文档库 最新最全的文档下载
当前位置:文档库 › 机械最优化设计及其应用实例

机械最优化设计及其应用实例

机械最优化设计及其应用实例
机械最优化设计及其应用实例

机械最优化设计及其应用实例

机械最优化设计及其应用

徐华伟

(三峡大学机械与材料学院 2009106130)

摘要: 机械优化设计是将数学规划理论、计算机技术、最优化原理与方法和机械设计相结合的一项新的科学技术。它是一门综合性的学科,具有丰厚的理论和应用价值,是解决复杂设计问题的一种有效工具。它是以最优化理论和方法为基础,以计算机为运算工具从众多的设计方案中寻找出最优的机械设计参数的一种现代设计方法。因此,优化设计可以形象的表示为,专业理论+数学规划+计算机技术。优化设计其内容包括,最优化问题基础知识、一维探索、无约束最优化问题的求解方法、约束最优化问题的求解方法、多目标函数的优化设计方法、遗传算法简介、最优化方法在压力加工、机构设计、拟合公式中的应用等。其在工程设计中的应用如,具有独立悬挂汽车的双桥转向机构的最优化设计、内燃机连杆结构的最优化设计、凸轮机构的最优化设计、汽车变速器的最优化设计、弹簧的最优化设计、制动器的最优化设计、离合器盖结构形状的最优化设计等等。关键词: 设计机械最优化目标函数变量约束

常规的设计方法进行工程设计,特别是当影响设计的因素很多时,只能得到有限候选方案中的最好方案,而不可能得到众多可能方案中的“最优设计方案”。优秀的工程设计人员总是准备好几种候选设计方案,再从中择其“最优”,如此这样才会让所设计的项目达到更精。然而,由于设计时间和经费的制约,所设计的候选方案的数目会受到很大限制。“最优化设计”是在现代计算机广泛应用的基础上发展起来的一项新技术。是根据最优化原理和方法综合各方面的因素,以人机配合方式或“自动探索”方式在计算机上进行的半自动或自动设计以选出在现有工程条件

下的最佳设计方案的一种现代设计方法。其设计原则是最优设计,设计手段是电子计算机及计算程序,设计方法是采用最优化数学方法。实践证明,最优化设计是保证产品具有优良的性能,减轻自重或体积,降低工程造价的一种有效设计方法。同时也可使设计者从大量繁琐和重复的计算工作中解脱出来使之有更多的精力从事创造性的设计并大大提高设计效率。在数学规划方法的基础上发展起来的最优化设计是60年代初电子计算机引入结构设计领域后逐步形成的一种有效的设计方法。利用这种方法,不仅使设计周期大大缩短,计算精度显著提高,而且可以解决传统设计方法所不能解决的比较复杂的最优化设计问题。

现代设计都是面向市场,实现功能及产品优势的设计、创新设计、绿色设计、优化设计、可靠性设计等现代设计方法备受国内外机械设计领域的关注,而机械的优化设计与机构设计、机械传动设计和机械强度设计共同组成了机械设计的内涵。机械优化设计是建立在近代应用数学、物理学、应用化学、应用力学和材料学和计算机程序设计之上的,是解决复杂设计问题的一种有效工具,机械优化设计是把机械设计与优化理论及方法密切结合起来去处理机械设计问题,工程实用价值大,机械优化设计的研究和应用工作更为活跃,应用领域更加的广泛,涉及到航空航天、工程机械、通用机械与机床、水利、桥梁、船舶、汽车、铁路运输行业、通讯行业、轻工纺织、能源工业、军事工业、建筑机械、石油及石化行业、食品机械等诸多方面,主要处理那些具有复杂结构系统的设计,如飞机机身、飞机结构整体、火箭发动机壳体、航空发动机轮盘、潜艇结构、潜艇外部液压舱、机器人等,或大规模的工程建设,如建筑、桥梁、石油钻井井架、大型水轮机结构等,或产量大的汽车车架、悬挂、车身、箱形梁结构、起重机、装载机、平面或空间桁架结构、各类减速器、制动器、圆锥、圆柱齿轮、连杆机构、凸轮机构各类弹簧/轴承等。一般说来对于工程设计问题所涉及的因素愈多,问题愈复杂,最优化设计结果所取得的效益就愈大。最优化设计反映出人们对于设计规律这一客观世界认识的深

化。设计上的“最优值”是指在一定条件各种设计因素影响下所能得到的最佳设计值。最优值是一个相对的概念,它不同于数学上的极值但在很多情况下可以用最大值或最小值来表示。

“最优化”是每一个设计者所追求的目标。任何一项设计都需要根据设计要求合理选择设计方案来确定各种参数,以达到最佳的的设计目标,如质量、材料、结构、性能、成本等各个方面的优化。对于设计人员来说,他们总愿意用最优化的设计方案,使所设计的产品或工程设施具有最好的使用性能和最低的材料消耗与制造成本,以便获得最佳的经济效益和社会效益。机械设计是机械工程的重要组成部分,是决定机械性能最主要的因素。

一项机械产品的设计,通常要经过调查分析、方案拟定、技术设计、零件工作图绘制等环节。传统设计方法通常在调查分析的基础上,参照同类产品通过估算、经验类比或实验来确定初始设计方案。然后,根据初始设计方案的设计参数进行强、刚度、稳定性等性能分析计算,检查各性能是否满足设计指标要求。如果不完全满足性能指标的要求,设计人员将凭经验或直观判断对参数进行修改。这样反复进行分析计算——性能检验——参数修改,直到性能完全满足设计指标的要求为止。整个传统设计过程就是人工试凑和定性分析比较的过程,主要的工作是性能的重复分析,至于每次参数的修改,仅仅凭借经验或直观判断,并不是根据某种理论精确计算出来的。

机械优化设计基本思路是在保证基本机械性能的基础上,借助计算机,应用一些精度较高的力学、数学规划方法进行分析计算,让某项机械设计在规定的各种设计限制条件下,优选设计参数,使某项或几项设计指标(外观、形状、结构、重量、成本、承载能力、动力特性等)获得最优值。机械优化设计的过程:分析设计变量,提出目标函数,确定约束条件,建立优化设计的数学模型;选择适当的优化方

法,编写优化程序;准备必须的初始数据并上机计算,对计算机求得的结果进行必要的分析。

随着现代数学规划理论的不断发展和工作站计算能力的不断挖掘,机械优化设计方法和手段都有非常大的突破且优化设计思路不断的开阔,仿生学理论、基因遗传学理论和人工智能优化等现代设计理论的引入,都大大促进优化设计方法的更新和完善。优化设计工作中,针对具体设计问题是否选择了合适的优化方法,相应的计算程序是否有效,数学模型构造是否合理,能否充分反映实际问题且尽量简化,这些都直接关系到优化设计进程和机械设计结果。

最优化设计工作包括两部分内容:一是将设计问题的物理模型转变为数学模型,简历数学模型时要选取设计变量,列出目标函数,给出约束条件。二是采用适当的最优化方法,求解数学模型,在约束条件下求解目标函数的极值或最优值问题。

一、最优化设计分析

1、机械优化设计的过程

设计变量选择,在充分了解设计要求的基础上,根据各设计参数对目标函数的影响程度分析其主次,尽量减少设计变量的数目,以简化优化设计问题注意各设计变量应相互独立,避免耦合情况的发生。目标函数与约束的确定,目前尚无一套完整的评价方法来检验哪些约束是必须,哪些约束是可忽略的,通常是凭经验取舍,不可避免会带来模型和现实系统的不相吻合。数学模型确立,数学模型越精确,设计变量越多,维数越大,建模越复杂,优化进程越慢;但数学模型忽略过多元素,则难以确切凸现结构的特殊之处。所以,要结合工程实际和优化设计经验,把握与研究目标相关程度大的因素,尽可能的建立确切、简洁的数学模型。数学模型的尺度变换,因各设计变量、各目标函数、各约束函数表达意义的不同,将可能使得各自在量级上相差很大,从而导致在给定的搜索方向上各自的灵敏度差距也很

大。为消除这种差别,可以对其进行目标函数尺度变换,使它成为无量纲或规格化的设计变量,设计变量尺度变换和约束函数的规格化,以提高优化进程,提高结果进度,加快收敛速度。优化程序中易忽略的问题,注意检验变量是否在函数定义域内,防止无效变量生成而导致优化计算失败;注意函数表达式中分母出现非常小或等于 0 情况的处理,避免数值溢出;用函数值的数值差分计算梯度,尽量避免函数与导数值之间的不一致性,优化软件的应用。

