机泵、换热器、离心机等)外壳,

螺钉头冷镦机 课程设计说明书

课程设计 资料袋 学院(系、部) 2011 — 2012 学年第 2 学期课程名称机械原理课程设计指导教师职称 学生姓名专业班级学号 题目螺钉头冷镦机 成绩 起止日期 2012 年 6 月 7 日-- 2012 年 6 月 13 日 目录清单 课程设计任务书 2011—2012 学年第 2 学期

学院(系、部)专业班级 课程名称:机械原理 设计题目:螺钉头冷镦机 完成期限:自 2012 年 6 月 7 日至 2012 年 6月 21 日

指导教师(签字): 2012 年 6 月 20 日 系(教研室)主任(签字): 2012 年 6 月 20 日 机械原理课程设计 设计说明书 螺钉头冷镦机 起止日期: 2012 年___6 月 7 日至 2012 年 6 月 14 日学生姓名 班级 学号 成绩 指导教师(签字)

机械工程学院(部) 2012年 6月20 日 目录 一、螺钉头冷镦机功能及设计要求 1.设计题目 采用冷镦的方法将螺钉头镦出,可以大大减少加工时间和介绍所节省材料。冷镦螺钉头主要完成以下动作: (1)自动间歇送料 (2)截料并运料

(3)顶镦并终镦 (4)顶料 2.设计要求 2.1原始数据及设计要求 (1)每分钟冷镦螺钉头120只 (2)螺钉杆的直径D为2-4毫米,长度L为6-32毫米 (3)毛坯料最大长度为49毫米,最小长度为12毫米 (4)冷镦行程为56毫米 2.2设计方案提示 (1)自动间歇送料采用槽轮机构、凸轮机构间歇运动机构等 (2)将坯料转动切割可采用凸轮机构推进进刀 (3)将坯料用冲压机构在冲模内进行顶镦和终镦,冲压机构可采用平面四连杆或六连杆机构 (4)顶料,采用平面连杆机构等 二、工作原理和工艺动作分解 1.工艺动作的确定 根据题目分析可知,螺钉头冷镦机主要完成以下几个工艺动作: ⑴送料:将一定长度的毛坯料送入执行机构中,并且具有间歇性。 ⑵截料:将一定长度的毛坯料截断,且要快速的截断并退出。 ⑶夹紧:将截取下来的毛坯料夹住,以便接下来将要进行的冷镦,又要便于 工件的卸载。 ⑷冷镦:在一定力的冲压下将螺钉的头部镦出,冷镦机构需要具有急回特性。 2.机构的设计与比较 根据机械的使用要求、工艺性能、结构要求、空间位置和总传动比等条件选择传动系统类型,并拟定从原动机到工作机之间传动系统的方案和总体布置。

第二章 防砂方法原理

第二章防砂方法原理 2.1 防砂方法分类 根据防砂原理及工艺特点,目前主要防砂方法大致可分为机械防砂、化学防砂、复合防砂和其它防砂方法几类。 (1)机械防砂方法 机械防砂方法可以分为两类,第一类是仅下入机械管柱的防砂方法,如绕丝筛管、割缝衬管、各种滤砂管等。这种方法简单易行,施工成本低。缺点是防砂管柱容易被地层砂堵塞,只能阻止地层砂产出到地面而不能阻止地层砂进入井筒,有效期短,只适用于油砂中值大于0.1mm的中、粗砂岩地层。 第二类机械防砂方法为管柱砾石充填,即在井筒内下入绕丝筛管或割缝衬管等机械管柱后,再用砾石或其它类似材料充填在机械管柱与套管的环形空间内,并挤入井筒周围地层,形成多级滤砂屏障,达到挡砂目的。这类方法设计及施工复杂,成本较高;但挡砂效果好,有效期长,成功率高,适用性广,可用于细、中、粗砂岩地层,垂直井,定向井,热采井等复杂条件。砾石充填防砂的缺点主要是施工复杂,一次性投入高;若砾石尺寸选择不当,地层砂侵入砾石层后会增加油流入井的阻力,影响防砂后的油井产能。研究结果表明,砾石充填井筒附过主要压降损失在填有砾石的射孔炮眼内。因施工过程较长,必须注意减少作业过程中对油层的作害。 (2)化学防砂 化学防砂是向地层中挤入一定数量的化学剂或化学剂与砂浆的混合物,达到充填、固结地层、提高地层强度的目的。化学防砂主要分为人工胶结地层和人工井壁两种方法。人工胶结地层是向地层注入树脂或其它化学固砂剂,直接将地层砂固结;人工井壁是将树脂砂浆液、预涂层砾石、水带干灰砂、水泥砂浆、乳化水泥等挤入井筒周围地层中,固结后形成具有一定强度和渗透性的人工井壁。 化学防砂方法适用于薄层短井段,对粉细砂岩地层的防砂效果好,施工后井筒内不留下任何机械装置,便于后期处理。缺点是有机化学剂材料成本高,对油藏温度的适应性较差,易老化,有效期短,固结后地层渗透率明显下降,产能损失大。 (3)焦化防砂

