文档库 最新最全的文档下载
当前位置:文档库 › 发电机失步的保护原理与防范

发电机失步的保护原理与防范

发电机失步的保护原理与防范
发电机失步的保护原理与防范

发电机差动保护原理

5.1发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: l op 3 I op.0 ( I res 兰 l res.0 时) l op > I op.O + S (l res — res.0) ( l res > l res.0 时) 式中:l op 为差动电流,l o P.O 为差动最小动作电流整定值,I res 为制动电流,I r es.O 为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发 电机为正方向,见 图 (根据工程需要,也可将 5.1.1.2 TA 断线判别 当任一相差动电流大于0.15倍的额定电流时启动TA 断线判别程序,满足下 列条件认为 TA 断线: a. c. 5.2发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情 况,可选择以下方案中的一种: 5.1.1。 差动电流: 1 op 制动电流: 1 res — 式中:I T ,I N 分别为机端、 见图5.1.1。 中性点电流互感器(TA )二次侧的电流,TA 的极性 _L 氓 € % 5 TA 极性端均定义为靠近发电机侧) 本侧三相电流中至少一相电流为零; b.本侧三相电流中至少一相电流不变; 最大相电流小于1.2倍的额定电流。 5.1.1电流极性接线示意图

5.2.1故障分量负序方向(△ P2)匝间保护 该方案不需引入发电机纵向零序电压。

故障分量负序方向(△ P2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障 时,在故障点出现负序源。故障分量负序方向元件的A U2和A I2分别取自机端TV、TA,其TA极性图见图5.2.1.1,则故障分量负序功率A P2为: △ P2 =3艮〔厶『2心?2心也21 2L J A ? 式中i I2为也I2的共轭相量,申sen。2为故障分量负序方向继电器的最大灵敏 角。一般取60。~80。(也|2滞后A U2的角度)。 故障分量负序方向保护的动作判据可表示为: > E-p △》2=血e^S n 实际应用动作判据综合为: A P2 = A U2r』I ' + A U2i ”也I ' > £P (S S i、年为动作门槛) 保护逻辑框图见图521.2。 枣力, “ r ‘ 1 1 Um: I 1卄TA 图521.1故障分量负序方向保护极性图

发电机失磁危害及处理方法

发电机失磁危害及处理方法 [摘要]分析了发电机失磁的原因及对电力系统和发电机本身的危害,提出了切实可行的处理方法及预防措施。 【关键词】发电机;失磁保护;判据 1、发电机失磁的原因 引起发电机失去励磁的原因很多,一般在同轴励磁系统中,常由于励磁回路断线(转子回路断线、励线机电枢回路断线励磁机励磁绕组断线等)、自动灭磁开关误碰或误掉闸、磁场变阻器接头接触不良等而使励磁回路开路,以及转子回路短路和励磁机与原动机在连接对轮处的机械脱开等原因造成失磁。大容量发电机半导体静止励磁系统中,常由于晶闸管整流元件损坏、晶体管励磁调节器故障等原因引起发电机失磁。 2、发电机失磁对发电机本身影响 (1)发电机失去励磁后,由送出无功功率变为吸收无功功率,且滑差越大,发电机的等效电抗越小,吸收的无功功率越大,致使失磁发电机的定子绕组过电流。(2)转子的转速和定子绕组合成的旋转磁场的转速出现转差后,转子表面(包括本体、槽楔、护环等)将感应出滑差频率电流,造成转子局部过热,这对发电机的危害最大。(3)异步运行时,其转矩发生周期性变化,使定、转子及其基础不断受到异常的机械力矩的冲击,机组振动加剧,威胁发电机的安全运行。(4)当失磁适度严重时,如果有关保护不及时动作,发电机及汽轮机转子将马上超速,后果不堪设想。 3、发电机失磁对电力系统影响 (1)当一台发电机发生失磁后,由于电压下降,电力系统中的其它发电机,在自动调整励磁装置的作用下,将增加其无功输出,从而使某些发电机、变压器或线路过电流,其后备保护可能因过流而误动,使事故波及范围扩大。 (2)低励和失磁的发电机,从系统中吸收无功功率,引起电力系统的电压降低,如果电力系统中无功功率储备不足,将使电力系统中邻近的某些点的电压低于允许值,破坏了负荷与各电源间的稳定运行,甚至使电力系统电压崩溃而瓦解。 (3)一台发电机失磁后,由于该发电机有功功率的摇摆,以及系统电压的下降,将可能导致相邻的正常运行发电机与系统之间,或电力系统各部分之间失步,使系统发生振荡。 (4)发电机的额定容量越大,在低励磁和失磁时,引起无功功率缺额越大,电力系统的容量越小,则补偿这一无功功率缺额的能力越小。因此,发电机的单机容量与电力系统总容量之比越大时,对电力系统的不利影响就越严重。 4、发电机失磁保护原理 (1)低电压判据 为了避免发电机失磁导致系统电压崩溃同时对厂用电的安全构成了威胁,因此设置了低电压判据。 一般电压取自主变高压母线三相电压,也可选择发电机机端三相电压。三相同时低电压判据:UppPzd 失磁导致发电机失步后,发电机输出功率在一定范围内波动,P取一个振荡周期内的平均值。