2、最优化设计中目标函数的数学分析

目标函数泰勒表达式的展开,往往将原目标函数在所讨论的点附近展开成泰勒多项式,用来解答原函数。目标函数的方向导数和梯度,考察函数与自变量的关系,即函数相对于自变量的变化率,包括沿某一指定方向的变化率和最大变化率,所以就要用到方向导数和梯度。无约束目标函数的极值条件,无约束优化问题一般归结为求目标函数的极大值极小值问题,一般先求出若干极值点,再通过比较来确定全局最优点。目标函数凸集与凸函数、凹函数,由函数极值条件所确定极小点

X*,是指函数f(X)在点X*附近的一切X均满足不等式f(X) > f(X*),由函数极值条件所确定的极小值只是反映函数在X*附近的局部性质。优化设计问题中目标函数的局部极小点并不一定就是全局极小点,只有在函数具备某种性质时,二者才能等同。目标函数的约束极值优化问题,约束最优点不仅与目标函数本身的性质有关,而且还与约束函数的性质有关。在存在约束的条件下,为了要满足约束条件的限制,其最优点不一定是目标函数的自然极值点。最优化设计的数值计算方法——迭代法及其收敛性,在机械优化设计的实际问题中,采用解析法求解很困难,在实际应用中,则广泛采用数值方法来直接求解。数值方法中常用的是迭代法,这种方法具有简单的迭代格式,适用于计算机反复运算,通常得到的最优解是一个可满足精度要求的近似解。

3、常用的一维搜索最优化方法

搜索区间的确定,先确定探索区间即最优步长所在的单峰区间,区间内目标函数应只有一个极小值;再在此区间内求最优步长使目标函数达到最小常用外推法和进退法。切线法,即牛顿法,用切线代替弧逐渐逼近函数根值的一种方法。Fibonacci法与黄金分割法,二者都属于应用系列消除原理的直接探索方法。系列消除原理是在探索区间内,选取计算点计算函数值并进行比较,消除部分区间,以缩短探索区间。Fibonacci法又称分数法,其特点是在每次确定区间内计算点的位置时,采用Fibonacci数组成的分数作为区间的缩短系数。黄金分割法它每次缩短的比例是相同的为0.618.二次插值法与三次插值法,二次插值法又称为近似抛物线法,三次插值法又称为微分法,都属于利用多项式逼近的近似法即曲线拟合方法。平分法即是取具有极小点的单峰函数的探索区间的坐标中点最为计算点,计算目标函数在该点处的导数,并利用函数在极小值点处的导数为零而在其左侧为负、右侧为正的原理,来判断极小点所在的那一半探索区间,消掉另一半区间,逐次迭代,求得极小点的近似解。格点法又称为全面搜索法,将已确定的搜索区间均分为几个区间,计算目标函数在等分点处的函数值,作出比较,求得目标函数的近似极小值。

4、无约束多维问题的最优化方法

坐标轮换法通过每次仅对多元函数的一个变量沿其坐标轴进行一维搜索,并依次轮换进行一维探索的坐标轴,直到找到目标函数在全域上的最小点为止。最速下降法就是采用使目标函数值下降得最快的负梯度方向作为探索方向,来求目标函数的极小值。牛顿法就是一种收敛速度很快的方法,其基本思路是利用二次曲线来逐点近似原目标函数,以二次曲线的极小点来近似原目标的极小点并逐渐逼近该点。共轭梯度法是逐次利用一维探索所得极小点处的最速下降方向生成共轭方向。共轭方向法及其改进——Powell法,不需要对函数作求导计算,只计算它的函数值即可直接求出用于搜索的共轭方向。变尺度法是公认的求解无约束极值问题最有效的

算法之一。单纯形法只需要计算目标函数值,无需求其导数,因此计算比较简单,其几何概念也比较清晰。这类方法适用于不知道目

标函数的的数学表达式而仅知道其具体算法的情况,这也是直接法的一个优点。Hooke-Jeeves直接搜索法,它与Powell法都属于模式探索方法,前者的程序简单,当变量数较少时比较有效,适应性较强。但是在每轮探索中包括了依次沿坐标轴的移步,其收敛速度虽比坐标轮换法有所改善,但仍然较慢。同样不适作“模式性移动”。Rosenbrock法又称转轴法能将坐标系转动一个角度再进行探索,比坐标轮法显然提高了效率和解题能力。同样不适用于高维数的问题。Marquardt集中了最速下降法及牛顿法的优点,算法简单,在远离极小点时具有最速下降法的优点,在接近极小点处又有牛顿法的长处。机械优化设计的过程。最小二乘法,常用于求函数平方和的极小值问题,且不必计算二阶偏导数矩阵,为线性收敛速度。

5、约束多维问题的最优化方法

(1)约束最优化问题的直接解法

随机试验法,用于求解约束非线性最优化设计问题,属于直接解法。其基本思想就是利用计算机产生的伪随机数。随机方向探索法和随机梯度法、Gauss-Seidel 法等都属于约束随机法。这类方法一般都包括随机选择初始点,随机选择探索方向和随机选取探索步长等几个步骤。复合形法是求解约束非线性最优化问题的一种重要的直接方法,在求解无约束问题的单纯形法中,不需计算目标函数的梯度,而是靠选取单纯形的顶点并比较各顶点处目标函数值的大小,来寻找下一步的探索方向的。可行方向法是用梯度去求解约束非线性最优化问题的一种有代表性的直接探索方法,也是求解大型约束优化设计问题的主要方法之一。在约束最优化问题的直接解法中还有一种称为可变容差法。它是从单纯形法发展而来的,所以有时亦称为有约束的单纯形法。其基本思想是把多个约束条件的最优化问题化简为一个单约束问题来求解。Wolfe将线性规划的单纯形法推广应用到求解约束条件为线性的非线

性目标函数的最优化问题,从而提出了所谓简约梯度法或简化梯度法。线性逼近法实际工程的优化设计大多属非线性规划问题,用一个或一系列线性问题来逼近非线性问题,是数学上求解非线性问题的一种基本方法。线性逼近法就是按照这一思路去求解非线性规划问题的。

(2)等式约束最优化问题的间接解法

等式约束下的消元法,是将等式约束最优化问题转变为无约束最优化问题的一种最简单、最普通的方法。它由于引进了一个待定系数——乘子,构成一个新的无约束条件的目标函数,而使数学变换过程简化。新目标函数的无约束最优解,就是原目标函数的约束最优解。惩罚函数法在等式约束最优化问题的间接解法中,还有一种用待定乘子将约束最优化问题转换为无约束最优化问题,然后求最优解的近似但很有效的方法,即所谓惩罚函数法。增广 Lagrangian 乘子法,在收敛速度和数值稳定性方面均优于惩罚函数法的有效方法。

(3) 不等式约束最优化问题的间接解法

拉格朗日乘子法既可用于解等式约束的最优化问题,又可用于解不等式约束的最优化问题。对于不等式约束条件,可引入松驰变量,使不等式变为等式。惩罚函数法亦常用于解带有不等式约束的最优化问题,并属于不等式约束最优化问题的间接解法。与惩罚函数外点法类似,对初始点无特别要求,初始点也可以是非可行点。可通过更迭拉格朗日乘子的值来实现加速迭代。

6、多目标函数的最优化方法

多目标函数的最优化问题要比单目标函数的最优化问题复杂得多,求解难度也较大。下面有几种多目标函数的最优化方法如:统一目标法把多目标函数的最优化问题转变为单目标函数的最优化问题来求解。主要目标法是以此思想作为指导,首先将多目标函数最优化问题中的全部目标函数,按其重要程度排列,最重要的排在最前面,然后依次求各个(单) 目标函数的约束最优值。协调曲线法在整个设计

空间中,根据各个目标函数的等值线、约束面在设计空间的协调关系,来寻求多目标函数最优化设计的最优方案。设计分析法先求出每一个(单)目标函数的约束最优解,再相互制约地对设计进行分析、协调、修改,把各个设计目标调整到要求值上,并得到最理想的协调关系。

如何利用这些理论和方法去解决一些典型的机械零件与机构的设计问题。在实际的机械最优化设计中,每一个具体问题虽然都有其特殊性或个性,需要专门地对待,但也有它们的一般性或共性。

第一、建立正确的数学模型,乃是解决最优化设计问题的关键。第二、所建立的数学模型要容易计算和处理。设计变量是能影响设计质量或结果的可变参数。对影响设计指标的所有参数进行分析、比较,从中选择对设计质量确有显著影响且能直接控制的独立参数作为设计变量,其它参数则作常量处理。目标函数是以设计变量来表示设计所要追求的某种性能指标的解析表达式。通常以其中最重要的指标作为设计追求的目标,建立目标函数设计约束是对设计变量取值范围的限制条件。常见显约束与隐约束,边界约束与性态约束,等式约束与不等式约束等。