冷镦锻工艺与模具设计

以GB5786-M8六角头螺栓为例来说明...冷镦锻工艺是一种少无切削金属压力加工工艺。它是一种利用金属在外力作用下所产生的塑性变形,并借助于模具,使金属体积作重新分布及转移,从而形成所需要的零件或毛坯的加工方法。 冷镦锻工艺的特点: 1.冷镦然是在常温条件进行的。冷镦锻可使金属零件的机械性能得到改善。 2.冷镦锻工艺可以提高材料利率。它是以塑性变形为基础的压力加工方法,可实现少切削或者无切削加工。一般材料利用率都在85%以上,最高可达99%以上。 3.可提高生产效率。金属产品变形的时间和过程都比较短,特别是在多工位成形机上加工零件,可大大提高生产率。 4.冷镦锻工艺能提高产品表面粗糙度、保证产品精度。 二、冷镦锻工艺对原材料的要求 1.原材料的化学成份及机械性能应符合相关标准。 2.原材料必须进行球化退火处理,其材料金相组织为球状珠光体4-6级。 3.原材料的硬度,为了尽可能减少材料的开裂倾向,提高模具使用寿命还要求冷拔料有尽可能低的硬度,以提高塑性。一般要求原材料的硬度在HB110~170(HRB62-88)。 4.冷拔料的尽寸精度一般应根据产品的具体要求及工艺情况而定,一般来说,对于缩径和强缩尺寸精度要求低一些。 5.冷拔料的表面质量要求有润滑薄膜呈无光泽的暗色,同时表面不得有划痕、折叠、裂纹、拉毛、锈蚀、氧化皮及凹坑麻点等缺陷。 6.要求冷拔料半径方向脱碳层总厚度不超过原材料直径的1-1.5%(具体情况随各制造厂家的要求而定)。 7.为了保证冷成形时的切断质量,要求冷拔料具有表面较硬,而心部较软的状态。 8.冷拔料应进行冷顶锻试验,同时要求材料对冷作硬化的敏感性越低越好,以减少变形过程中,由于冷作硬化使变形抗力增加。 三、紧固件加工工艺简述 紧固件主要分两大粪:一类是螺纹类紧固件;另一类是非螺纹类紧固件或联接件。这里仅针对螺纹类紧固件进行简述。 1. 螺纹类紧固件加工流程一般都是由剪断、冷镦、或者冷挤压、切削、螺纹加工、热处理、表面处理等生产工序组成的。 材料改制工艺流程一般为: 酸洗→拉丝→退火→磷化皂化→拉丝→(球化磷化) 螺纹类紧固件冷加工艺流程订要有以下几种情况: 8.8级以下的螺纹紧固件产品加工流程 打头→清洗→搓螺纹→清洗→表面处理→包装 8.8级以下的螺纹紧固件产品加工流程 打头→清洗→切削→热处理→穿垫搓螺纹→清洗→表面处理→包装 8.8-10.9级螺纹紧固件产品加工流程 打头→清洗→切削→搓螺纹→热处理→清洗→表面处理→包装 10.9-12.9级螺纹紧固件产品加工流程 打头→清洗→热处理→切削→滚螺纹→清洗→无损检测→清洗→表面处理→包装 2. 螺纹类紧固件常用材料

静电的产生和消除

静电的产生和消除 石油库设计规范GB 50074-2002中有: 14.2.14 在爆炸危险区域内的输油(油气)管道,应采取下列防雷措施: 1 输油(油气)管道的法兰连接处应跨接。当不少于5根螺栓连接时,在非腐蚀环境下可不跨接。 液体静电的火灾危害与防火设计 低电导率的液化烃、可燃液体(如石脑油、汽油、煤油、柴油、液化石油气、溶剂油等)的生产、储存、运输过程中都可能因静电而导致燃烧爆炸。液体在贮运、生产过程中的相对运动引起电荷的分离、积累和放电,而成为一种引火源。在实践中,如设计、操作不当,液体静电将形成一种潜在的火灾隐患。本文简述液体静电火灾爆炸条件及控制,并对防火设计中常遇的问题进行初步探讨。 一、液体静电产生方式和放电形式 液体与固体、液体与气体、液体与另一种不相溶的液体之间,由于搅拌、沉降、流动、喷射、飞溅等接触与分离的相对运动会形成双电层而产生静电。静电产生受物质种类、杂质、表面状态、接触特征、分离速度、带电历程等因素的影响。一般来说,介质中混入杂质、表面粗糙、表面受氧化、分离速度高将使静电增加,当液体的电阻率在1011~1015Ωcm时(如汽油、苯等),其积累的静电荷不易消失,静电的危害性较大。由于液化烃、可燃液体生产、贮运过程中工艺的多样性,不同运动状态下液体静电荷的产生和积累的方式各异,其主要方式有以下几种: 1.单相液体在管道中流动 液体流经管道时发生电荷分离,一种极性离子吸附于分界面上,并吸引极性相反离子,形成扩散层,当液体相对分界面流动,就将扩散层带走,产生电荷分离。对于单相液体,带电量与液体流动状态有关,湍流比层流的危险性更大。如果电导率足够低,其流出管道电荷密度与液体线速度有关,流速越大,电荷密度越高。