阐述发电机失步的原理及双遮挡器原理失步保护的整定计算

阐述发电机失步的原理及双遮挡器原理失步保护的整定计算 摘要:阐述南海发电一厂220kV 出线同杆并架双回线,电网调度为确保电网系统稳定性,电厂投入发电机组失步保护的必要性;以及着重介绍了基于双遮挡器原理的发电机组失步保护整定值计算方法。 关键词:振荡;失步保护;双遮挡器;整定计算 0 引言 2013年中旬,中调转发了电网总调《电厂安全稳定防线优化方案讨论会议纪要》,并要求我厂在具体时间内完成对机组失步保护定值优化调整工作,具体原则如下:1 )机组失步保护整定范围延伸至电厂送出线路对侧变电站,即延伸至 220kV 对侧变电站;2 )为分散动作风险,机组滑极次数定值分两轮整定。即不重要机组定义为第一轮跳闸对象,重要机组为第二轮跳闸对象,后者滑极次数需比前者大。 由于我厂无装设失步解列装置, 2台机组发变组保护亦无配置失步保护(机组为200MW 发电机,可不配置发电机失步保护),按中调通知要求需进行机组失步保护定值整定并投入。 1 针对我厂220kV 出线同杆并架双回线,发电机组失步保护投入的必要性 广东电网调度对全网电厂送出线路(同杆双回线)故障的稳定性进行核算,针对我厂220kV 出线(新南甲线、新南乙线为同杆双回线)分析研究,当两回线路同时或相继出现一回线路三相永跳故障与另一回线路单相瞬时故障现象时,线路电抗增加,回路的综合电抗X Σ变大,根据公式: P E = δsin ∑ ?X E U A (1-1) A E :发电机电动势; U:无穷大系统母线电压; X Σ:包括发电机电抗在内的发电机到无穷大系统母线的总电抗; δ:发电机电动势E A 与无穷大系统电压U 之间的功角; P E : 功率极限值。 功率极限值将变小,功角特性将由图曲线1变为曲线2,如图1-1所示。[1] 图1-1 系统故障时的功角特性曲线 在切除线路的瞬间,X Σ的增大以及发电机由于机械惯性,转速不变,功率角不变δ,由公式1-1可知,这时原动机供给发电机的功率仍为Pm ,发电机的对外输出功率P E 却减少了,此时发电机的运行点将由曲线1的a 点落到曲线2的b 点上,但是b 点运行时,功率是不平衡的。

发电机失磁保护介绍(材料详实)

发电机失磁保护介绍 1 概述 同步发电机是根据电磁感应的原理工作的,发电机的转子电流(励磁电流)用于产生电磁场。正常运行工况下,转子电流必须维持在一定的水平上。发电机失磁故障是指励磁系统提供的励磁电流突然全部消失或部分消失。同步发电机失磁后将转入异步运行状态,从原来的发出无功功率转变为吸收无功功率。 对于无功功率容量小的电力系统,大型机组失磁故障首先反映为系统无功功率不足、电压下降,严重时将造成系统的电压崩溃,使一台发电机的失磁故障扩大为系统性事故。在这种情况下,失磁保护必须快速可靠动作,将失磁机组从系统中断开,保证系统的正常运行。 引起发电机失磁的原因大致有:发电机转子绕组故障、励磁系统故障、自动灭磁开关无跳闸及回路发生故障等。 2 发电机失磁过程中机端测量阻抗分析 发电机从失磁开始进入稳态异步运行,一般分为三个阶段: (1)失磁后到失步前 (2)临界失步点 (3)异步运行阶段 2.1隐极式发电机 以汽轮发电机经联络线与无穷大系统并列运行为例,其等值电路与正常运行时的向量图如图1所示。

图1 发电机与无限大系统并列运行 图中,d E 为发电机的同步电势,f U 为发电机机端相电压,s U 为无穷大系统相电压,I 为发电机定子电流,d X 为发电机同步电抗,s X 为发电机与系统之间的等值电抗,且有s d X X X +=∑ ,?为受端的功率因数角,δ为d E 与s U 之间的夹角(即功角)。 若规定发电机发出有功功率、无功功率时,表示为jQ P W -=,则 δsin ∑ =X U E P s d (1) ∑∑-=X U X U E Q s s d 2cos δ (2) 功率因数角为 P Q 1tan -=? (3) 在正常运行时,090<δ。090=δ为稳定运行极限,090>δ后发电机失步。 1. 失磁后到失步前 在失磁后到失步前的阶段中,转子电流逐渐减小,Ed 随之减小,随之增大,两者共同的结果维持发电机有功功率P 不变。与此同时,无功功率Q 随着Ed 的减小与的增大迅速减小,按(2)式计算的Q 值由正变负,发电机由发出感性无功转变为吸收感性无功。 此阶段中,发电机机端测量阻抗为 s s s s f f jX I U I jX I U I U Z +=+==& &&&&&& 带入公式jQ P U I s -=??&&,则