尺度变换,是一种改善数学模型性态的技巧,包括设计变量的尺度变换,目标函数的尺度变换和约束条件的尺度变换。在机械最优化设计中,当需要引用图表给出的数据时,应根据计算程序的要求,编制、查找和检取这些数据的子程序。在选择最优化方法时,应明确数学模型和它本身及其计算程序的特点。计算后必须对计算机输出的计算结果进行仔细的分析、比较,检查其合理性。灵敏度即研究起作用约束的某些变化对最优解(包括设计变量及目标函数)的影响,或确定最优值随约束函数中常数项的某些变动而变动的变化率。

二、最优化设计应用实例

1、具有独立悬挂汽车的双桥转向机构的最优化设计

以某8×8越野汽车的双桥转向机构为例,该车悬挂装置均采用双摆臂独立悬挂,弹性元件采用上摆臂扭杆弹簧,转向机构采用双前桥转向型式。由于机构较复杂,参数也很多。应用机械最优化设计方法,并以电子计算机作为计算手段,则可得到快速而准确的结果。

由于各轮均采用独立悬挂,随着载荷的变化,车轮相对于车体的位置将发生变化,这就导致转向机构中某些铰接点的变化,而影响各轮的转角关系。因此在本项最优化设计研究中,是以刚体空间运动学基本计算方程为基础,考虑了悬挂上摆臂的摆动角;在建立最优化设计的数学模型中,考虑了空载和满载这两种情况,以保证转角关系在全工况范围内都能较接近理想转角关系。另外,考虑到该型车辆的转弯速度较低,故这里忽略了轮胎侧偏弹性的影响,视轮胎为刚体;也忽略了转向时车厢的侧倾。

当第一桥内轮的理论转角与实际转角相等时,其它各轮实际转角与理论转角的相对误差之和就定义为转角误差。可以转角误差最小为最优化设计追求的目标。由于各轮均采用独立悬挂,而各悬挂的摆动将影响各转向轮的转角关系。因此,对具有独立悬挂汽车的双桥转向机构来说,以空载、满载两种载荷工况下的转角误差之和为最小建立目标函数是适宜的。

2、内燃机连杆结构的最优化设计

采用常规设计难于使连杆达到既轻又可靠的要求,而选用最优化方法并结合采用有限元法数值计算技术对连杆结构进行分析,则可圆满完成这一任务,并得出连杆最优化设计后的结构形状。在连杆结构的最优化设计计算中,向最优方案每探索一步,都要对连杆结构进行有限元分析,其目的是为最优化设计提供应力、变形及疲劳安全系数等的约束信息。用有限元法对连杆结构在整个 720 ?循环中进行动态分析,当然会得到非常理想的结果,但将使计算过于复杂,而机时也大大增加。因此,在最优化过程中可配合用计算较简便、结果也较准确且花费机时较少的最大

拉、压工况下的有限元静力分析,而后对连杆上应力、变形最大及疲劳安全系数最小的特征部位的计算结果进行动态修正。修正值可通过对连杆最优化设计初始方案的动态分析或对已有连杆的动应力电测得到。

在连杆的最优化设计中,为了能求得一组最佳设计参数,以获得能满足强度、刚度及各种设计要求的最轻连杆,在建立数学模型时,可选用能描述连杆结构形状和尺寸大小的参数作为设计变量;以连杆的质量或连杆上各点处疲劳安全系数的最小值的倒数作为目标函数;以对应力、变形、最小疲劳安全系数及结构尺寸的限制建立约束条件。由于目标函数和约束条件的有关数值要通过对连杆结构的有限元分析得到,因此,其目标函数和约束条件一般都是隐式的。在选择设计变量时,既要使设计变量能尽量准确地描述连杆的结构形状,又要使设计变量的数目尽可能少,以节省计算时间。

3、凸轮机构的最优化设计

凸轮机构是机械中一种常用的基本机构,其结构简单、紧凑,而且只要能设计出适当的凸轮轮

廓曲线,就可使从动件的位移、速度或加速度以给定的运动规律变化。但由于凸轮和从动件是一摩擦副,在传动过程中作往复运动的从动件的惯性力又会引起冲击、振动和噪音,因此减小磨损、冲击、振动和噪音,就成为凸轮设计的另一项重要任务。

凸轮机构的型式很多,设计要求也往往有所不同,现仅以内燃机配气机构的凸轮为例,来介绍凸轮机构的最优化设计方法。要设计出性能良好的凸轮机构,关键在于根据工作要求,选择好从动件的运动规律,并设计出能满足这一运动规律的凸轮轮廓曲线。对内燃机配气机构的凸轮来说,其轮廓曲线设计的主要要求是:气门升程曲线具有最大的丰满系数,以得到最高的进、排气效率,而气门开、关过程中的最大正、负加速度应低于其许用值,以减小冲击、振动和噪音;凸轮轮廓

的最小曲率半径应大于其许用值,以避免由于接触应力过高造成摩擦副的早期磨损。内燃机配气机构的凸轮轮廓曲线,过去多采用由几段圆弧或圆弧与直线构成的所谓几何凸轮。这种凸轮虽然可以具有较大的丰满系数,但气门加速度曲线是突变的,导致配气机构的冲击、振动和噪音大,磨损快。为了得到缓和的加速度,以改进配气机构的动力学性能,可采用函数凸轮,例如高次多项式凸轮等。但当采用一般的设计方法时,函数凸轮的丰满系数往往较小。而采用最优化设计,并将丰满系数ζ作为目标函数,则可得到理想的结果。

4、汽车变速器的最优化设计

减小体积和质量,提高传扭能力,是当前汽车变速器强化设计的主要目的,是设计师们追求的目标。因为减小变速器的体积和质量可减少制造费用、降低轮齿动载荷、提高齿轮寿命、使汽车的总体布置更为方便和灵活。因此,汽车变速器的最优化设计,常常在保证零件的强度、刚度、使用寿命等条件下,以使变速器齿轮及轴系的质量最小作为追求的目标,建立目标函数。

5、弹簧的最优化设计

弹簧的用途极广,结构类型繁多。作为一种具有弹力的机械元件,广泛用于各种机械装置及机构中。例如,汽车悬架是用螺旋弹簧、扭杆弹簧或叶片钢板弹簧来支承汽车的车架或车厢,作缓冲、减振之用;汽车离合器是用螺旋弹簧或膜片弹簧、内燃机气门是用螺旋弹簧来控制运动的;钟表是用盘簧来储蓄能量的;弹簧秤是用螺旋拉伸弹簧来测量载荷的。

6、制动器的最优化设计

鼓式制动器的最优化设计,这里介绍卡钳型盘式制动器的最优化设计方法。盘式制动器首先出现在欧洲的竞赛车和小轿车上。由于它具有热稳定性好、无机械衰退问题,水稳定性好,制动盘在高温下形成热裂和热点的可能性比制动鼓小,不会如制动鼓的热膨胀那样引起制动踏板的行程损失,比鼓式制动器的尺寸紧凑、重

量轻及维修保养方便等一系列的优点,目前在世界各国,特别是西欧各国,盘式制动器已广泛用于小轿车的前轮上,与鼓式后制动器配合,可获得较大的制动力分配系数,有利于提高汽车制动时的稳定性。欧洲有些高性能小轿车前、后轮都采用盘式制动器,主要是为了保持β值的稳定。

7、离合器盖结构形状的最优化设计

离合器盖与飞轮固定在一起,通过它传递发动机的部分扭矩。它还是离合器压紧弹簧和分离杆的支承壳体。设计时要求质量小、刚度好,便于通风散热,且相对于飞轮轴线必须有良好的对中以保持离合器的平衡为了减轻重量和增强刚度,小轿车和一般载货汽车的离合器盖常选用低碳钢板冲压成带有加强筋和卷边的复杂形状。以复杂的形状增强刚度从而避免受力变形引起的离合器分离不彻底和摩擦片早期磨损。因此,离合器盖的设计关键在于其结构形状的尺寸选择。

参考文献,

[1]孙靖民,梁迎春主编.机械优化设计(第4版)[M].机械工业出版社,2007.

[2]刘惟信.机械最优化设计(第二版)[M].清华大学出版社,1994.

[3]韩林山主编.机械优化设计[M].黄河水利出版社,2003.

[4]孙全颖,赖一楠,白清顺主编.机械优化设计[M].哈尔滨工业大学出版社,2007. [5]王安麟,刘广军,姜涛编著.广义机械优化设计[M].华中科技大学出版社,2008. [6]张宁一,刘惟信. 具有独立悬挂汽车的双桥转向机构的优化设计[J].汽车工程,N o.4,1989. [7]陈国华. 内燃机平切口式连杆结构最优化设计[J]内燃机学报1983年第1卷第1期,56—62. [8] 陆飞,谭永基,符正伟. 内燃机连杆外形优化设计[C],内燃机结构强度联合学术讨论会,1983.10. [9]陈瑞镰. 高次多项动力凸轮型线的优化设计[J].河北工学院学报,1984 第1期 . [10]李伟,刘惟信. 汽车四档变速器的优化设计[J].当代汽车,No. 3,1990.