国内外防砂技术现状与发展趋势

本科生毕业设计(论文) 论文题目:油井防砂工艺技术研究 学生姓名:××× 学号: 系别:石油工程系 专业年级: 指导教师:

目录 第一章绪论 .................... 错误!未定义书签。 1. 研究的目的和意义....................................................................................... 错误!未定义书签。 2. 国内外研究现状........................................................................................... 错误!未定义书签。 3. 研究的目标、技术路线及所完成的工作................................................... 错误!未定义书签。 3.1 研究的目标......................................................................................... 错误!未定义书签。 3.2 技术路线............................................................................................. 错误!未定义书签。 3.3 本文所完成的工作............................................................................. 错误!未定义书签。第二章出砂原因和出砂机理 ...... 错误!未定义书签。 1. 出砂因素....................................................................................................... 错误!未定义书签。 1.1 地质因素............................................................................................. 错误!未定义书签。 1.2 开采因素............................................................................................. 错误!未定义书签。 1.3 完井因素............................................................................................. 错误!未定义书签。 2. 油层出砂机理............................................................................................... 错误!未定义书签。 2.1 剪切破坏机理..................................................................................... 错误!未定义书签。 2.2 拉伸破坏机理..................................................................................... 错误!未定义书签。 2.3 微粒运移............................................................................................. 错误!未定义书签。第三章稠油井防砂及配套工艺技术研究错误!未定义书 签。 1. 孤岛油田稠油热采区块开发概况............................................................... 错误!未定义书签。 2. 稠油热采一次防砂工艺的研究................................................................... 错误!未定义书签。 2.1 稠油热采一次防砂工艺防砂机理..................................................... 错误!未定义书签。 2.2 割缝管防砂工艺的研究..................................................................... 错误!未定义书签。 3. 配套工艺技术研究....................................................................................... 错误!未定义书签。 3.1 高温防砂剂强度及耐温性能的研究................................................. 错误!未定义书签。 3.2 射孔工艺............................................................................................. 错误!未定义书签。 3.3 深部处理油层技术............................................................................. 错误!未定义书签。 4. 现场应用效果分析....................................................................................... 错误!未定义书签。 5. 小结............................................................................................................... 错误!未定义书签。第四章结论及建议 .............. 错误!未定义书签。 1. 结论............................................................................................................... 错误!未定义书签。 2. 建议............................................................................................................... 错误!未定义书签。致谢 ............................ 错误!未定义书签。 参考文献 ........................ 错误!未定义书签。

静电防护的控制和具体方法

静电防护的控制和具体方法 静电放电会对器件造成损害,但通过采取正确和适当的静电防护和控制措施,建立静电防护系统,就可以消除或控制静电的发生,使其对元器件的损害降至最小。具体如下: (1) 对可能产生接地的地方要防止静电的聚集,采取一定的措施,避免或减少静电放电的产生,或采取“边产生边泄漏”的方法达到消除电荷积聚的目的,将静电荷控制在不致引起产生危害的程度。 (2) 对已存在的电荷积聚,迅速可靠地消除掉。 生产过程中静电防护的核心是“静电消除”。因此可建立一个静电完全工作区,即通过使用各种防静电制品和器材,采用各种防静电措施,使区域内的可能产生的静电电压保持在对最敏感器件安全的阈值下。其基本方法有: (1) 工艺控制法 旨在使生产过程中尽量少产生静电荷。从工艺流程、材料选择、设备安装和操作管理等方面采取措施,控制静电的产生和积聚,抑制静电电位和静电放电的能力,使之不超过危害的程度。 如在半导体制造过程中,当高速器件的浅结形成工序完成后,对冲洗用的去离子水的电阻率就必须控制。虽然电阻率越高,洁净效果越好,但电阻率越高。绝缘性越越好,在芯片上产生的静电就越高。因此一般要控制在略高于8MΩ的水平,而不能是初始工序用的16-17MΩ。还有在材料选择上,包装材料要采用防静电材料,尽量避免未经处理的高分子材料。 (2) 泄漏法 旨在使静电通过泄漏达到消除的目的。通常采用静电接地是电荷向大地泄漏;也有采用增大物体电导的方法使接地沿物体表面或通过内部泄漏,如添加静电剂或增湿。最常见的是工作人员带的防静电腕带,静电接地柱。 (3) 静电屏蔽法 根据静电屏蔽的原理,可分为内场屏蔽和外场屏蔽两种。具体措施是用接地的屏蔽罩把带电体与其它物体隔离开来,这样带电体的电场将不会影响周围其它物体(内场屏蔽);有时也用屏蔽罩八被隔离的物体包围起来,使其免受外界电场的影响(外场屏蔽)。如GaAs器件包装多采用金属盒或金属膜。 (4) 复合中和法 旨在使静电荷通过复合中和的办法,达到消除的目的。通常利用接地消除器产生带有异号电荷的