一种失磁保护原理

一种失磁保护原理 88 第31卷第22期 2019年11月25日Vol. 31 No. 22 Nov. 25, 2019 同步发电机失磁保护的改进方案 林莉1, 牟道槐1, 孙才新1, 马超2, 成涛3 (1. 重庆大学输配电装备及系统安全与新技术国家重点实验室, 重庆市400044) (2. 重庆市电力公司调度通信中心, 重庆市400014; 3. 重庆市电力公司北碚供电局, 重庆市400700) 摘要:在电力系统继电保护中, 同步发电机失磁保护是最为重要的保护之一。励磁故 障涉及发电 机的大干扰稳定性, 也是一个较为复杂并难以解决的问题。目前所用的励磁保护的动作效果并不理想, 尚需进一步改进。分析了目前所用的3种励磁保护判据存在的不足, 指出这些保护判据或基于小干扰稳定性原理而未考虑发电机动态功角特性的严重变形, 或未考虑发电机完全失磁后的测量阻抗与正常励磁下扰动后的测量阻抗具有较大的公共区间, 从而可能使保护误动或拒动。基于对同步发电机失磁后动态行为的仿真分析, 提出了同步发电机失磁保护的改进方案, 通过直接测量功率角判断同步发电机的失磁故障, 提出了其整定条件和计算方法。仿真计算证明该方案能可靠、快速地反映各种励磁故障, 动作稳定且整定灵活、方便。关键词:同步发电机; 励磁系统; 失磁保护; ; 中图分类号:TM614; TM772 0 引言 磁, , 。统计数据表明, 励磁故障约占发电机总故障的60%以上[122]。因此, 更深入地研究发电机励磁故障特征, 提高发电机励磁保护与控制水平, 对保证机组本身和电力系统的安全稳定具有十分重要的学术意义与工程实用价值。 在电力系统继电保护中, 发电机失磁保护是最为重要、复杂的保护。目前, 以定子回路参数特征为判据的失磁保护通常在阻抗平面上实现, 用机端测量阻抗来反映励磁故障仍是当前同步发电机失磁保护的主流, 具体可反映励磁故障后出现的如下3种状态:①发电

失步保护

水电站发变组失步保护动作分析 蒋琛1,闫涛1,张强1 (1.江苏省方天电力技术有限公司,江苏南京 211100) 摘要:介绍国内外主流发变组失步保护动作原理,分析一次水电站动作数据,分析了动作机理,并对同类型的失步保护应用提出建议。 关键词:水电站发变组失步保护 1.引言 针对江苏省内近年基建项目中大机组上的较多的情况,如扬州二厂600MW×2(已投运),华润常熟电厂660MW×2(其中1#机已投运),张家港华兴电厂395MW×2(燃机),戚墅堰电厂395MW×2(燃机),望亭电厂(395MW×2燃机),镇江电厂三期(660MW×2),常州国电(660MW×2),太仓环保电厂四期(660MW ×2)、华能太仓(660MW×2)、等厂,以及一批正在基建和已经运行的大型机组的发变机组保护都按稳定导则和设计规程的要求配置了失步保护,但也有例外的是华能南通电厂的350MW机组未配置发电机失步保护。 因此我们认为有必要对这些失步保护的性能进行研究,通过现场试验来分析这些失步保护在系统受到扰动时,是否存在不正确动作的可能行,以杜绝影响电网安全、稳定和不必要跳机的不利因素。 2.各保护原理分析 LPS失步保护原理(录自GE公司LPS保护说明书) 沙河电站的发变机组保护RS489中不具备失步保护的功能,故外方采用微机型线路保护LPS(为GE公司的早期产品,需要说明的是:用于线路保护的失步判别元件主要是防止线路保护的阻抗元件发生误动,当系统发生扰动,即使失步判别元件误动,也只是短暂闭锁这套线路保护,而用于大型发变机组和水轮机组的失步保护则是不允许这种不应该的误动)中的振荡闭锁元件作为水轮机组的失步保护。其动作逻辑见图2-1。 当系统发生振荡,且阻抗轨迹进入OUTER 动作特性圆(图2-1)后,与门AND61的一个输入来自OUTER,另一输入来自MIDDLE从或门OR61输入,如果阻抗轨迹在OUTER和MIDDLE中间停留的时间超过时间启动整定值TLOS1后,则TLOS1动作并使得AND61的一个输入为1,只要OUTER动作,TLOS1就将一直保持在动作状态。 当发生短路故障,由于OUTER,MIDDLE 同时动作,MIDDLE动作信号通过NOT61闭锁,TLOS1将不动作。 图1. LPS失步保护的动作逻辑 振荡的阻抗轨迹将进入MIDDLE(图2-2),但还停留在INNER外时,AND62的一个输入被TLOS1触发,另一输入则是MIDDLE本身, 第三个输入则由INNER的非门NOT62决定,如果振荡引起的阻抗轨迹在MIDDLE 和

从保护试验中认识失磁保护

从保护试验中认识失磁保护 失磁保护:发电机失磁保护是发电机继电保护的一种。 定义:是指发电机的励磁突然消失或部分消失,当发电机完全失去励磁时,励磁电流 将逐渐衰减至零。由于发电机的感应电势Ed 随着励磁电流的减小而减小,因此,其励磁转 矩也将小于原动机的转矩,因此引起转子加速,使发电机的功角δ增大。当δ超过静态稳 定极限角时,发电机与系统失去同步,此时发电机保护装置动作于发电机出口断路器,是发 电机脱离电网,防止发电机损坏和保护电网稳定运行,这种保护叫失磁保护。 关于失磁保护,大家可以简单理解成发电机没有励磁后,由发电机转变成电动机,发电机 机端测量阻抗,失磁前在阻抗平面R——X坐标第一象限,失磁后测量阻抗的轨迹沿着等有 功阻抗圆进入第四象限。随着失磁的发展,机端测量阻抗的端点落在静稳极限阻抗圆内, 转入异步运行状态。具体失磁过程见附件2. 测试对象:3080(V2.0D)发电机保护装置 测试仪器:昂立测试仪 失磁保护定值定值: Xa 5.77Ω Xb 17.31Ω延时0.4S (1)动作精度 实验方法:测试仪加电压UA 57.74V 0° UB 57.74V 240° UC 57.74V 120°, A:保持IA 90°、IB 310°、IC 210°角度不变,增加电流幅值,步长0.5A,记录动作数 据 (理论值电流从3.33到10为动作区。Imax=57.74/5.77=10 Imin=57.74/17.31=3.33) B:保持IA、IB、IC 幅值5.774A不变,增加电流角度,步长10度,记录动作值,继续增 加角度 直至复归,记录复归值。(理论值IA从60度到120度为动作区)