[11]戈平,刘惟信. 汽车发动机与传动系的匹配分析和优化设计[J],汽车技术,N o. 8.1993. [12]李林,刘惟信. 汽车离合器盖结构形状的最优化设计[J],北京汽车,N o. 6. 1991. [13]王国强等主编.机械优化设计[M].机械工业出版社,2009.

[14]樊军庆主编.机械优化设计及应用[M].机械工业出版社,2011.

机械优化设计论文(基于MATLAB工具箱的机械优化设计)

基于MATLAB工具箱的机械优化设计 长江大学机械工程学院机械11005班刘刚 摘要:机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计效率和质量。本文系统介绍了机械优化设计的研究内容及常规数学模型建立的方法,同时本文通过应用实例列举出了MATLAB 在工程上的应用。 关键词:机械优化设计;应用实例;MATLAB工具箱;优化目标 优化设计是20世纪60年代随计算机技术发展起来的一门新学科, 是构成和推进现代设计方法产生与发展的重要内容。机械优化设计是综合性和实用性都很强的理论和技术, 为机械设计提供了一种可靠、高效的科学设计方法, 使设计者由被动地分析、校核进入主动设计, 能节约原材料, 降低成本, 缩短设计周期, 提高设计效率和水平, 提升企业竞争力、经济效益与社会效益。国内外相关学者和科研人员对优化设计理论方法及其应用研究十分重视, 并开展了大量工作, 其基本理论和求解手段已逐渐成熟。 国内优化设计起步较晚, 但在众多学者和科研人员的不懈努力下, 机械优化设计发展迅猛, 在理论上和工程应用中都取得了很大进步和丰硕成果, 但与国外先进优化技术相比还存在一定差距, 在实际工程中发挥效益的优化设计方案或设计结果所占比例不大。计算机等辅助设备性能的提高、科技与市场的双重驱动, 使得优化技术在机械设计和制造中的应用得到了长足发展, 遗传算法、神经网络、粒子群法等智能优化方法也在优化设计中得到了成功应用。目前, 优化设计已成为航空航天、汽车制造等很多行业生产过程的一个必须且至关重要的环节。 一、机械优化设计研究内容概述 机械优化设计是一种现代、科学的设计方法, 集思考、绘图、计算、实验于一体, 其结果不仅“可行”, 而且“最优”。该“最优”是相对的, 随着科技的发展以及设计条件的改变, 最优标准也将发生变化。优化设计反映了人们对客观世界认识的深化, 要求人们根据事物的客观规律, 在一定的物质基和技术条件下充分发挥人的主观能动性, 得出最优的设计方案。 优化设计的思想是最优设计, 利用数学手段建立满足设计要求优化模型; 方法是优化方法, 使方案参数沿着方案更好的方向自动调整, 以从众多可行设计方案中选出最优方案; 手段是计算机, 计算机运算速度极快, 能够从大量方案中选出“最优方案“。尽管建模时需作适当简化, 可能使结果不一定完全可行或实际最优, 但其基于客观规律和数据, 又不需要太多费用, 因此具有经验类比或试验手段无可比拟的优点, 如果再辅之以适当经验和试验, 就能得到一个较圆满的优化设计结果。 传统设计也追求最优结果, 通常在调查分析基础上, 根据设计要求和实践

机械优化设计实例(人字架优化)讲课教案

人字架的优化设计 一、问题描述 如图1所示的人字架由两个钢管组成,其顶点受外力2F=3×105N 。已知人字架跨度2B=152 cm,钢管壁厚T=0.25cm,钢管材料的弹性模量E=2.15 10? MPa ,材料密度p=7.8×103 kg /m ,许用压应力δy =420 MPa 。求钢管压应力δ不超过许用压应力 δy 和失稳临界应力 δc 的条件下,人字架的高h 和钢管平均直径D 使钢管总质量m 为最小。 二、分析 设计变量:平均直径D 、高度h 三、数学建模 所设计的空心传动轴应满足以下条件: (1) 强度约束条件 即 δ≤?? ????y δ 经整理得 ( ) []y hTD h B F δπ≤+2 122 (2) 稳定性约束条件: []c δδ≤ ( ) ( ) ( ) 2 22 222 122 8h B D T E hTD h B F ++≤+ππ (3)取值范围:

12010≤≤D 1000200≤≤h 则目标函数为:()22 13 57760010 5224.122min x x x f +?=- 约束条件为:0420577600106)(2 12 2 41≤-+?=x Tx x X g π () 057760025.63272.259078577600106)(2 2 212 12 2 42≤++-+?= X x x x Tx x g π010)(13≤-=x X g 0120)(14≤-=x X g 0200)(25≤-=x X g 01000)(26≤-=x X g 四、优化方法、编程及结果分析 1优化方法 综合上述分析可得优化数学模型为:()T x x X 21,=;)(min x f ;()0..≤x g t s i 。 考察该模型,它是一个具有2个设计变量,6个约束条件的有约束非线性的单目标最优化问题,属于小型优化设计,故采用SUMT 惩罚函数内点法求解。 2方法原理 内点惩罚函数法简称内点法,这种方法将新目标函数定义于可行域内,序列迭代点在可行域内逐步逼近约束边界上的最优点。内点法只能用来求解具有不等式约束的优化问题。 对于只具有不等式约束的优化问题

《机械优化设计》习题及答案

机械优化设计习题及参考答案 1-1、简述优化设计问题数学模型的表达形式。 答:优化问题的数学模型就是实际优化设计问题的数学抽象。在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。求设计变量向量[]12 T n x x x x =使 ()min f x → 且满足约束条件 ()0 (1,2,)k h x k l == ()0(1,2,)j g x j m ≤= 2-1、何谓函数的梯度?梯度对优化设计有何意义? 答:二元函数f(x 1,x 2)在x 0点处的方向导数的表达式可以改写成下面的形式:?? ??????????????=??+??=??2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d f 令xo T x f x f x f x f x f ?? ????????=????=?21]21[)0(, 则称它为函数f(x 1,x 2)在x 0点处的梯度。 (1)梯度方向就是函数值变化最快方向,梯度模就是函数变化率的最大值。 (2)梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。梯度)0(x f ?方向为函数变化率最大方向,也就就是最速上升方向。负梯度-)0(x f ?方向为函数变化率最小方向,即最速下降方向。 2-2、求二元函数f(x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最 大的方向与数值。 解:由于函数变化率最大的方向就就是梯度的方向,这里用单位向量p 表

示,函数变化率最大与数值时梯度的模)0(x f ?。求f(x1,x2)在x0点处的梯度方向与数值,计算如下: ()??????-=??????+-=???? ??????????=?120122214210x x x x f x f x f 2221)0(?? ? ????+??? ????=?x f x f x f =5 ????? ???????-=??????-=??=5152512)0()0(x f x f p 2-3、试求目标函数()2221212143,x x x x x x f +-=在点X 0=[1,0]T 处的最速下降 方向,并求沿着该方向移动一个单位长度后新点的目标函数值。 解:求目标函数的偏导数 212 21124,46x x x f x x x f +-=??-=?? 则函数在X 0=[1,0]T 处的最速下降方向就是 ??????-=??????-+-=????????????????-=-?=====462446)(0121210 121021 21x x x x x x x x x f x f X f P 这个方向上的单位向量就是: 13]2,3[4 )6(]4,6[T 22T -=+--==P P e 新点就是 ????? ???????-=+=132133101e X X 新点的目标函数值