油井防砂工艺

龙源期刊网 https://www.wendangku.net/doc/9e18767229.html, 油井防砂工艺 作者:崔浩 来源:《环球市场信息导报》2013年第02期 疏松砂岩油藏分布范围广、储量大,这类油藏开采中的主要矛盾之一是油井出砂。因此,油井防砂工艺技术的研究和发展对疏松砂岩油藏的顺利开发至关重要。国内防砂工艺技术的发展已有数十年的历史,辽河油田在油气井防砂方面也作了大量的工作,丰富和提高了国内防砂工艺技术水平。目前已形成机械防砂工艺、化学防砂工艺和复合防砂工艺三大体系的油气水井防砂工艺技术。 各种防砂方法应用概况。辽河油田疏松砂岩油藏储量大、类型多、分布广、防砂工作量大,防砂井次呈上升趋势。随着含水的上升和采液强度的提高,出砂井数越来越多,如何应用更先进的防砂工艺技术,提高防砂效果显得尤为重要。 各种防砂方法的比较。从统计结果分析,目前,在应用规模上,高压挤压砾石充填防砂工艺是2828井次,其次是复合防砂698井次和管内循环充填防砂687井次;对防砂效果来说,由于范围大,井数多,工作量大,大部分采油厂都未做这项工作,许多资料都是临时收集,其准确性及可信度较难把握,很难统计出准确的结果。 通过调研发现,辽河油田防砂工艺技术已实现了由单一的生产维护措施到防砂增产措施的转变;由单项工艺技术到配套集成技术系列的转变;工艺向油藏深入,不断提高工艺与油藏适应性的转变。通过数据统计分析及调研走访,发现了防砂工艺技术在应用实施、质量管理、监督监控、人员素质等方面存在着各种各样的问题。为了进一步提高辽河油田防砂工艺水平,最大程度提高中高渗透疏松砂岩油藏的采出程度,提高该类油藏油井的防砂免修期,降低油田的防砂作业成本,需建立完善的防砂市场监督管理体系,制定科学的技术规范,为辽河油田剩余油开发,挖潜上产,油气当量重上三千万提供有效的保障措施。 高含水油井。主要特点是油井采油强度高、生产压差增大,出砂加剧;注水开发使地层胶结物不断溶失,导致地层骨架破坏,出砂加剧,含水上升,影响油井生产;套变套损井逐年增多,据不完全统计,每年套损套变井按照正常生产井的20%速度递增。 海上油田。海上油田同时射开层数多、井段长、层间物性差异大,多年的高速强采使层间矛盾更加突出,单一的滤砂管防砂工艺和笼统的高压充填已不能满足海上提速提液的开发需求。 难动用区块稠油粉细砂岩油藏防砂难度大。稠油疏松砂岩区块,携砂力强,防砂注汽后,一方面放喷速度过快,易冲蚀挡砂屏障。另一方面粉细砂运移,导致油井产能迅速降低。

冷镦成型工艺

紧固件冷镦成型工艺 紧固件成型工艺中,冷镦(挤)技术就是一种主要加工工艺。冷镦(挤)属于金属压力加工范畴。在生产中,在常温状态下,对金属施加外力,使金属在预定得模具内成形,这种方法通常叫冷镦。实际上,任何紧固件得成形,不单就是冷镦一种变形方式能实现得,它在冷镦过程中,除了镦粗变形外,还伴随有正、反挤压、复合挤压、冲切、辗压等多种变形方式。因此,生产中对冷镦得叫法,只就是一种习惯性叫法,更确切地说,应该叫做冷镦(挤)。冷镦(挤)得优点很多,它适用于紧固件得大批量生产。它得主要优点概括为以下几个方面: a。钢材利用率高。冷镦(挤)就是一种少、无切削加工方法,如加工杆类得六角头螺栓、圆柱头内六角螺钉,采用切削加工方法,钢材利用率仅在25%~35%,而用冷镦(挤)方法,它得利用率可高达85%~95%,仅就是料头、料尾及切六角头边得一些工艺消耗、 b、生产率高。与通用得切削加工相比,冷镦(挤)成型效率要高出几十倍以上、 c。机械性能好、冷镦(挤)方法加工得零件,由于金属纤维未被切断,因此强度要比切削加工得优越得多、 d.适于自动化生产。适宜冷镦(挤)方法生产得紧固件(也含一部分异形件),基本属于对称性零件,适合采用高速自动冷镦机生产,也就是大批量生产得主要方法。 总之,冷镦(挤)方法加工紧固件、异形件就是一种综合经济效益相当高得加工方法,就是紧固件行业中普遍采用得加工方法,也就是一种在国内、外广为利用、很有发展得先进加工方法、因此,如何充分利用、提高金属得塑性、掌握金属塑性变形得机理、研制出科学合理得紧固件冷镦(挤)加工工艺,就是本章得目得与宗旨所在。 1?金属变形得基本概念 1.1变形 变形就是指金属受力(外力、内力)时,在保持自己完整性得条件下,组成本身得细小微粒得相对位移得总与。 1.1.1 变形得种类 a.弹性变形 金属受外力作用发生了变形,当外力去掉后,恢复原来形状与尺寸得能力,这种变形称为弹性变形。 弹性得好坏就是通过弹性极限、比例极限来衡量得。 b.塑性变形 金属在外力作用下,产生永久变形(指去掉外力后不能恢复原状得变形),但金属本身得完整性又不会被破坏得变形,称为塑性变形。 塑性得好坏通过伸长率、断面收缩率、屈服极限来表示。 1.1。2塑性得评定方法 为了评定金属塑性得好坏,常用一种数值上得指标,称为塑性指标。塑性指标就是以钢材试样开始破坏瞬间得塑性变形量来表示,生产实际中,通常用以下几种方法: (1)拉伸试验 拉伸试验用伸长率δ与断面收缩率ψ来表示。表示钢材试样在单向拉伸时得塑性变形能力,就是金属材料标准中常用得塑性指标、δ与ψ得数值由以下公式确定: (公式36—1) (公式36—2)