失磁保护(讲课资料)

低励、失磁保护 应掌握的知识点: 1、什么是失磁? 2、失磁后,发电机的运行状况如何变化?或者说发电机开始失磁(在未超过静稳极限之前)的现象? 3、失磁保护有哪些判据?(看说明书,先记住这些判据的名称,原理可以先不看) 4、发电机失磁对系统和发电机本身有什么影响? 5、发电机失磁后,机端测量阻抗大致如何变化?(先了解) 一、定义 失磁保护,有时候也叫低励保护。但从更加确切的定义上讲,低励:表示发电机的励磁电流低于静稳极限所对应的励磁电流;(发电机要向外送这么多有功,必须要有相应的励磁电流来维持,励磁电流太低,连静稳极限都维持不了的时候,就叫低励。 而失磁:表示发电机完全失去励磁。发电机低励、失磁,是常见的故障形式,特别是大型发电机组,励磁系统的环节比较多。增加了发生低励、失磁的机会。 二、失磁的过程 正常运行时,转子的旋转磁场,与定子绕组中电流产生的交变磁场,两者耦合到一起,同步旋转,转子磁场起推动力的作用,定子绕组中电流产生的交变磁场起制动力的作用,两者大小相等,同步旋转,把原动机的能量,通过磁场传到三相系统中去。 而低励、失磁时,转子中的磁场就减小,最后没有了,相当于转子用来推动定子交变磁场旋转的磁场减小、甚至没有了,相当于将“原动机的能量”转换成“三相交流系统中的电能”的媒介减小、甚至没有了,那么原动机的能量就只能转换成转子的机械能,所以转子的转速要加快。 以下为补充:

励磁与有功、机端电压的关系(纯属个人理解,仅供参考)

有功增加了 在机端电压不变的情况下 定子电流就会增加,定子电流增加的话 就会使机端电压下降, 为了保持机端电压的恒定就会增加励磁电流来稳定电压,励磁电流只调节无功,但无功和有功要满足功率圆。可能会出现在无功一定的情况下有功无法调节。 就是说在有功增加的情况下励磁电流会变大的有功减小的话励磁电流也会相应的减小。 也就是说,增加励磁电流,可以增加发电机输出的无功Q ,也会使发电机的输出电压升高;反之,则相反。而励磁电流与有功P 之间无必然的联系。 差不多吧,有功增加会使发电机产生去磁作用,这个时候发电机电压会降低,发电机会失磁,无功就要相应的增加。 理论上调整有功,无功会跟着变化,增加无功,有功不随着无功变化。 单台发电机对于无穷大系统而言,发电机输出的有功、无功的表达式为如下,式中,各参数的定义与上面补充部分的定义相同。但下式成立的条件是xd=xq (此时xd Σ=xq Σ),即对于隐极发电机,才成立,对于凸极机,不成立。 200sin =cos s s s E U E U U P Q X X X ΣΣΣδ δ- 式中,P 为发电机的有功,E0为发电机的机端电压;Us 为系统电压,X Σ为包括发电机在内的整个系统的电抗,δ为转子磁场与定子绕组的电枢磁场的夹角(也可理解为机端电压与无穷大系统电压之间的夹角)。

发电机振荡或失步时的现象

目 发电机振荡或失步时的现象 (2) 一、概述 (2) 二、发电机振荡或失步时的现象 (2) 三、发电机振荡和失步的原因 (3) 四、单机失步引起的振荡与系统性振荡的区别 (3) 五、系统性振荡时,所有发电机表计的摆动是同步的。 (3)