机械优化设计课后习题答案

第一章习题答案 1-1 某厂每日(8h 制)产量不低于1800件。计划聘请两种不同的检验员,一级检验员的标准为:速度为25件/h ,正确率为98%,计时工资为4元/h ;二级检验员标准为:速度为15件/h ,正确率为95%,计时工资3元/h 。检验员每错检一件,工厂损失2元。现有可供聘请检验人数为:一级8人和二级10人。为使总检验费用最省,该厂应聘请一级、二级检验员各多少人? 解:(1)确定设计变量; 根据该优化问题给定的条件与要求,取设计变量为X = ?? ????=? ??? ??二级检验员一级检验员 21x x ; (2)建立数学模型的目标函数; 取检验费用为目标函数,即: f (X ) = 8*4*x 1+ 8*3*x 2 + 2(8*25*0.02x 1 +8*15*0.05x 2 ) =40x 1+ 36x 2 (3)本问题的最优化设计数学模型: min f (X ) = 40x 1+ 36x 2 X ∈R 3· s.t. g 1(X ) =1800-8*25x 1+8*15x 2≤0 g 2(X ) =x 1 -8≤0 g 3(X ) =x 2-10≤0 g 4(X ) = -x 1 ≤0 g 5(X ) = -x 2 ≤0 1-2 已知一拉伸弹簧受拉力F ,剪切弹性模量G ,材料重度r ,许用剪切应力[]τ,许用最大变形量[]λ。欲选择一组设计变量T T n D d x x x ][][2 32 1 ==X 使弹簧重量最轻,同时满足下列限制条件:弹簧圈数3n ≥, 簧丝直径0.5d ≥,弹簧中径21050D ≤≤。试建立该优化问题的数学模型。 注:弹簧的应力与变形计算公式如下 3 22234 881 ,1,(2n s s F D FD D k k c d c d Gd τλπ==+==旋绕比), 解: (1)确定设计变量; 根据该优化问题给定的条件与要求,取设计变量为X = ????? ? ????=??????????n D d x x x 2321; (2)建立数学模型的目标函数; 取弹簧重量为目标函数,即: f (X ) = 322 12 4 x x rx π (3)本问题的最优化设计数学模型:

机械优化设计方法论文

浅析机械优化设计方法基本理论 【摘要】在机械优化设计的实践中,机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计的效率和质量。每一种优化方法都是针对某一种问题而产生的,都有各自的特点和各自的应用领城。在综合大量文献的基础上,总结机械优化设计的特点,着重分析常用的机械优化设计方法,包括无约束优化设计方法、约束优化设计方法、基因遗传算方法等并提出评判的主 要性能指标。 【关键词】机械;优化设计;方法特点;评价指标 一、机械优化概述 机械优化设计是适应生产现代化要求发展起来的一门科学,它包括机械优化设计、机械零部件优化设计、机械结构参数和形状的优化设计等诸多内容。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益,在科技发达国家已将优化设计列为科技人员的基本职业训练项目。随着科技的发展,现代化机械优化设计方法主要以数学规划为核心,以计算机为工具,向着多变量、多目标、高效率、高精度方向发展。]1[ 优化设计方法的分类优化设计的类别很多,从不同的角度出发,可以做出各种不同的分类。按目标函数的多少,可分为单目标优化设计方法和多目标优化设计方法按维数,可分为一维优化设计方法和多维优化设计方法按约束情况,可分为无约束优化设计方法和约束优化设计方法按寻优途径,可分为数值法、解析法、图解法、实验法和情况研究法按优化设计问题能否用数学模型表达,可分为能用数学模型表达的优化设计问题其寻优途径为数学方法,如数学规划法、最优控制法等。 1.1 设计变量 设计变量是指在设计过程中进行选择并最终必须确定的各项独立参数,在优化过程中,这些参数就是自变量,一旦设计变量全部确定,设计方案也就完全确定了。设计变量的数目确定优化设计的维数,设计变量数目越多,设计空间的维数越大。优化设计工作越复杂,同时效益也越显著,因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。

机械优化设计案例分析

优化设计案例分析 优化设计是在给定的设计指标和限制条件下,运用最优化原理和方法,在电子计算机上进行自动调优计算,从而选定出最优设计参数,使设计指标达到最优值。该最优设计参数就是一个最优设计方案。所谓设计指标,就机械设计而言,一般是指重量轻、能耗小、刚性大、成本低等;所谓限制条件,是指强度要求、刚度要求、尺寸范围要求等。 设计变量选择 一个设计方案可以用一组基本参数的数值来表示,这些基本参数可以是构件尺寸等几何量,也可以是质量等物理量,还可以是应力、变形等表示工作性能的导出量。在设计过程中进行选择并最终必须确定的各项独立的基本参数,称作设计变量,又叫做优化参数。在充分了解设计要求的基础上,根据各设计参数对目标函数的影响程度分析其主次,尽量减少设计变量的数目,以简化优化设计问题。注意各设计变量应相互独立,避免耦合情况的发生,否则会使目标函数出现“山脊”或“沟谷”,给优化带来困难。 目标函数与约束的确定 对于一般机械,可按重量最轻或体积最小建立目标函数;对应力集中现象突出的构件,以应力集中系数最小为目标;对精密仪器,应按其精度最高或误差最小的要求建立目标函数。约束条件是就工程设计本身而提出的对设计变量取值范围的限制条件,目前尚无一套完整的评价方法来检验哪些约束是必须,哪些约束是可忽略的,通常是凭经验取舍,不可避免会带来模型和现实系统的不相吻合。在最优化设计问题中,可以只有一个目标函数,称为单目标函数。当在同一设计中要提出多个目标函数时,这种问题称为多目标函数的最优化问题。在一般的机械最优化设计中,多目标函数的情况较多。目标函数愈多,设计的综合效果愈好,但问题的求解亦愈复杂。对于复杂的问题,要建立能反映客观工程实际的、完善的数学模型往往会遇到很多困难,有时甚至比求解更为复杂。这时要抓住关键因素,适当忽略不重要的成分,使问题合理简化,以易于列出数学模型,这样不仅可节省时间,有时也会改善优化结果。 数学模型确立 数学模型越精确,设计变量越多,维数越大,建模越复杂,优化进程越慢;但数学模型忽略过多元素,则难以确切凸现结构的特殊之处。故要结合工程实际和优化设计经验,把握与研究目标相关程度大的因素,尽可能的建立确切、简洁的数学模型。然后通过基于统计理论的检验方法———t 检验/F 检验/ X2检验/ 拟合优度检验等,分析模型的置信区间,对模型有效性进行评价,提高模型的准确度。 下面以机票销售策略案例进行说明 某航空公司每天有三个航班服务于A, B, C, H四个城市,其中城市H是可供转机使用的, 三个航班的出发地-目的地分别为AH, HB, HC,可搭乘旅客的最大数量分别为120人, 100人, 110人, 机票的价格分头等舱和经济舱两类. 经过市场调查,公司销售部得到了每天旅客的相关信息, 见表1. 该公司应该在每条航线上分别分配多少头等舱和经济舱的机票?

机械优化设计课后习题答案学习资料

机械优化设计课后习 题答案

第一章习题答案 1-1 某厂每日(8h 制)产量不低于1800件。计划聘请两种不同的检验员,一级检验员的标准为:速度为25件/h ,正确率为98%,计时工资为4元/h ;二级检验员标准为:速度为15件/h ,正确率为95%,计时工资3元/h 。检验员每错检一件,工厂损失2元。现有可供聘请检验人数为:一级8人和二级10人。为使总检验费用最省,该厂应聘请一级、二级检验员各多少人? 解:(1)确定设计变量; 根据该优化问题给定的条件与要求,取设计变量为X = ?? ????=??????二级检验员一级检验员 21x x ; (2)建立数学模型的目标函数; 取检验费用为目标函数,即: f (X ) = 8*4*x 1+ 8*3*x 2 + 2(8*25*0.02x 1 +8*15*0.05x 2 ) =40x 1+ 36x 2 (3)本问题的最优化设计数学模型: min f (X ) = 40x 1+ 36x 2 X ∈R 3· s.t. g 1(X ) =1800-8*25x 1+8*15x 2≤0 g 2(X ) =x 1 -8≤0 g 3(X ) =x 2-10≤0 g 4(X ) = -x 1 ≤0 g 5(X ) = -x 2 ≤0 1-2 已知一拉伸弹簧受拉力F ,剪切弹性模量G ,材料重度r ,许用剪切应力[]τ,许用最大变形量[]λ。欲选择一组设计变量T T n D d x x x ][][2 32 1 ==X 使弹簧重量最轻,同时满足下列限制条件:弹簧圈数3n ≥, 簧丝直径0.5d ≥,弹簧中径21050D ≤≤。试建立该优化问题的数学模型。 注:弹簧的应力与变形计算公式如下 3 22234 881 ,1,(2n s s F D FD D k k c d c d Gd τλπ==+==旋绕比), 解: (1)确定设计变量; 根据该优化问题给定的条件与要求,取设计变量为X = ????? ? ????=??????????n D d x x x 2321; (2)建立数学模型的目标函数; 取弹簧重量为目标函数,即:

机械优化设计实例

机械优化设计实例 压杆的最优化设计 压杆是一根足够细长的直杆,以学号为p值,自定义有设计变量的 尺寸限制值,求在p一定时d1、d2和l分别取何值时管状压杆的体积或重 量最小?(内外直径分别为d1、d2)两端承向轴向压力,并会因轴向压力 达到临界值时而突然弯曲,失去稳定性,所以,设计时,应使压应力不 超过材料的弹性极限,还必须使轴向压力小于压杆的临界载荷。 解:根据欧拉压杆公式,两端铰支的压杆,其临界载荷为:I——材料的惯性矩,EI为抗弯刚度 1、设计变量 现以管状压杆的内径d1、外径d2和长度l作为设计变量 2、目标函数 以其体积或重量作为目标函数 3、约束条件 以压杆不产生屈服和不破坏轴向稳定性,以及尺寸限制为约束条件,在外力为p的情况下建立优化模型: 1) 2)