冷镦成型工艺设计、螺栓(试题学习)

目录 1. 形状、尺寸 2. 坯料准备 3. 自动锻压机的型号 4. 凹模孔的直径 5. 滚压螺纹坯径尺寸的确定 6. 送料滚轮设计 7. 切料模 8. 送料与切料时常见的缺陷、产生的原因 9. 初镦 10. 终镦冲模 11. 镦锻凹模 12. 减径模 13. 切边 14. 常用模具材料及硬度要求 15. 冷成形工艺对原材料的要求 16. 切边时容易出现的缺陷、产生原因 17. 化学成份对材料冷成形性能的影响 18. SP.360设备参数 19. 台湾设备参数 20. 台湾搓丝机参数 21. 国内搓丝机、滚丝机参数 22. YC-420、YC-530滚丝机参数 23. 磨床参数 24. 单位换算 25. 钻床参数

形状、尺寸: 1.圆角半径――取直径的1/20~1/5。冷锻时圆角过大反而难锻造。 2.镦粗头部和法兰部尺寸――头部或法兰部体积V在2D3(D为坯 料直径)以下时用单击镦锻机,3.5D3以下时可用双击镦锻机加工,而不会产生纵向弯曲。如V为4.7D3必须经三道镦粗工序。这部分的直径D1,(镦粗后直径)对于C<0.2%的碳素钢,不经中间退火能够镦粗到2.5D。超过上述范围必须中间退火。侧面尺寸由于难以控制,公差要尽可能放宽。 3.镦粗部分的形状――头部或头下部的高度比直径大时,侧壁上向 上和向下设置2°左右的锥度,使材料填充良好。球形头部顶上允许设计成小平面。 4.挤压件坯料和挤出部分断面积之比A0/A1,即挤压比R,对S10C、 BSW1的实心、空心正挤压件,如在5~10以下,对反挤压杯形件,如在1.3~4间,能够一次成形。自由挤压件的R如在1.25~ 1.4以下,能经一道工序加工。杯形件反挤压时的冲头压力,当R 约为1.7时最小。

砾石充填防砂井砾石尺寸设计实例

1 砾石充填防砂井砾石尺寸设计实例 砾石充填类防砂是目前主流的防砂工艺,砾石尺寸设计是砾石充填类防砂设计的关键步骤之一,砾石尺寸的大小会影响防砂效果和油气井生产动态。较大的砾石尺寸有利于获得较高的产能,但会导致地层砂侵入砾石层;相反,较小的砾石尺寸挡砂效果好,但对油井产能的影响较大。油气井防砂领域使用的标准砾石尺寸如表1所示。 目前国内外的主要砾石尺寸设计方法为三类: (1) 第一类:设计依据简单,仅依据地层砂某一特征尺寸的设计方法,包括Karpoff、Smith、Tausch&Corley、Saucier等四种设计模型; (2) 第二类:信息依据丰富,基于地层砂筛析曲线的设计方法,主要包括DePriester和Schwartz两种设计模型; (3) 第三类:基于砾石层孔喉结构模拟的砾石尺寸设计方法。 上述砾石尺寸设计方法均已在中国石油大学(华东)研制开发的Sand control Office软件中实现。 我国西部某出砂气田S-14井地层砂为粉细砂,图3中的曲线D为其筛析曲线,经粒度分析,d10= 0.151 mm,d40= 0.082mm,d50=0.065mm,d70=0.032 mm,d90=0.008mm,分选系数2.043,均匀系数10.036,标准偏差系数0.231。 表1 油气井防砂领域使用的标准砾石尺寸 第一类设计方法的设计结果如表2所示。 使用DePriester方法进行砾石尺寸设计结果如图2所示。设计中的取值为:A=5.5,Cmin=1.5,Cmax=3.0,计算得到系数B的取值范围为[25.4,35.9]。图中曲线A、B分别为B取最小值和最大值时的砾石尺寸分布曲线;曲线C为B取平均值时得到砾石尺寸范围曲线,对应的设计结果为砾石尺寸范围0.227~0.560mm,匹配的砾石标准为0.25~0.42mm。 使用Schwartz方法设计该井的砾石尺寸,设计中的取值为:Cmin=1.2,Cmax=1.5;选择设计点为d70,设计结果如图3所示。曲线A、B分别为Cg= Cmin和为Cg= Cmin和时得到砾石尺寸分布曲线;曲线C为Cg取平均值1.35时得到砾石尺寸范围曲线,对应的设计结果为砾石尺寸范围0.160~0.300mm,匹配表1中的标准砾石尺寸为0.21~0.25mm。