发电机振荡或失步时的现象 一、概述 同步发电机正常运行时,定子磁极和转子磁极之间可看成有弹性的磁力线联系。当负载增加时,功角将增大,这相当于把磁力线拉长;当负载减小时,功角将减小,这相当于磁力线缩短。当负载突然变化时,由于转子有惯性,转子功角不能立即稳定在新的数值,而是在新的稳定值左右要经过若干次摆动,这种现象称为同步发电机的振荡。 振荡有两种类型:一种是振荡的幅度越来越小,功角的摆动逐渐衰减,最后稳定在某一新的功角下,仍以同步转速稳定运行,称为同步振荡;另一种是振荡的幅度越来越大,功角不断增大,直至脱出稳定范围,使发电机失步,发电机进入异步运行,称为非同步振荡。 二、发电机振荡或失步时的现象 a)定子电流表指示超出正常值,且往复剧烈运动。这是因为各并列电势间夹角发生了变化,出现了电动势差,使发电机之间流过环流。由于转子转速的摆动,使电动势间的夹角时大时小,力矩和功率也时大时小,因而造成环流也时大时小,故定子电流的指针就来回摆动。这个环流加上原有的负荷电流,其值可能超过正常值; b)定子电压表和其他母线电压表指针指示低于正常值,且往复摆动。这是因为失步发电机与其他发电机电势间夹角在变化,引起电压摆动。因为电流比正常时大,压降也大,引起电压偏低; c)有功负荷与无功负荷大幅度剧烈摆动。因为发电机在未失步时的振荡过程中送出的功率时大时小,以及失步时有时送出有功,有时吸收有功的缘故; d)转子电压、电流表的指针在正常值附近摆动。发电机振荡或失步时,转子绕组中会感应交变电流,并随定子电流的波动而波动,该电流叠加在原来的励磁电流上,就使得转子电流表指针在正常值附近摆动; e)频率表忽高忽低地摆动。振荡或失步时,发电机的输出功率不断变化,作用在转子上的力矩也相应变化,因而转速也随之变化; f)发电机发出有节奏的鸣声,并与表计指针摆动节奏合拍; g)低电压继电器过负荷保护可能动作报警;

发电机保护原理学习

发电机保护原理学习 一、发电机保护的配置原则 发电机是电力系统的核心,要保证发电机的安全、可靠运行,就必须针对其各种故障和异常工作情况,按照发电机容量及重要程度,装设完备的继电保护装置。主要包括: (1)反映相间短路的纵联差动保护; (2)反映定子绕组匝间短路的匝间短路保护; (3)反映定子单相接地短路的定子接地保护; (4)反映发电机外部相间短路的后备保护及过负荷保护; (5)反映励磁回路接地的励磁回路一点和两点接地保护; (6)反映低励磁或失磁的失磁保护; (7)反映电子绕组过电压的过电压保护; (8)反映发电机失步的失步保护; (9)反映逆功率的逆功率保护; (10)反映低频率的低频保护; (11)反映定子铁芯过励磁的过励磁保护保护。 发电机保护配置的容量原则 (1)1MW 以上的发电机,应装纵联差动保护 (2)对发电机变压器组,当发电机与变压器之间有断路器时,发电机装设单100MW 及以下发电机,独的纵联差动保护; 当发电机与变压器之间没有断路器时,可装设发电机变压器组共用纵联差动保护,100MW 及以上发电机,除发电机变压器组共用纵联差动保护外,发电机还应装设单独的纵联差动保护,200~300MW 对的发电机变压器组可在变压器上增设单独的纵联差动保护,即采用双重快速保护。 (3)对300MW 及以上汽轮发电机变压器组,应装设双重快速保护,即装设发电机纵联差动保护、变压器纵联差动保护和发电机变压器组共用纵联差动保护; 当发电机与变压器之间有断路器时,应装设双重发电机纵联差动保护。 (4)与母线直接连接的发电机,当单相接地故障电流大于允许值时,应装设有选择性的接地保护装置。 (5)对于采用发电机变压器组单元接线的发电机,容量在对100MW 以下的,应装设保护区小于90%的定子接地保护; 容量在100MW 以上的,应装设保护区为100%的定子接地保护。 (6)1MW 以上的水轮发电机,应装设一点接地保护装置。 (7)100MW 以下的汽轮发电机,对一点接地故障,可采用定期检测装置。对两点接地故障,应装设两点接地保护装置。 (8)转子内冷汽轮发电机和100MW 及以上的汽轮发电机,应装设励磁回路一点接地保护装置,每台发电机装设一套;并可装设两点接地保护装置,每台发电机装设一套,对旋转整流励磁的发电机,应装设一点接地故障定期检测装置。 (9)100MW 以下,不允许失磁运行的发电机,当采用半导体励磁系统时,宜装设专用的失磁保护 (10)100MW 以下但失磁对电力系统有重大影响的发电机及100MW 及以上的发电机应装设专用的失磁保护。对600MW 的发电机可装设双重化的失磁保护。

对发电机失磁保护的浅析

对发电机失磁保护的浅析 摘要:发电机的失磁保护和失步保护对于发电机而言非常重要,一般而言,两种保护的依据都是故障时的阻抗变化轨迹特性,因此两者在某些阻抗区域的动作会有重叠,从而造成失磁保护和失步保护的逻辑运算冲突。本文从发电机失磁保护和失步保护的分析出发,进而探讨了发电机失磁保护和失步保护的冲突,最后提出了两种保护的协调方案。 关键词:失磁保护;失步保护;冲突 目前,大部分的发电机在某种程度上都允许一定的进相运行,选择的是异步圆当作失磁保护的动作阻抗区域;而失步保护所使用的动作阻抗区域则为一种叶形区域。两者的保护依据主要取决于阻抗的变化,而在实际的运用中,对于失磁保护而言,除了受到了阻抗的影响也受到了其他因素的影响,比如转子电压,这个因素同时也是区分失磁故障与失步故障的一个依据。 1发电机失磁现象 发电机失磁[1,2]是指正常运行发电机的励磁电流全部的或部分的消失现象。引起发电机失磁原因有:励磁机故障、自动灭磁开关误跳闸、转子绕组故障、回路发生故障以及误操作、半导体励磁系统中某些元件的损坏等等。失磁是发电机常见故障形式之一,特别是大型发电机组,由于励磁系统环节较多,因而也加了发生失磁的机会。发电机发生失磁以后,励磁电流将逐渐衰减至零,发电机的感应电势Ed随着励磁电流的减小而不断减小,电磁转矩将小于原动机的转矩,因而使转子加速,导致发电机功角增大。当发电机功角超过静稳极限角时,发电机将会与电力系统失去同步。发电机失磁后将从系统中吸取一定的感性无功来供给转子励磁电流,转子会出现转差,在定子绕组中感应电势,定子电流增大,定子电压下降,有功