3) 罚函数: 传递扭矩的等截面轴的优化设计解:1、设计变量: 2、目标函数

以轴的重量最轻作为目标函数: 3、约束条件: 1)要求扭矩应力小于许用扭转应力,即: 式中:——轴所传递的最大扭矩 ——抗扭截面系数。对实心轴 2)要求扭转变形小于许用变形。即: 扭转角: 式中:G——材料的剪切弹性模数 Jp——极惯性矩,对实心轴: 3)结构尺寸要求的约束条件: 若轴中间还要承受一个集中载荷,则约束条件中要考虑:根据弯矩联合作用得出的强度与扭转约束条件、弯曲刚度的约束条件、对于较重要的和转速较高可能引起疲劳损坏的轴,应采用疲劳强度校核的安全系数法,增加一项疲劳强度不低于许用值的约束条件。

二级齿轮减速器的传动比分配 二级齿轮减速器,总传动比i=4,求在中心距A最小下如何 分配传动比?设齿轮分度圆直径依次为d1、d2、d3、d4。第一、二 级减速比分别为i1、i2。假设d1=d3,则: 七辊矫直实验 罚函数法是一种对实际计算和理论研究都非常有价值的优化方法,广泛用来求解约束问题。其原理是将优化问题中的不等式约束和等式约束加权转换后,和原目标函数结合成新的目标函数,求解该新目标函数的无约束极小值,以期得到原问题的约束最优解。考虑到本优化程序要处理的是一个兼而有之的问题,故采用混合罚函数法。 一)、优化过程 (1)、设计变量 以试件通过各矫直辊时所受到的弯矩为设计变量: (2)、目标函数

机械优化设计方法基本理论

机械优化设计方法基本理论 一、机械优化概述 机械优化设计是适应生产现代化要求发展起来的一门科学,它包括机械优化设计、机械零部件优化设计、机械结构参数和形状的优化设计等诸多内容。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益,在科技发达国家已将优化设计列为科技人员的基本职业训练项目。随着科技的发展,现代化机械优化设计方法主要以数学规划为核心,以计算机为工具,向着多变量、多目标、高效率、高精度方向发展。]1[ 优化设计方法的分类优化设计的类别很多,从不同的角度出发,可以做出各种不同的分类。按目标函数的多少,可分为单目标优化设计方法和多目标优化设计方法按维数,可分为一维优化设计方法和多维优化设计方法按约束情况,可分为无约束优化设计方法和约束优化设计方法按寻优途径,可分为数值法、解析法、图解法、实验法和情况研究法按优化设计问题能否用数学模型表达,可分为能用数学模型表达的优化设计问题其寻优途径为数学方法,如数学规划法、最优控制法等 1.1 设计变量 设计变量是指在设计过程中进行选择并最终必须确定的各项独立参数,在优化过程中,这些参数就是自变量,一旦设计变量全部确定,设计方案也就完全确定了。设计变量的数目确定优化设计的维数,设计变量数目越多,设计空间的维数越大。优化设计工作越复杂,同时效益也越显著,因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。 1.2 约束条件 约束条件是设计变量间或设计变量本身应该遵循的限制条件,按表达方式可分为等式约束和不等式约束。按性质分为性能约束和边界约束,按作用可分为起作用约束和不起作用约束。针对优化设计设计数学模型要素的不同情况,可将优化设计方法分类如下。约束条件的形式有显约束和隐约束两种,前者是对某个或某组设计变量的直接限制,后者则是对某个或某组变量的间接限制。等式约束对设计变量的约束严格,起着降低设计变量自由度的作用。优化设计的过程就是在设计变量的允许范围内,找出一组优化的设计变量值,使得目标函数达到最优值。

机械优化设计三个案例

机械优化设计案例1 1. 题目 对一对单级圆柱齿轮减速器,以体积最小为目标进行优化设计。 2.已知条件 已知数输入功p=58kw ,输入转速n 1=1000r/min ,齿数比u=5,齿轮的许用应力[δ]H =550Mpa ,许用弯曲应力[δ]F =400Mpa 。 3.建立优化模型 3.1问题分析及设计变量的确定 由已知条件得求在满足零件刚度和强度条件下,使减速器体积最小的各项设计参数。由于齿轮和轴的尺寸(即壳体内的零件)是决定减速器体积的依据,故可按它们的体积之和最小的原则建立目标函数。 单机圆柱齿轮减速器的齿轮和轴的体积可近似的表示为: ] 3228)6.110(05.005.2)10(8.0[25.087)(25.0))((25.0)(25.0)(25.02221222122212222122121222 212221202 22222222121z z z z z z z z z z z g g z z d d l d d m u m z b bd m u m z b b d b u z m b d b z m d d d d l c d d D c b d d b d d b v +++---+---+-=++++- ----+-=πππππππ 式中符号意义由结构图给出,其计算公式为 b c d m u m z d d d m u m z D m z d m z d z z g g 2.0) 6.110(25.0,6.110,21022122211=--==-=== 由上式知,齿数比给定之后,体积取决于b 、z 1 、m 、l 、d z1 和d z2 六个参数,则设计变量可取为 T z z T d d l m z b x x x x x x x ][][21165 4321 == 3.2目标函数为 min )32286.18.092.0858575.4(785398.0)(26252624252463163212 51261231232123221→++++-+-+-+=x x x x x x x x x x x x x x x x x x x x x x x x x x f 3.3约束条件的建立 1)为避免发生根切,应有min z z ≥17=,得

机械优化设计习题及答案

机械优化设计习题及参考答案 1-1.简述优化设计问题数学模型的表达形式。 答:优化问题的数学模型是实际优化设计问题的数学抽象。在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。求设计变量向量[]12T n x x x x =L 使 ()min f x → 且满足约束条件 ()0 (1,2,)k h x k l ==L ()0 (1,2,)j g x j m ≤=L 2-1.何谓函数的梯度?梯度对优化设计有何意义? 答:二元函数f(x 1,x 2)在x 0点处的方向导数的表达式可以改写成下面的形式:??? ?????????????=??+??= ??2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d f ρ 令xo T x f x f x f x f x f ?? ????????=????=?21]21[)0(, 则称它为函数f (x 1,x 2)在x 0点处的梯度。 (1)梯度方向是函数值变化最快方向,梯度模是函数变化率的最大值。 (2)梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。梯度)0(x f ?方向为函数变化率最大方向,也就是最速上升方向。负梯度-)0(x f ?方向为函数变化率最小方向,即最速下降方向。 2-2.求二元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最 大的方向和数值。 解:由于函数变化率最大的方向就是梯度的方向,这里用单位向量p 表示,函数变化率最大和数值时梯度的模)0(x f ?。求f (x1,x2)在

30586机械优化设计考纲

高纲1513 江苏省高等教育自学考试大纲 30586 机械优化设计 南京理工大学编 江苏省高等教育自学考试委员会办公室 Ⅰ课程性质与课程目标 一、课程性质和特点 《机械优化设计》是高等工科院校中机械设计制造及其自动化专业现代设计方法模块的一门选修课程,它综合运用先修课程所学到的数学、计算机编程和机械等方面知识与理论,来解决机械工程领域内有关机构、机械零部件、机械结构及机械系统的优化设计问题及机械工程领域的其他优化问题。通过课程的学习可以培养学生运用现代设计理论与方法来更好地解决机械工程设计问题的能力。为进一步深入学习现代机械设计的理论与方法及更好地从事机械工程方面的设计、制造和管理等相关工作打下良好的基础。本课程的特点是数学基础理论与计算机编程语言与机械设计专业知识高度结合的综合课程。 二、课程目标 本门课程通过授课、练习和上机实践等教学环节,使学生树立机械优化设计的基本思想,了解机械优化设计的基本概念,初步掌握建立优化数学模型的基本方法和要求,了解和掌握一维搜索、无约束优化和约束优化中的一些基本算法及各种基本优化方法的特点和相关优化参数的选用原则,具有一定的编制和使用优化软件工具的能力,并具备一定的将机械工程问题转化为最优化问题并求解的应用能力。 三、与相关课程的联系与区别 本课程教学需要的先修课程:高等数学、理论力学、材料力学、机械原理、机械设计、机械制造装备设计、计算机编程语言。 本门课程要利用高等数学中有关偏导数、函数、极值、线性代数和矩阵等知识来