(完整版)化工企业静电危害与应对措施

化工企业在生产过程中经常要使用并输送易燃易爆物料,由于工艺、装置或人员的因素都会产生静电,如果静电得不到有效的控制就有可能酿成重大事故。因静电而引起事故的情况,在精细化工企业曾多次发生过;装置安稳运行是企业获得经济效益的基本条件,相反,一次事故停车就可能给企业造成经济损失,因此要避免静电产生事故是企业应该重视的话题,只有在生产中认真分析静电产生的原因,预测它的危害,对静电防范工作引起足够的重视,防患于未然,才能把静电防范措施落实到实处。 一、静电产生的原因 最常见的产生静电的方式是接触——分离起电。当两种物体接触,其间距离小于25×10-8 cm时,将发生电子转移,并在分界面两侧出现大小相等、极性相反的两层电荷,当两种物体迅速分离时即可能产生静电。 其次,因物体电阻率的不同而产生,电阻率高的物体,其导电性能差,带电层中的电子转移较困难,构成了静电荷集聚的条件。据有关资料介绍,液体的电阻率在1010~1015Ω?m时,能产品危险的静电,而在1013Ω?m时产生的静电最大,高于1015Ω?m或者低于1010Ω?m时,静电的产生和积聚小到可以忽视的程度。特别是电阻率在106Ω?m以下时,对静电来说就等于是导体的作用了,这时可以不考虑静电的问题。 二、静电的危害 静电的危害有三种:一是可能引起爆炸和火灾。静电的能量虽然不大,但因其电压很高且易放电,出现静电火花;二是可能产生电击。静电产生的电击虽然不会致人死亡,但是往往会导致二次事故,因此也要加以防范;三是可能影响生产。在生产中,静电有可能会影响仪器设备的正常运行或降低产品的质量。此外,静电还会引起电子自动元件的误操作。 三、静电的消除措施 消除静电的主要途径有两条:一是创造条件加速静电泄漏或中和;二是控制工艺过程,即限制静电的产生。第一条途径包括两种方法,泄漏法和中和法。接地、增湿、加入抗静电剂等属于泄漏法;运用感应静电消除器、放射线静电消除器及离子流静电消除器等属于中和法,一般企业都采用接地的措施。第二条途径就是工艺控制法,包括材料选择、工艺设计、设备结构及操作管理等方面所采取的措施。化工企业预防静电主要包括以下几方面。 (一)静电接地:接地是消除静电灾害最简单、最常用的方法,是防止静电的最基本的措施。静电接地连接是接地措施中重要的一环,可采取静电跨接、直接接地、间接接地等方式,根据国家标准和行业规范采取正确的接地措施。 1、固定设备

防砂设计

前言 出砂是困扰疏松砂岩油气藏正常开采的主要问题之一,而防砂是解决油气井出砂问题的主要途径之一。尽管从机械到化学的各种防砂技术为开采易出砂油气藏提供了多种技术支持,然而任何有效的防砂措施都是与储层岩石及流体性质和油气井生产方式相联系的。目前主要防砂工艺有机械、化学、复合防砂三类共十几种工艺技术,每种防砂工艺有各自的适应条件及施工参数设计方法。对于出砂油气井,首先应根据地质特征、生产情况、出砂程度等选择合理的防砂工艺类型,然后针对选定的防砂工艺设计施工参数,选择合理防砂方案及科学的施工设计是达到良好防砂效果的关键。 系统的防砂工作需要根据储层岩石特性、流体特性、生产条件等对出砂与防砂工作中各个环节做出必要的评判或决定,主要包括四方面内容:油气井系统出砂预测;防砂工艺方案评价与优选;防砂工艺施工参数设计和防砂井产能预测和评价。 通过这次课程设计已到达熟悉油气井出砂与防砂的基本知识,掌握基本的出砂预测方法与防砂设计理论与技术。通过综合设计熟练掌握出砂与防砂的主要设计理论与方法,并熟练应用相应的软件使用技巧。 第1章油气井的出砂的原因与出砂机理 1.1 油气井出砂原因分析 油气井出砂是由于井底附近地带的岩层结构破坏所引起,它是各种因素综合影响的结果,这些因素可以归结为两个方面,即地质条件和开采因素,其中地质条件是内因,开采因素是外因。 A. 内因—砂岩油气层的地质条件 (1)钻井前后的应力状态变化 砂岩油气层在钻井前处于应力平衡状态。钻开油气层后,井壁附近岩石的原始应力平衡状态遭到破坏,造成井壁附近岩石的应力集中。在其他条件相同的情况下,油气层埋藏越深,岩石的垂向应力越大,井壁的水平应力相应增加,所以井壁附近的岩石就越容易变形和破坏,从而引起在采油过程中油气层出砂,甚至井壁坍塌。 (2)岩石的胶结状态 油气层出砂与油气层岩石胶结物种类、数量和胶结方式有着密切的关系。油气层砂岩胶结方式主要有三种:基底胶结、接触胶结、空隙胶结。容易出砂的油气层岩石主要以接触胶结为主,其胶结物数量少,而且其中往往含有较多粘土胶结物。 (3)渗透率的影响 渗透率的高低是油气层岩石颗粒组成、空隙结构和孔隙度等岩石物理属性的综合反映。试验和生产实践证明,当其他条件相同时,油气层的渗透率越高,其

化工企业消除静电的措施(新版)