功率下降,而无功功率反向并不断增大,在转子回路会有差频电流产生,整个系统的电压会下降,某些电源支路也会产生过电流,发电机的各个电气量不断的摆动,严重威胁发电机和整个电力系统的安全稳定运行。 2发电机失磁危害 发电机失磁后,发电机转子和定子磁场间出现了速度差,则在转子回路中感应出差频电流,引起转子局部过热,甚至灼伤,同时发电机受交变异步电磁力矩冲击而发生振动,尤其在重负荷下失磁将发生剧烈振动,直接威胁机组安全运行。此外,发电机从系统吸收无功功率引起系统电压下降,如果系统无功储备不足则可能使系统电压低于允许值,甚至电压崩溃而瓦解系统。 3发电机失磁保护判据 3.1定子侧阻抗判据 定子阻抗判据有静稳边界阻抗判据和异步边界阻抗判据2 种。静稳边界阻抗判据是根据发电机失去静稳时机端阻抗的变化轨迹而设立的,异步边界阻抗判据是根据发电机失磁后转入稳定异步运行时机端阻抗的变化轨迹而设立的,动作时间比较晚。静稳边界阻抗判据和异步边界阻抗判据动作区域都为圆,如图1 所示。 3.2转子低电压判据 转子低电压判据也是根据发电机的静稳边界而设计的,包括等励磁电压判据和变励磁电压判据。等励磁电压判据动作电压值为定值,一般为额定空载励磁电压的80 %。变励磁电压判据的动作电压值随发电机输出的有功功率变化而改变 3.3三相同时低压判据与过功率判据 三相同时低压判据分为主变高压侧三相低压判据和机端三相低压判据。主变高压侧三相低压判据防止发电机失磁故障造成高压母线电压的严重下降,导致系统稳定性破坏,动作电压取

发电机保护现象、处理

发电机保护1 对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。 (1)纵联差动保护:为定子绕组及其引出线的相间短路保护。 (2)横联差动保护:为定子绕组一相匝间短路保护。只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。 (3)单相接地保护:为发电机定子绕组的单相接地保护。 (4)励磁回路接地保护:为励磁回路的接地故障保护。 (5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。 (6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。 (7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。 (8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。 (9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。 (10)失步保护:反应大型发电机与系统振荡过程的失步保护。 (11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。 发电机保护简介 1、发电机失磁保护 失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。励磁低电压Ufd(P)判据和静稳阻抗判据均与静稳边界有关,可检测发电机是否因失磁而失去静态稳定。静稳阻抗判据在失磁后静稳边界时动作。TV断线判据在满足以下两个条件中任一条件:│Ua+Ub+Uc-3U0│≥Uset(电压门坎)或三相电压均低于8V,且0.1A

发电机失步保护介绍

发电机失步保护介绍 1 概述 当发电机正常运行时,发电机与电力系统的电动势以同样的工频角频率旋转,之间的相位差维持不变,发电机处于同步稳定运行状态。如果受到某种干扰,发电机与系统之间的电动势以不同的角频率旋转,线路两侧电动势相位差不断变化,此时称作发电机失步。 发电机失步后,两侧电动势之间的夹角δ在0°到360°间不断变化。发电机机端电压与电流也呈周期性变化,因此需要对失步时的机端测量阻抗进行分析。 2 发电机失步时电气量变化分析 发电机失步时电压、电流变化 以发电机带无穷大系统为例,发电机电势为Eg ,系统侧电势为Es ,各回路等值阻抗如图1中所示。 s s U E ? ?=? ? ? 图1 发电机带无穷大系统 如图1中所示,发电机失步前,保护安装处为送电端,g E 超前S E ,假设两侧电动势 幅值相等,则δj g s e E E -= ,夹角δ由线路传输的有功功率决定。 此时发电机机端电流为: ∑ -∑-=-=Z e E Z E E I j g s g )1(δ (1)

发电机机端电压为: g g Z I E U -= (2) 绘制出发电机带无穷大系统时对应的相量图,如图2所示。事实上,将式(1)带入式(2),则有 ∑ --=Z Z E E E U g s g g )( 可以看出,如果系统中各元件的阻抗角都相同的话,系统中各点的电压相量的端点都落 在图2中)(s g E E -的相量上。由(1)式知,当δ=180°时,∑ =Z E I g 2,此时线路中电 流最大,电流在阻抗g Z 上产生的压降最大,此时发电机机端电压最低。 发电机失步时,系统中电压最低的一点C ,称作振荡中心。可在图2中作垂直于 )(s g E E -的相量c U ,此点电压最低,即为振荡中心。 s 图2 发电机带无穷大系统的相量图 发电机失步时的机端测量阻抗 当发电机失步时,保护安装处的电压与电流幅值与相位都将随着两侧电动势夹角δ的变化而变化。因此,反映电压和电流比值的阻抗继电器的测量阻抗幅值和相位也将随 δ而变化。如果两侧电动势幅值相等,即E E E s g == ,发电机出口处测量阻抗为: g j g j g g g g g g g Z e Z Z Z e E E Z I E I Z I E I U Z --=--=-=-==-∑ ∑ -δ δ1)1(