构建优化的方法;利用力学、机械设计和机械制造等方面的专业知识将工程问题转化成规范的优化设计数学模型,并利用计算机编程语言将优化方法和数学模型转化成可以执行的计算机程序,从而得到优化问题的解。因此,它既区别于基础的数学、力学课程和计算机编程语言课,又不同于机械设计和机械制造等机械专业课程,是利用数学方法和编程语言来解决机械工程设计问题的综合性课程。需要培养学生综合应用各选修课程知识解决工程设计问题的能力。 四、课程的重点和难点 本课程的重点内容:机械优化设计的基本概念、一维搜索优化方法、基本的无约束优化方法和约束优化方法。 本课程的次重点内容:机械优化数学模型建立方法和原则、优化设计的数学基础、线性规划方法、多目标和离散变量的优化方法。 本课程的的难点内容:约束优化方法、优化方法在机械工程设计中的实际应用。 Ⅱ考核目标 本大纲在考核目标中,按照识记、领会和应用三个层次规定其应达到的能力层次要求。三个能力层次是递升的关系,后者必须建立在前者的基础上。各能力层次的含义是: 识记(Ⅰ):要求考生能够识别和记忆本课程中有关优化设计数学模型和各种基本优化方法基本概念、基本原理、算法特点、算法步骤等主要内容并能够根据考核的不同要求,做正确的表述、选择和判断。 领会(Ⅱ):要求考生能够领悟和理解本课程中有关优化问题数学建模、求解及各种基本优化方法的概念及原理的内涵及外延,理解各种优化方法的数学基础和求解步骤的确切含义,掌握每种方法的适用条件和优化参数选用原则;理解相关知识的区别和联系,做出正确的判断、解释和说明。 应用(Ⅲ):要求考生能够根据所学的方法,对简单的优化问题求解,得出正确的结论或做出正确的判断。能够针对具体、实际的工程情况发现问题,并能探究解决问题的方法,建立合理的数学模型,用所学的优化方法进行求解,并学会编程或利用现有优化软件求解优化问题。 Ⅲ课程内容与考核要求 绪论 一、学习目的与要求 了解机械优化设计的特点、发展概况以及本课程的主要内容。 二、课程内容 传统设计和优化设计的特点和区别,机械优化设计发展概况及本课程的主要内容。 三、考核知识点与考核要求 1. 传统设计和优化设计 识记:传统设计特点,传统设计流程; 领会:优化设计特点,现代设计流程。 2. 机械优化设计发展概况

机械优化设计大作业

一、问题描述 1.1结构特点 (1)体积小、重量轻、结构紧凑、传递功率大、承载能力高 ; (2)传动效率高,工作高 ;(3)传动比大。 1.2用途和使用条件 某行星齿轮减速器主要用于石油钻采设备的减速,其高速轴转速为1300r/min ;工作环境温度为-20℃~60℃,可正、反两向运转。 按该减速器最小体积准则,确定行星减速器的主要参数。 二、分析 传动比u=4.64,输入扭矩T=1175.4N.m ,齿轮材料均选用38SiMnMo 钢,表面淬火硬度HRC 45~55,行星轮个数为3。要求传动比相对误差02.0≤?u 。 弹性影响系数Z E =189.8MPa 1/2;载荷系数k=1.05;齿轮接触疲劳强度极限[σ]H =1250MPa ;齿轮弯曲疲劳强度极限[σ]F =1000MPa ;齿轮的齿形系数Y Fa =2.97;应力校正系数Y Sa =1.52;小齿轮齿数z 取

值范围17--25;模数m取值范围2—6。 注:优化目标为太阳轮齿数、齿宽和模数,初始点[24,52,5]T 三、数学建模 建立数学模型见图1,即用数学语言来描述最优化问题,模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。 3.1设计变量的确定 影响行星齿轮减速器体积的独立参数为中心轮齿数、齿宽、模数及行星齿轮的个数,将他们列为设计变量,即: x=[x 1 x 2 x 3 x 4 ]T=[z 1 b m c]T [1] 式中:z1 ˉ ̄太阳轮齿数;b―齿宽(mm);m—模数(mm);行星轮的个数。通常情况下,行星轮个数根据机构类型以事先选定,由已知条件c=3。这样,设计变量为: x=[x 1 x 2 x 3 ]T=[z 1 b m]T [1] 3.2目标函数的确定 为了方便,行星齿轮减速器的重量可取太阳轮和3个行星轮体积之和来代替,即: V=π/4(d 12+Cd 2 2)b 式中:d1--太阳轮1的分度圆直径,mm;d2--行星轮2的分度圆直径,mm。 将d 1=mz 1, d 2 =mz 2 ,z 2 =z 1 (u-2)/2代入(3)式整理,目标函 数则为:

机械优化设计第1阶段测试题

江南大学现代远程教育 第一阶段测试卷 考试科目:《机械优化设计》第一章至第三章(总分100分) 时间:90分钟 学习中心(教学点) 批次: 层次: 专业: 学号: 身份证号: 姓名: 得分: 一、单项选择题(本题共5小题,每小题4分,共20分。在每小题列出的四个选项中只有一 个选项是符合题目要求的,请将正确选项前的字母填在横线上。) (1)、对于约束问题 ()()()()22 12221122132min 44 g 10 g 30 g 0 f X x x x X x x X x X x =+-+=--≥=-≥=≥ 根据目标函数等值线和约束曲线,判断() 1[1,1]T X =为 ,()251 [,]22 T X =为 。 A .内点;内点 B. 外点;外点 C. 内点;外点 D. 外点;内点 (2)、对于一维搜索,搜索区间为[a ,b],中间插入两个点a 1、b 1,a 1

(4) 、一维搜索试探方法——黄金分割法比二次插值法的收敛速度 。 A 、慢 B 、快 C 、一样 D 、不确定 (5)、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是 ,假设要 求在区间[a ,b]插入两点α1、α2,且α1<α2。 A 、其缩短率为0.618 B 、α1=b-λ(b-a ) C 、α1=a+λ(b-a ) D 、在该方法中缩短搜索区间采用的是外推法。 二、填空题(本题共15个空,每空2分,共30分。) (1)、组成优化设计数学模型的三要素是 、 、 。 (2)、函数()22 121 212,45f x x x x x x =+-+在024X ?? =???? 点处的梯度为 ,海赛矩阵为 _________。 (3)、目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用来 ,同时必须是设计变量的 。 (4)、建立优化设计数学模型的基本原则是确切反映 ,的基础上力求 。 (5)、目标函数是n 维变量的函数,它的函数图像只能在 空间中描述出来,为了在n 维空间中反映目标函数的变化情况,常采用 的方法。 (6)、数学规划法的迭代公式是 ,其核心是 ,和 。 (7)、协调曲线法是用来解决 的多目标优化设计问题的。 三、判别函数22 121212()60104f X x x x x x x =--++-在{} (1,2)i D X x i =-∞<<+∞=上是 否为凸函数。(本题共10分。) 四、用外推法确定函数2 ()710f ααα=-+的初始搜索区间。设初始点00α=,初始步长 1h =。(本题20分) 五、求解222 12323312()252263f X x x x x x x x x =++++-+的极值点和极值。(本题20分)