化工企业消除静电的措施(新 版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0438

化工企业消除静电的措施(新版) 化工企业在生产过程中经常要使用并输送易燃易爆物料,由于工艺、装置或人员的因素都会产生静电,如果静电得不到有效的控制就有可能酿成重大事故。 因静电而引起事故的情况,在精细化工企业曾多次发生过;装置安稳运行是企业获得经济效益的基本条件,一次事故停车就可能给企业造成相当经济损失,因此要避免静电产生事故是企业应该重视的话题,只有对静电防范工作引起足够的重视,防患于未然,才能把静电防范措施落实到实处。 消除静电的主要途径有两条: 一是创造条件加速静电泄漏或中和; 二是控制工艺过程,即限制静电的产生。 第一条途径包括两种方法,泄漏法和中和法。接地、增湿、加

入抗静电剂等属于泄漏法;运用感应静电消除器、放射线静电消除器及离子流静电消除器等属于中和法,一般企业都采用接地的措施。 第二条途径就是工艺控制法,包括材料选择、工艺设计、设备结构及操作管理等方面所采取的措施。 XXX图文设计 本文档文字均可以自由修改

防砂处理

一、防砂工艺 1. 出砂的原因 1.1 出砂的地质条件(内因) a. 地层地质年代新(第三系、第四系); b. 埋藏浅(一般小于1500m),压实作用差; c. 地层胶结强度低(可由室内岩芯实验确定); d. 机杂及胶结物含量低; e. 以泥质胶结为主的敏感性(水敏和速敏)储层,遇水后易发生膨胀和运移; f. 高孔(25.0%~30.0%)和高渗(数百到数千 md); g. 往往是稠油油藏,流动阻力大; h. 断块油藏——断层发育,构造应力大; 1.2 出砂的开发因素(外因) a. 地层压力降低,出砂; b. 完井方式与参数; c. 生产压差:避免压力激动和过大压差; d. 油井含水:含水上升,出砂加剧; e. 地层损害:渗透率降低,出砂; f. 钻井/作业:液体漏失、地层损害。

2. Palogue油田的出砂预测 2.1 组合模量法 储层岩石强度是决定油气井是否出砂的主要因素,它与其弹性参数如剪切模量、体积模量有良好的相关性。美国莫尔比石油公司提出的组合模量法能很好的预测油藏是否出砂。组合模量法在墨西哥湾和北海已广泛应用,当Ec大于3×106psi时油气井不出砂。 E c =(9.94×108ρ r )/△t2 c 式中: E c ----岩石组合模量(岩石密度、声波时差函数),×1.4503×106psi ρ r ----岩石密度,g/cm3 t----岩石纵波时差,μs/m 胜利油田通过现场应用,最终得到出砂界限值: E c >3×106psi,在正常生产中油气井不出砂; 2.03×106psi

防静电培训测试试卷 含答案

防静电知识培训班测试试卷 部门姓名 一、是非题(每题2分,共20题): ( ×)1、防静电地线不得与防雷地线共用,可以接在电源零线上。 ( √)2、使用三相五线制供电,其大地线可以作为防静电地线。 ( ×)3、绝对不允许使用增湿设备喷洒制剂或水,以增加环境湿度。 ( √)4、在防静电工作区内禁止使用或接触易产生静电荷的电荷源。 ( ×)5、在相对湿度大于50%的环境中,防静电工作服不允许选用纯棉制品。 ( ×)6、在相对湿度较低时,可恰当地使用增湿器,通过恒定的潮湿的空气流,防止静电荷的积累,此方法也适于非密封电子元器件。 ( √)7、操作静电放电敏感电子元器件须在防静电工作区内进行。 ( √)8、静电测量的主要参数有电荷量和静电电压。 ( √)9、人是主要的静电放电源。 ( √)10、空气含尘粒子是指非导电、非导磁性和非腐蚀性的。 ( ×)11、不可选用铝合金箔材做表面装饰材料。 ( √)12、备用印制电路板组件和维修的元器件必须在机架上或防静电屏蔽袋内存放。( ×)13、需要运回厂家或维护中心的待修印制电路板组件,无须先装入防静电屏蔽袋就能运送。 ( √)14、服装,图纸资料等物品不得接触SSD。 ( ×)15、工作台可以相互串联接地。 ( √)16、ESD就是Electro Static Discharge(静电放电)。 ( √)17、干燥的空气更容易产生静电电荷。 ( ×)18、人在走动时不会产生静电。 ( √)19、拿取IC芯片时应带防静电腕带。 ( ×)20、摩擦产生的静电电压大小与材料本身的导电性和摩擦时的状态(如速度、接触面积等)有密切关系,与环境的相对湿度关系不大。 二、选择题(每题3分,共10题): 1、防静电系统必须有独立可靠的接地装置,接地电阻一般应小于。A A、10Ω B、20Ω C、30Ω D、40Ω 2、防静电工作区的环境相对湿度以不低于为宜。C A、40% B、45% C、50% D、55% 3、防静电工作区的操作人员配带防静电腕带时,腕带接地系统电阻的大小应考虑到人身安 全,一般取。D