发电机差动保护原理

发电机差动保护原理 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: I op ? ( I res ? 时) I op ? + S(I res – ( I res > 时) 式中:I op 为差动电流,为差动最小动作电流整定值,I res 为制动电流,为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发电机为正方向,见图5.1.1。 差动电流: N T op I I I ? ?+= 制动电流: 2 N T res I I I ??-= 式中:I T ,I N 分别为机端、中性点电流互感器(TA)二次侧的电流,TA 的极性见图 5.1.1。 图5.1.1 电流极性接线示意图 (根据工程需要,也可将TA 极性端均定义为靠近发电机侧) 5.1.1.2 TA 断线判别 当任一相差动电流大于倍的额定电流时启动TA 断线判别程序,满足下列条件认为TA 断线: a. 本侧三相电流中至少一相电流为零;

b. 本侧三相电流中至少一相电流不变; c. 最大相电流小于倍的额定电流。 发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情况,可选择以下方案中的一种: 5.2.1故障分量负序方向(ΔP 2) 匝间保护 该方案不需引入发电机纵向零序电压。 故障分量负序方向(ΔP 2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障时,在故障点出现负序源。故障分量负序方向元件的2.U ?和2. I ?分别取自机端TV 、TA ,其TA 极性图见图5.2.1.1,则故障分量负序功率?P 2为: 式中2Λ?I 为2??I 的共轭相量,?sen 。2为故障分量负序方向继电器的最大灵敏角。一般取60?~80?(2.I ?滞后2.U ?的角度)。 故障分量负序方向保护的动作判据可表示为: 实际应用动作判据综合为: ? P 2 = ? U 2r ? ? I ’2r + ? U 2i ? ? I ’2i > ?P (?u 、?i 、?P 为动作门槛) 保护逻辑框图见图5.2.1.2。 图5.2.1.1 故障分量负序方向保护极性图 图5.2.1.2 故障分量负序方向保护逻辑框图 5.2.2发电机纵向零序过电压及故障分量负序方向型匝间保护 本保护不仅作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及

发电机保护原理资料讲解

发电机保护原理

发电机保护原理 大型发电机的造价高昂,结构复杂,一旦发生故障遭到破坏,其检修难度大,检修时间长,要造成很大的经济损失。例如,一台20万kW的汽轮发电机,因励磁回路两点接地使大轴和汽缸磁化,为退磁需停机1个月以上,姑 且不论检修费用和对国民经济造成的间接损失,仅电能损失就近千万元。大机组在电力系统中占有重要地位,特别是单机容量占系统容量较大比例的情况下,大机组的突然切除,会给电力系统造成较大的扰动。因此,发电机的安全运行对电力系统的正常工作、用户的不间断供电、保证电能的质量等方面,都起着极其重要的作用。 1.发电机故障形式 由于发电机是长期连续旋转的设备,它既要承受机身的振动,又要承受电流、电压的冲击,因而常常导致定子绕组和转子线圈的损坏。因此,发电机在运行中,定子绕组和转子励磁回路都有可能产生危险的故障和不正常的运行情况。一般说来,发电机的故障和不正常工作情况有以下几种: (1)定子绕组相间短路故障:定子绕组相间短路故障是对发 电机危害最大的一种故障。故障时,短路电流可能把发 电机烧毁。

(2)定子绕组匝间短路:定子绕组匝间短路时,在匝间电压 的作用下产生环流,可能使匝间短路发展为单相接地短 路和相间短路。 (3)定子绕组接地故障:定子绕组的单相接地故障是发电机 内较常见的一种故障,故障时,发电机电压系统的电容 电流流过定子铁心,造成铁心烧伤,当此电流较大时将 使铁心局部熔化。 (4)励磁回路接地故障:发电机励磁回路一点或两点接地时, 一般说来,转子一点接地对发电机的危害并不严重,但 一点接地后,如不及时处理,就有可能导致两点接地,而发生两点接地时,由于破坏了转子磁通的平衡,可能 引起发电机的强烈振动,或将转子绕组烧损。 (5)定子绕组过负荷:超过发电机额定容量运行形成过负荷 时,将引起发电机定子温度升高,加速绝缘老化,缩短 发电机的寿命,长时间过负荷,可能导致发电机发生其 他故障。 (6)定子绕组过电压:调速系统惯性较大的发电机,如水轮 发电机或大容量的汽轮发电机,在突然甩负荷时,可能 出现过电压,造成发电机绕组绝缘击穿。 (7)定子过电流:由于外部短路或系统振荡而引起定子过电 流时,也将引起发电机定子温度升高,加速绝缘老化等

发电机失磁跳闸原因分析及防止对策通用版

安全管理编号:YTO-FS-PD654 发电机失磁跳闸原因分析及防止对策 通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