浅谈机械优化设计方法

浅谈机械优化设计方法 发表时间:2019-08-29T14:17:25.640Z 来源:《基层建设》2019年第16期作者:钟文 [导读] 摘要:伴随着我国的经济发展越来越快,无疑给可优化性能设计带来巨大的挑战。 深圳市海目星激光智能装备股份有限公司 518110 摘要:伴随着我国的经济发展越来越快,无疑给可优化性能设计带来巨大的挑战。机械优化设计是近几年来发展起来的一门新的学科,在二十世纪中旬的时候开始,优化技术和计算机技术的兴起,在每个设计领域中被应用,为工程设计提供了重要的科学的设计方法。因此,对机械设计的优化方法加以分析,吸取精华,紧跟时代步伐,与国际同步,才能增强制造业在我国市场中的竞争压力。 关键词:机械;优化设计;方法特点 引言 当今是一个信息化的社会,科技发展速度非常快,人们对多功能产品不仅有强烈的需求,也需要产品必须具备相应的功能,可靠性优化设计由此应运而生,已经取得了飞速发展和广泛应用,即以时间、费用和性能为基础,将产品能得以可靠使用作为优先考虑的设计准则,进行设计和生产可靠的性能要求。因此,可靠性设计是诸多学科和技术的交融而新兴的一种技术。 1 机械优化的概述 机械优化是顺应时代发展而不断延伸出来的一种现代化的生产而发展兴起的。它是建立在数学规划的理论和计算通过有效的实验数据和科学的评价体系来从众多的设计方案中寻找到能够尽可能的完善和适宜的设计方案,在这机械优化的这个机械方面的研究和应用的发展速度都是非常的快速,并且在快速发展的过程中取得了非常显著的效果。 2 机械设计优化方法的分类及特点 2.1 无约束优化设计法 无约束优化设计是没有约束函数的优化设计。无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法;另一类是只利用目标函数值的无约束优化方法。 2.2 约束优化设计法 优化设计问题大多数是约束的优化问题,根据处理约束条件方法的不同可分为直接法和间接法。直接法常见的方法有复合形法、约束坐标轮换法和网络法等。其内涵是构造一个迭代过程,使每次的迭代点都在可行域中,同时逐步降低目标函数值,直到求得最优解。间接法常见的有惩罚函数法、增广乘子法。它是将约束优化问题转化成无约束优化问题,再通过无约束优化方法来求解,或者非线性优化问题转化成线性规划问题来处理。 2.3 遗传算法 遗传算法是一种非确定性的拟自然算法,它仿造自然界生物进化的规律,对一个随机产生的群体进行繁殖演变和自然选择,适者生存,不适者淘汰,如此循环往复,使群体素质和群体中个体的素质不断演化,最终收敛于全局最优解。最近几年中遗传算法在机械工程领域也开展了多方面的应用,主要表现在:机械结构优化设计;可靠性分析;故障诊断;参数辨识;机械方案设计。遗传算法尽管已解决了许多难题,但还存在许多问题,如算法本身的参数优化问题、如何避免过早收敛、如何改进操作手段或引入新的操作来提高算法的效率、遗传算法与其它优化算法的结合问题等。 2.4 蚁群算法 蚁群算法是受自然界中真实蚁群的集体行为的启发而提出的一种基于群体的模拟进化算法。蚁群算法对系统优化问题的数学模型没有很高的要求,只要可以显式表达即可,避免了导数等数学信息,使得优化过程更加简单,遍历性更好,适合非线性问题的求解。 2.5 模拟退火算法 模拟退火算法是一个全局最优算法,以优化问题的求解与物理系统退火过程的相似性为基础,适当的控制温度的下降过程实现模拟退火,从而达到求解全局优化问题的目的。模拟退火算法是一种通用的优化算法,用以求解不同的非线性问题;对不可微甚至不连续的函数优化,能以较大概率求得全局优化解;并且能处理不同类型的优化设计变量(离散的、连续的和混合型的);不需要任何的辅助信息,对目标函数和约束函数没有任何要求。 3机械优化设计过程中的设计方式 众所周知,在机械方面的设计都是非常的复杂困难的,要对机械进行优化设计面临的挑战也是非常大的,但是由于机械领域中优化形式十分的广泛,相关的研究人员根据优化运算的形式进行划分,主要分为准则优化,其次是线性规划,最后是非线性规划三种。其中准则优化是一种传统的优化方式,这种方式没有通过机械优化设计的数学理论方式进行优化,而是通过物理学方面的分析得出相应的结果,这样的方式得出的结论往往是具备一定的主观性的,但是这样的传统的优化设计方式具有的优点就是可以直观的看到优化的概念,并且这种优化设计的方式相对来说也是比较简单的,并且能够充分的发挥出目标函数的最大功效,并且非常的符合传统的工程需要,但是同样具有一定的缺点,就是在效率上始终优点偏低。 线性规划就是依据数学的基础进行优化的方式,同样线性规划是机械优化设计中最重要的设计方式,但是线性规划的优化设计方式在通过数学的理论上进行设计存在着很多的缺陷,就是在针对多函数的时候就不能充分的发挥出功效,还有就是在计算的过程中,十分的复杂,结算量非常的大,导致了在效率上有很大的缺陷,所以通常情况下,线性规则的优化设计方式都没有被采用。那么非线性规划的优化设计方式是整个生产和生活中应用最广泛的优化方式,并且能够有效的推进机械优化设计的发展,并且可以利用数学模式的计算将非线性规划分为两种,一种是没有约束的直接设计方式,就是在利用机械优化设计方案中以及存在的数据和再生的数据最为基础来进行合理的分析,进而得到最佳的效果,还有一种就是没有约束但是比较间接的方法,这种方式就是前者的方式的数学模式计算改变成了数学原理作为基础,通过利用函数的特性进行计算,从而得到最优的方式,这种方式在整个的机械优化设计中是非常重要的组成部分。 4机械设计优化方法的选择 根据优化设计问题的特点(如约束问题),选择适当的优化方法是非常关键的,因为同一个问题可以有多种方法,而有的方法可能会导致优化设计的结果不符合要求。选择优化方法有四个基本原则:效率要高、可靠性要高、采用成熟的计算程序、稳定性要好。另外选择适当的优化方法还需要个人经验,深入分析优化模型的约束条件、约束函数及目标函数,根据复杂性、准确性等条件对它们进行正确的选

机械优化设计课后习题答案

第一章习题答案 1-1某厂每日(8h 制)产量不低于1800件。计划聘请两种不同的检验员,一级检验员的标准为:速度为25件/h ,正确率为98%,计时工资为4元/h ;二级检验员标准为:速度为15件/h ,正确率为95%,计时工资3元/h 。检验员每错检一件,工厂损失2元。现有可供聘请检验人数为:一级8人和二级10人。为使总检验费用最省,该厂应聘请一级、二级检验员各多少人? 解:(1)确定设计变量; 根据该优化问题给定的条件与要求,取设计变量为X =?? ????=??????二级检验员一级检验员 21x x ; (2)建立数学模型的目标函数; 取检验费用为目标函数,即: f (X )=8*4*x 1+8*3*x 2+2(8*25*+8*15*) =40x 1+36x 2 (3)本问题的最优化设计数学模型: min f (X )=40x 1+36x 2X ∈R 3· 已知一拉伸弹簧受拉力F ,剪切弹性模量G ,材料重度r ,许用剪切应力[]τ,许用最大变形量[]λ。欲选择一组设计变量T T n D d x x x ][][2 32 1==X 使弹簧重量最轻,同时满足 下列限制条件:弹簧圈数3n ≥,簧丝直径0.5d ≥,弹簧中径21050D ≤≤。试建立该优化问 题的数学模型。 注:弹簧的应力与变形计算公式如下 解:(1)确定设计变量; 根据该优化问题给定的条件与要求,取设计变量为X =?????? ????=??????????n D d x x x 2321; (2)建立数学模型的目标函数; 取弹簧重量为目标函数,即: f (X )= 322 12 4 x x rx π (3)本问题的最优化设计数学模型: min f (X )= 322 12 4 x x rx πX ∈R 3· []τπ-+312218)21(x Fx x x []λ-4 1 33 28Gx x Fx 某厂生产一个容积为8000cm 3 的平底、无盖的圆柱形容器,要求设计此容器消耗原材料最少,试写出这一优化问题的数学模型。

机械优化设计方法

机械优化设计方法 机械优化设计是近年来发展起来的一门新的学科,起始于60年代,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具,在机械应用的实践中,机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计的效率和质量。本文重点介绍机械优化设计理论基础的同时,对其特点、评价方式进行了总结,并指出该领域中应当进一步研究的问题和发展方向。机械优化设计;数学模型;优化方法;智能优化 机械优化设计概念 机械优化设计是综合性和实用性都很强的理论和技术,为机械设计提供了一种可靠高效的科学设计方法,使设计者由被动地分析、校核进入主动设计,能节约原材料,降低成本,缩短设计周期,提高设计效率和水平,提升企业竞争力、经济效益与社会效益。国内外相关学者和科研人员对优化设计理论方法及其应用研究十分重视,并开展了大量工作,其基本理论和求解手段已逐渐成熟。并且它建立在数学规划理论和计算机程序设计基础上,通过有效的实验数据和科学的评价体系来从众多的设计方案中寻到尽可能完善的或最适宜的设计方案。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益。那就让我们关注机械优化设计中那些重要的量。 解决优化设计问题的一般步骤 解决优化设计问题的一般步骤如下: 机械设计问题——建立数学模型——选择或设计算法——编码调试——计算结果的分析整理 优化设计中数学模型的建立 a设计变量 在最优化设计过程中需要调整和优选的参数,称为设计变量。设计变量是最优化设计要优选的量。最优化设计的任务,就是确定设计变量的最优值以得到最优设计方案。但是每一次设计对象不同,选取的设计变量也不同。它可以是几何参数,如零件外形尺寸、截面尺寸、机构的运动尺寸等;也可以是某些物理量,如零部件的重量、体积、力与力矩、惯性矩等;还可以是代表工作性能的导出量,如应力、变形等。总之,设计变量必须是对该项设计性能指标优劣有影响的参数。 b约束条件 设计空间是一切设计方案的集合,只要在设计空间确定一个点,就确定了一个设计方案。但是,实际上并不是任何一个设计方案都可行,因为设计变量的取

相关文档
相关文档 最新文档