冷镦工艺

冷镦时,金属材料的变形形式和变形程度,是由材料尺寸、工件形状决定的,由此可求出材料镦锻比和镦锻率。 镦锻比主要用于工艺设计,决定工件的镦锻次数,用以对材料受力、模具寿命、产品质量进行分析的一个重要依据。 (1).镦锻比(S) 又称镦粗比,即被镦锻材料镦锻部分长度h0和直径d0的比值。即: 用镦锻比可以确定镦锻过程中技术上的难易程序,镦锻比愈小,加工愈容易;镦锻比较大时,在制定工艺时应该适当增加镦锻关键次数。镦锻比是设计工艺的重要依据。 (2).镦锻论(ε) 又称变形程度,是材料镦锻部分高度方向上的压缩量与材料镦锻部分的高度的比值。

即: 在塑性变形中,当工件变形程度超过金属材料本身许可变形程度时,在工件的侧面就会出现裂纹。 (3)冷抗日压变形程度表示方法多用断面减缩εF表示①正挤压:

二、镦锻次数的确定 确定镦锻次数,一般考虑下述因素 (1)形成头部的坯料长度与直径的比值h00/d00如果比值过大,一次镦就会产生纵向弯曲(见图3),形成头部后会出现夹层、皱皮或局部不充满,头形偏心等质量问题,这就需用增加镦粗次数来解决。即先把坯料镦成一个锥形,然后将锥形镦成所需形状(见图4) 一般根据经验可按下列数据来决定镦锻次数: 当h0/d0≤2.5时,镦锻一次; 当2.5≤h0/d0≤4.5时,镦锻二次; 当4.5≤h0/d0≤6.5时,镦锻三次;

(2)工件头部直径D与高度之比D/H 当D大而H小,这时h0/d0值可能并不大,但一次镦粗可能造成边缘开裂,就要考虑增加镦锻次数。 (3)工件表面光洁度要求较高、头形复杂的零件,对镦锻次数也有影响。,如半圆装潢螺钉,虽然h0/d0<2.5,D/F也不大,但一次镦粗达不到光洁度要求,头部形状也不易完整镦粗,所以普遍采用二次镦锻成形;冷镦凹穴六角螺栓,由于头部形状较复杂,虽然h0/d0<2.5,但一般采用三次镦锻工艺。 在整体凹模冷镦自动机工作时,镦锻头部和使杆部局部镦粗的作用力,限制了杆部的长度,过长的杆部会产生很大顶料力使自动机工作不正常。一般长度与直径d0比值: Lma/d0<9.5~10 当选用坯料直径大于螺栓杆部直径,以挤压方式加工螺栓时,确定镦锻次数不再以h0/d0作为主要依据。因为这时坯料不会发生纵向弯曲,而应考虑挤压杆部和镦粗头部的形状所需加工步骤。选用粗线材镦制螺栓,头部镦粗杆部二次缩径工艺称为冷镦挤复合工艺,亦称二次缩径工艺。此时必须考虑杆部挤压程度是否在材料许用挤压程度范围内。在总变形程度确定的情况下,工件需要的变形次数与材料性质、工模具质量、润滑条件等方面因素有关。 金属材料塑性好,一次变形程度大,挤压次数少。

冷镦成型工艺设计

目录 1.形状、尺寸 2. 坯料准备 3. 自动锻压机的型号 4. 凹模孔的直径 5. 滚压螺纹坯径尺寸的确定 6. 送料滚轮设计 7. 切料模 8. 送料与切料时常见的缺陷、产生的原因 9. 初镦 10. 终镦冲模 11. 镦锻凹模 12. 减径模 13. 切边 14. 常用模具材料及硬度要求 15. 冷成形工艺对原材料的要求 16. 切边时容易出现的缺陷、产生原因 17. 化学成份对材料冷成形性能的影响 18. SP.360设备参数 19. 台湾设备参数 20. 台湾搓丝机参数 21. 国内搓丝机、滚丝机参数 22. YC-420、YC-530滚丝机参数 23. 磨床参数 24. 单位换算 25. 钻床参数

形状、尺寸: 1.圆角半径――取直径的1/20~1/5。冷锻时圆角过大反而难锻造。 2.镦粗头部和法兰部尺寸――头部或法兰部体积V在2D3(D为坯 料直径)以下时用单击镦锻机,3.5D3以下时可用双击镦锻机加工,而不会产生纵向弯曲。如V为4.7D3必须经三道镦粗工序。这部分的直径D1,(镦粗后直径)对于C<0.2%的碳素钢,不经中间退火能够镦粗到2.5D。超过上述范围必须中间退火。侧面尺寸由于难以控制,公差要尽可能放宽。 3.镦粗部分的形状――头部或头下部的高度比直径大时,侧壁上向 上和向下设置2°左右的锥度,使材料填充良好。球形头部顶上允许设计成小平面。 4.挤压件坯料和挤出部分断面积之比A0/A1,即挤压比R,对S10C、 BSW1的实心、空心正挤压件,如在5~10以下,对反挤压杯形件,如在1.3~4间,能够一次成形。自由挤压件的R如在1.25~ 1.4以下,能经一道工序加工。杯形件反挤压时的冲头压力,当R 约为1.7时最小。

相关文档
相关文档 最新文档