发电机失磁跳闸原因分析及防止对 策通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 〔摘要〕叙述了大武口发电厂相继投入运行的JLQ-500-3000型交流励磁机(主励磁机)、YJL-100-3000交流永磁机(付励磁机)和GLT-S型励磁调节器,在运行期间,其发电机低励磁失磁保护先后动作跳闸了11次,严重危及西北电网及宁夏电网的稳定运行的情况,分析了失磁保护动作的原因,制定了相应的防止对策。 1 发电机失磁跳闸的典型事例 (1) 1987年9月14日19:23,发现3号机主励磁机炭刷冒火,电气运行值班人员在处理过程中,由于维护经验不足,调整电刷弹簧压力时将正、负极同时提起,使运行中的发电机励磁电流中断,造成失磁保护动作,3号机出口208开关跳闸。 (2) 1987年11月28日,全厂2,3,4号机组运行,1号机组停运,总负荷280 MW,4号机组带80 MW 负荷运行。8:15,4号机励磁系统各表计指示摆动,随之出现“励磁异常”、“强励限制”、“保护动作”等光字。4

失磁保护

发电机失磁保护的整定计算 作者:佚名发布日期:2008-5-30 17:33:45 (阅631次) 关键词: 保护电机 目前,国内生产及应用的微机型失磁保护的类型主要有两类,一类是机端测量阻抗+转子低电压型;另一类是发电机逆无功+定子过电流型。 一、机端测量阻抗+转子低电压型失磁保护的整定计算 该型失磁保护用于判断发电机失磁或励磁降低到不允许的程度的判据主要有机端测量阻抗元件及转子低电压元件,失磁的危害判别元件只有系统低电压元件。此外,为提高失磁保护动作可靠性(例如,躲系统振荡),还设置有时间元件。 对于该型失磁保护的整定,主要是对机端测量阻抗元件、转子低电压元件、系统低电压元件及时间元件的整定。 1、机端测量阻抗元件的整定

(1)失磁保护阻抗元件动作特性的类别。 截至目前,国内采用的失磁保护阻抗元件在阻抗复平面上动作特性的类型主要有:异步边界阻抗圆、静稳边界阻抗圆及通过坐标原点的下抛阻抗圆。圆内为动作区。 2、动作阻抗圆的选择及整定 理论分析及运行实践表明:发电机失磁后,机端测量阻抗的变化轨迹,与发电机的结构、发电机所带有功功率及系统的联系阻抗均有关。 运行实践表明:按静稳边界构成的动作阻抗圆,在运行中容易误动。目前国内运行的阻抗型失磁保护,多数采用异步边界阻抗圆、下抛阻抗圆。 在确定阻抗元件的整定值时,应首先了解发电机在系统的位置,与系统的联系阻抗及常见的运行工况等。 动作阻抗圆的整定阻抗一般按下式确定: XA=-0.5X’d(或XA=0) XB=-1.2Xd XA、XB分别为异步边界阻抗圆的整定电抗。 Xd为发电机的同步电抗 X’d发电机的暂态电抗 另外,对于与系统联系阻抗较大的大型水轮发电机,动作阻抗圆应适当增大;而对于与系统联系阻抗较小的大型汽轮发电机,动作阻抗圆可适当的减小。对于经常进相运行的发电机,应保证在发电机进相功率较大时(但未失步),机端测量轨迹不会进入动作阻抗圆内。

预防发电机失磁、失步措施

预防发电机失磁、失步措施 发电机失磁、失步是发电机运行中常见的故障形式,一旦保护拒动将对发电机及系统造成较大影响。为防止此故障发生,特制定本措施。 一、失磁、失步定义: 失磁:发电机失磁是指发电机的励磁电流突然全部消失或部分消失。 失步:发电机失磁后造成震荡,震荡幅度变大,功角增大,直至脱出稳定运行,使发电机失去同步,进入异步运行。 二、失磁的原因: 1、转子绕组故障 2、励磁机故障 3、自动灭磁开关误跳闸 4、及回路发生故障 三、失磁的危害: 对自身危害: 1、使转子和励磁回路过热,严重时可使转子烧毁。 2、失磁后吸收无功使定子过热。 3、机组振动增大、铁芯过热。 对系统危害: 1、从系统吸收无功,威胁系统稳定运行,严重时导致系统瓦解。 2、强励可能动作,引起过电流。 四、失磁处理: 1、检查厂用电是否切换,如果未切换作相应处理。 2、发电机失磁,而失磁保护没有动作,系统电压低至极限值时应立即手动 打闸停机。 3、如果系统电压低应联系值长增加其它发电机的无功出力,防止电网瓦解。 五、失步处理: 1、在发电机电压允许的前提下尽可能增加发电机的无功。 2、如果系统频率正常可适当降低发电机的有功。 3、采取上述措施后仍不能恢复同步,失步保护不动作时如威胁设备安全时, 应将失步的发电机与系统解列。 4、如由于发电机失磁引起系统振荡而失磁保护不动作时,应立即将失磁的 发电机解列。 六、防止失磁、失步措施: 1、各值做好发电机失磁、失步的事故预想,防止事故扩大。 2、巡检时注意检查各保护装置工作正常。

3、巡检时检查励磁系统各保险、开关正常,系统无异常报警。 4、运行中加强励磁碳刷的检查。 5、励磁系统操作严格执行监护制度。 6、机组大小修中做励磁系统相关试验及发变组保护传动试验正常。 7、定期核对保护装置定值正确。 8、定期试验柴油发电机正常。

相关文档
相关文档 最新文档